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1 INTRODUCTION 

In this world of advanced shipbuilding technology, 
large volumes of cargo are transported worldwide by 
ships. Recently, in addition to cost reduction, efficient 
operation is required to reduce the global 
environmental burden. Consequently, there is a 
growing interest in weather routing, which can 
provide energy-saving voyage plans by considering 
the ship's performance and condition and forecast 
information on weather and sea conditions 
encountered during the voyage. In weather routing, 
an optimal route is determined before the voyage 
using optimization methods such as dynamic 
programming, considering the forecast information 
and the ship's propulsive performance in actual sea 
conditions [1,2]. Therefore, high-quality weather 
routing requires accurate prediction of a ship's fuel 
consumption and ship’s speed. However, these 
predictions are not straightforward and have been the 
subject of extensive research. For instance, a method 

of modelling using statistical regression equations 
based on multiple tests of a ship's performance under 
specific environmental conditions is available [3,4]. 
This makes it possible to estimate the fuel 
consumption and speed of the vessel by inputting the 
control variables such as main engine revolution, 
propeller blade angel used to operate the vessel, in 
addition to the forