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1 INTRODUCTION 

Multibeam Echosounder is nowadays state of the art 
for hydrographic surveys, due to the accuracy and 
coverage that it offers. Complete MBES system 
however requires a set of additional sensors allowing 
precise navigation and measurements, like positioning 
sensor, motion reference unit or speed sensor. Data 
obtained form these sensors influence a lot accuracy of 
measured data and consequently of bottom model 
obtained. Raw measurements from these sensors are 
burden with typical measurement errors and 
inaccuracies, therefore these data requires filtration in 
processing stage to provide reliable values for the 
MBES system. Heading is one of the crucial 
information responsible for the direction of beams in 
echosounder, allowing proper alignment of the system 
in the survey area. Heading is obtained from 
gyrocompasses, but more and more often it is based on 
GNSS measurements in satellite compasses. 
Measurements form both systems may be burden with 
inaccuracies and errors however satellite compasses 
may additionally be affected by signal propagation 

issues (e.g under the bridge or in dense urban 
environment). Therefore filtration of raw data is 
needed. The goal of it is basically to filter the data by 
deleting outlier, removing peaks and generally to 
smooth signal distribution over time.  

In recent years, machine learning (ML) methods 
have emerged as powerful tool capable of modelling 
complex relationships in large datasets. Their ability to 
learn patterns from data makes them particularly 
attractive for tasks involving signal denoising and 
smoothing, where classical model-driven approaches 
often face limitations. Techniques such as Support 
Vector Regression (SVR), deep learning-based models 
and recurrent networks (LSTM, GRU, RNN) have 
shown promising results in various time series and 
signal processing applications, including inertial 
navigation, GPS trajectory smoothing, and sensor 
fusion. 

The aim of the research for this paper was to 
analyze and compare several machine learning 
methods and their key parameters in the context of 
heading data filtering for MBES surveys. This study 
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aims to assess their effectiveness in reducing noise 
while preserving the actual dynamics of vessel motion. 
Real-world heading measurements, collected during 
hydrographic surveys, will be used for this analysis. 
The bathymetric data were collected using an echo 
sounder PING DSP 3DSS-DX-450 mounted on the 
survey vessel Hydrodron-1. The data were gathered 
during the project LIDER/4/0026/L-12/20/NCBR/2021. 
Unlike synthetic datasets, real survey data capture the 
full spectrum of operational challenges, such as 
environmental disturbances, sensor imperfections, and 
vessel maneuvers, thus providing a robust benchmark 
for evaluating ML-based filtering approaches. The 
processing methods were elaborated in the scope of the 
project SONARMUS supported by the Foundation for 
Polish Science (FNP) in the FENG Proof of Concept 
program under grant no. FENG.02.07-IP.05-0489/23 

2 LITERATURE REVIEW 

Accurate heading data are crucial for the quality of 
bathymetric surveys conducted with MBES systems. 
Traditional filtering approaches such as moving 
average filters, low-pass filters, and Kalman filters 
have been widely used in hydrography to mitigate 
these effects. Kalman filtering has been popular due to 
its optimality under certain assumptions of Gaussian 
noise and linear dynamics. Vessel motion can be highly 
non-linear, especially during turns, speed changes, or 
under the influence of waves and currents. 
Consequently, interest has grown in using data-driven 
machine learning (ML) approaches to capture such 
complex behaviors. For example Support Vector 
Regression (SVR) has been applied successfully in GPS 
data denoising [1]. Deep learning methods, 
particularly Recurrent Neural Networks (RNNs) and 
Long Short-Term Memory (LSTM) models, have 
shown capabilities in modeling time-dependent 
patterns in many fields related to geodata. A fine 
survey on this is given in [2].Despite their successes in 
related fields, ML methods have not yet been widely 
adopted in MBES data processing workflows. Recent 
studies suggest that they may offer significant 
advantages, especially in cases where traditional 
models fail to effectively filter heading data without 
introducing delays or signal distortions [3]. Given the 
growing interest in applying machine learning 
methods in hydroacoustic, the following section 
presents a literature review on their use in processing 
data from MBES systems. 

2.1 Machine Learning in MBES Data Processing 

Machine learning (ML) has been a growing tool in 
multibeam echosounder (MBES) data processing in 
recent years. ML techniques have been widely 
explored to improve feature detection, classification, 
noise reduction, and point cloud denoising.  

Ling et al. used neural networks to denoise point 
cloud data from MBES systems. Their approach, based 
on score-based generative models and 3D point cloud 
processing techniques, effectively detects and removes 
noise in MBES data. [4]  

For feature detection, Snijder and Lekkerkerk 
introduced the Multibeam Object Detection Inferencer 

(MODI), a convolutional neural network (CNN) 
specifically trained to identify seabed features such as 
shipwrecks and geological formations automatically. 
This work demonstrates the increasing feasibility of 
deep learning for autonomous interpretation of MBES 
datasets [5].  

Beyond object detection and denoising, semi-
supervised ML methods have gained traction for water 
column target detection [6] and for matching MBES 
data with side scan sonar [7]. 

ML-based approaches have also been used in post-
processing step, which significantly improved 
accuracy and repeatability in identifying noise and 
artifacts [8], for example with Convolution Neural 
Networks [9, 10]. A complementary review by Gauchia 
et al. emphasized the need for hybrid automatic and 
semi-automatic data cleaning strategies in 
hydrographic workflows [11].  

Interesting approaches for seafloor classification 
and spectral analysis can be found in zones [12] or [13]. 

2.2 Heading estimation and navigation integration 

Heading data plays a central role in ensuring precise 
georeferencing of MBES measurements. Traditional 
model-based approaches, such as Kalman filtering, are 
widely used, but recent ML advancements offer 
promising alternatives for improved heading 
estimation. 

Dahan and Klein introduced GHNet, a deep 
learning framework capable of regressing heading 
angles using GNSS-derived velocity data, even at low 
speeds. This approach surpassed conventional 
methods in accuracy and robustness [14]. Furthermore, 
Engelsman and Klein explored learning-based 
gyrocompassing to estimate heading from low-
performance gyroscopes without needing long-term 
integration or model-based corrections [15]. 

In the context of autonomous ship navigation, 
Wright examined the integration of multi-sensor 
inputs—including heading, speed, and orientation—
using deep learning for dynamic vessel control. These 
techniques are increasingly crucial in hydrographic 
operations involving unmanned surface vessels 
(USVs) [16]. 

TransNav has also featured studies on machine 
learning-driven navigation systems, such as using 
NeuroEvolution of Augmenting Topologies (NEAT) 
for ship handling optimization [17] and ML-based 
methods for maritime risk assessment [18]. Both 
studies emphasize the importance of accurate heading 
data as a critical input for safe and efficient vessel 
operations. 

Heading data estimation, being a part of pre-
processing stage, have been also analyzed in wider 
context of acoustic data curation. Thompson, Li, and 
Garcia (2023) assessed various preprocessing strategies 
for echosounder data used in ML applications. Their 
study emphasized that consistent normalization and 
segmentation protocols have a direct impact on model 
performance and generalization capabilities [19]. 
Similarly, Thompson et al. (2022) conducted an 
evaluation focused on fisheries acoustics and found 
that the choice of preprocessing strategy can 
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substantially affect the interpretability and 
effectiveness of ML models [20]. Interestingly, Ling et 
al. in [21] presented a benchmarking study using both 
classical and deep learning methods, demonstrating 
that while machine learning (ML)-based approaches 
are promising, traditional methods like Generalized 
Iterative Closest Point (GICP) still provide superior 
accuracy in fine alignment stages. 

The above review shows that, some work have been 
already done and using of ML for MBES is becoming a 
hot topic. However despite significant advances, 
several gaps remain in the application of ML to MBES 
data and heading processing, showing future 
directions, like non-linear noise sources, real-time 
heading estimation or integration with existing 
systems and software. Addressing these gaps can 
accelerate the adoption of ML in MBES workflows and 
improve both the efficiency and accuracy of 
hydrographic surveys. 

Therefore in these paper we are showing research 
on utilization of ML and numerical methods for 
heading data processing with the use of typical open 
libraries used in data science to prove their usability in 
assumed scenarios. 

3 FILTRATION METHODS 

The filtration, understood as removing outliers and 
smoothing of navigational data (e.g. heading), can be 
made with the use of methods traditionally used in 
data science. For the needs of this paper we can divide 
them into two categories – numerical methods and 
machine learning methods. In this paragraph we 
provide a very brief description of the methods used in 
our research, which in fact is only a part of available 
options. 

3.1 Numerical filtration 

Heading filtration during MBES survey can be 
understood as time series filtration. This approach may 
include a large variety of available filters, used for 
time-series data science. In many cases they are used to 
predict future values and to find trends (e.g. stock 
exchange or weather prediction). In our case the 
processing is rather focus on outliers and smoothing. 
Various methods can provide various advantages. Low 
pass filters (moving average, Gaussian) quickly damp 
high frequency noise, while model based smoothers 
(ARIMA, Holt Winters, Whittaker) adaptively track the 
underlying data with adjustable stiffness. In our 
research numerical filters are used as a benchmark for 
comparing with ML approach. In this case we used 
moving average and Gauss filters as examples of low-
pass filters and Holt-Winters and Whittaker filters as 
examples of model-based smoothers.  

A moving-average (MA) filter replaces each sample 
by the arithmetic mean over a symmetric window of 
width 2k+1, as in equation (1). 
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It is in fact a simple finite-impulse-response (FIR) 
low-pass, giving strong attenuation of high-frequency 

jitter (e.g., wave-induced yaw) with low computational 
cost and simple interpretation [22]. Main drawback is 
however a fixed k-sample group delay in causal 
operation and edge effects near the start/end of a line. 

Another FIR approach is a Gaussian filter in which 
a Gaussian window is provided to replace the 
rectangular kernel, as given in eq. 2, where sigma is a 
smoothing parameter, allowing to adjust filter’s 
sensitivity. Thus Gaussian filter minimises ringing for 
a given effective width and reduces frequency 
sidelobes relative to the MA [22]. 
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Gaussian filter is preferred when preserving the 
curvature of gentle turns and smoothing factor allows 
to fit to actual curvature. 

In contrast to these fixed-kernel convolutions, Holt–
Winters exponential smoothing formulates the signal 
as latent level (and optionally slope/seasonal) states 
updated by exponentially weighted averages, e.g., 
additive trend, playing the role of the smoothed output 
[23]. However, the effective cutoff is signal-dependent: 
during sharp course alterations the filter lags, unless 
parameters are adapted or robust variants (e.g., 
bounded-influence update rules) are employed.  

The idea of Whittaker (Eilers–Whittaker) smoother 
is to cast smoothing as penalised least squares, based 
on is the discrete second difference operator. As a 
result a cubic spline like smoother with explicit control 
of stiffness through single parameter is achieved. It is 
computationally light for dense heading logs but 
sensitive to the choice of smoothing parameter.  

In practice, MA/Gaussian filters serve as fast 
baselines and as pre-conditioners for learning 
pipelines; Holt–Winters provides an online, 
interpretable tracker for low-order dynamics and 
Whittaker offers a principled post-processing 
smoother with tuneable rigidity. In our case they serve 
as comparing benchmark to ML filters. 

3.2 Machine Learning filtration  

Recurrent Neural Networks and their variations are 
the ones among many other Machine Learning 
methods, most commonly used for smoothing tasks. 
They can act as adaptive, non-linear smoothers also for 
vessel heading in MBES surveys. Their usage is for this 
purpose means to train them to minimize a 
reconstruction or one-step-ahead prediction loss; in 
deployment they operate causally for real-time use or 
bidirectionally (zero-phase) for post-processing. 

A traditional, simple RNN updates a hidden state 
with a non-linear recursion and emits a linear readout 
as the smoothed estimate (eq. 3, 4). It behaves like a 
data-driven IIR low-pass: steady segments yield strong 
attenuation, while turns increase effective bandwidth.  

( )1           t xh t hh t hh W x W h b −= + +  (3) 

     t hy t yy W h b= +  (4) 
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where: ht — hidden state vector at time t; φ — element-
wise nonlinearity (tanh/ReLU); Wxh — input→hidden 
weights; xt — input at time t (e.g., heading and 
auxiliaries); Whh — recurrent weights; ht-1 — previous 
hidden state; bh — hidden bias. ŷt— smoothed or 
predicted heading at time t; Why – hidde to output 
weights; ht — current hidden state; by— output bias. 

The advantages includes minimal parameter count 
and memory requirements, while the main limitation 
is vanishing/exploding gradients, which restrict 
temporal memory.  

LSTM and GRU are widely known modifications of 
RNN, coping with vanishing gradients. The Long 
Short-Term Memory augments the RNN with gating 
and a persistent cell state, mitigating gradient 
pathologies and extending effective memory. In 
practice, small causal LSTMs (1–2 layers, 16–64 units) 
run in real time on survey hardware. Regularization 
(dropout, weight decay) is recommended to avoid 
overfitting short calibration runs. The Gated Recurrent 
Unit simplifies the LSTM by merging input/forget 
behavior into an update gate and using a reset gate. It 
offers comparable accuracy with fewer parameters and 
faster convergence, which is attractive under tight CPU 
budgets on board. For very long or highly non-
stationary legs, LSTMs may hold a slight edge due to 
the explicit memory cell [24, 25]. 

Based on the popularity for time series tasks, these 
networks were selected for the research in this paper. 

4 RESEARCH METHODOLOGY 

This chapter provides description of the methodology 
used in research for this paper. It is based on real data 
and post-processing experimental analysis with 
various filters. 

The goal of the research was to analyse the 
performance of ML approach for heading filtration 
during MBES measurements. Typical ML filters used 
for time series analysis were used and popular 
numerical approaches as benchmark. The data for 
experiment was acquired with real devices and the 
analysis was made in post-processing stage with own 
scripts and algorithms. 

4.1 Data acquisition and processing 

Data for the research were acquired during 
hydrographical surveys performed with the 
Autonomous Surface Vehicle HYDRODRON by 
Marine Technology Ltd. [26]. Hydrographic data were 
acquired with PING 3DSS-DX-450 sonar and heading 
data with SBG Ekinox2 Subsea, which is an advanced 
inertial navigation system providing position, heading, 
speed and inertial information. The ASV used for the 
research is presented in figure 1. 

 

Figure 1. ASV HYDRODRON-1 by Marine Technology Ltd. 
used for the data acquisition 

Data were acquired in two areas. The first one was 
at the Pomorskie quay in Presidential Basin in Port of 
Gdynia, while the other one was located in Zawory in 
Kłodno Lake. Both surveys included full MBES with 
INS recordings. Data were collected with HYPACK 
software pack in raw txt format. The first area is a 
harbour area with maintained depth, yet as the area are 
not wide, the surveys requires many profiles and 
manoeuvres between them. These may influence the 
stability of the heading measurements. The other are is 
a natural lake and the survey required following 
profile patterns. In this paper the first area is included, 
after initial analysis, as it covers more turns and 
heading fluctuations. 

Acquired data included 6 files for the first area with 
complete recordings from sensors gathered by Hypack. 
The data was provided in txt files, which were then 
processed via scripts in Python language. The scripts 
were launched in notebooks within Google Colab 
platform, which is a hosted Jupyter Notebook service 
that requires no setup to use and provides free access 
to computing resources, including GPUs and TPUs. 

Entire processing, including visualization with 
graphs in this paper and statistical analysis was 
performed within this platform. Following open-
source libraries were used for data processing and 
visualization: pandas, matplotlib, numpy, statsmodels, 
scipy, whittaker_eilers, sklearn and tensorflow.  

4.2 Evaluation Metrics 

The goal of filtering heading data, as well as for other 
auxiliary sensors is to provide a reliable, accurate, yet 
sufficiently smoothed signal. Therefore for 
performance assessment of the filters we were 
analysing both – the roughness of the produced 
trajectory and the accuracy, understood as the distance 
to the unfiltered data. Generally the task is to minimize 
the roughness of the function, while simultaneously 
maximizing the accuracy. 

For roughness measurements we use three metrics: 
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− Standard deviation 
− Sum of squared second differences (SSSD) 
− Variance of local first differences 

Standard deviation of first differences (global) – eq. 
(5) is a compact, window free indicator of overall 
roughness. 
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where:    y   — sample standard deviation,  y  — 
global mean; N — sample count  

Sum of squared second differences (SSSD) 
aggregates discrete curvature and highlights residual 
oscillations (eq. 6). 
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where: yt — heading at discrete time t; N — sample 
count 

Variance of local first differences (eq. 7) on the other 
hand is a windowed statistic, which diagnoses short 
scale jitter around a given time index. 
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where: Wt— centred index window around t with size 
Wt|=w;  Wt(y)— mean of first differences within this 
window.  

For assessing the accuracy, we use typical 
indicating values: 
− Mean Absolute Error (MAE); 
− Root Mean Square Error (RMSE). 

Mean Absolute Error (MAE) is a scale-preserving 
measure robust to occasional outliers, according to 
eq. 8: 

1
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where: N — number of paired samples; yt— reference 
(ground truth) heading at time t; ŷt — model estimate 
at time t. In our case real measured value is set as 
ground true |·|. 

While MAE is less sensitive to large residuals, Root 
Mean Square Error (RMSE) emphasises large 
deviations by squaring residuals before averaging and 
taking a square root (eq. 9): 
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This set of measurements indicators allows to assess 
the quality of the filtration in terms of roughness and 
accuracy. 

5 RESULTS 

The results are presented in two parts. Firstly we 
provide results achieved with numerical methods for 
the area near Pomorskie quay. Then the same data are 
analyzed with neural methods. Such approach led to 
comprehensive analysis of the results. 

5.1 Pomorskie quay area – numerical methods 

In this area, data were acquired from six survey 
profiles. Gyro heading along time, for an example 
profile is presented in figure 2. Generally the course 
was stable, however some rapid fluctuations in some 
places arose. These can affect final data and should be 
filtered. 

 

Figure 2. Raw gyro heading for one of analysed profiles. 

In figure 3 selection from this profile is presented, 
showing the efficiency of filtration of numerical 
methods.  

 

Figure 3. Numerical filtration for gyro heading – selected part 
of the profile. 

The metrics for this profile, showing roughness and 
smoothness are given in table 1. The analysis of the 
table confirms that proposed metrics can be used for 
roughness and smoothness assessment. However 
standard deviation seems to be less sensitive than 
SSSD. In the presented example, the most smoothed 
values were achieved with Gaussian filter, which 
resulted in small SSSD and other smoothness metrics. 
Simultaneously MEA and RMSE were higher than 
Holt-Winters, yet still smaller than Moving average. 
Based on this example Whittaker filter showed the best 
balance between smoothness and roughness. This can 
be also observed on the graph in figure 3.  
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Table 1. Metrics for numerical filters for example profile. 
Method Standard 

deviation 
SSSD Variance of 

local diff. 
MAE RMSE 

Raw data 2,17 2,34 0,00109 0 0 
Whittaker filter 2,12 0,004 0,00069 0,076 0,098 
Moving average 2,16 0,021 0,00085 0,211 0,28 
Gauss filter 2,10 0,002 0,00062 0,118 0,15 
Holt-Winters filter 2,17 2,19 0,00114 0,009 0,013 

5.2 Pomorskie quay area – neural methods 

In this section the same profiles were analyzed with 
neural methods. Then statistics for all six survey 
profiles for Pomorskie quay were calculated for 
numerical and neural filters. 

In figure 4 the same part of the profile as in fig. 3 is 
presented for neural filters. It can be noticed that the 
signal is smoothed, yet it follows the changes of 
heading. Very small fluctuations (about 0,2 degrees) 
are filtered out. The size of the smoothness can be 
adjusted with filter parameters and analyzed networks 
gives similar results. 

 

Figure 4. Numerical filtration for gyro heading – selected part 
of the profile. 

It should be however noticed that in case of 
proposed neural methods, the processing time is 
higher as each time, iterative training period is needed. 

Roughness and smoothness metrics for all analyzed 
filters (numerical and neural) are given in table 2. These 
are average values for all analyzed profiles. Interesting 
observation is that not all metrics are suitable for joint 
analysis of many profiles. Average standard deviation 
for all methods is more or less the same, which makes 
it not useful for such analysis. However SSSD shows 
good discrimination, while variance of local 
differences is flatten. MAE and RMSE react similar, 
however RMSE is more sensitive to variations. Thus, 
SSSD and RMSE are the metrics to analyze roughness 
and smoothness of filtered signal. 

The analysis of SSSD and RMSE in table 2, shows 
that numerical filters generally more significantly 
smooths the signal, except of Holt-Winters filter. 
Neural filters generally better fits raw data, which 
results in smaller RMSE. This could be expected, taking 
into account the background of these filters. Generally, 
the bast balance was achieved with Whittaker and 
Gaussian filters in numerical approach and with GRU 
in neural approach. 

Table 2. Average metrics for all analysed profiles and 
various filters 
Method Standard 

deviation 
SSSD Variance 

of local 
diff. 

MAE RMSE 

Raw data 3,323 6,310 0,0033 0,000 0,000 
Whittaker 
filter 

3,275 0,011 0,0024 0,066 0,118 

Moving 
average 

3,338 0,063 0,0028 0,209 0,362 

Gauss 
filter 

3,245 0,007 0,0022 0,105 0,190 

Holt-
Winters 
filter 

3,325 3,374 0,0032 0,009 0,015 

RNN 3,389 0,895 0,0030 0,096 0,107 
LSTM 3,399 0,747 0,0030 0,080 0,098 
GRU 3,378 0,508 0,0029 0,074 0,081 

6 CONCLUSIONS 

The paper shows initial research on filtration of 
heading data during Multibeam Echosounder Surveys. 
This process is needed as the data many times is 
affected by temporal inaccuracies and sudden jumps of 
signal, which affects quality of MBES measurements. 
In this research we propose to use Machine Learning 
approach known from time series analysis, using three 
various neural networks, based on recurrent neural 
network. For comparison, we also use traditional 
numerical filtration methods. Real data form the 
measurements were used for analysis. 

The results show that Machine Learning approach 
can be used for this purpose with good results – better 
than some numerical methods. However, the 
drawback of analysed neural network is the need of 
iterative training for any new dataset. It means that for 
each profile new network parameters needs to be 
established, which takes time and efforts. 
Simultaneously comparatively good results were 
achieved with some numerical filters, namely 
Whittaker smoother and Gaussian filter. The neural 
approach can be in this situation treated as interesting 
alternative, however for real-time implementations, 
indicated numerical filters are recommended. 
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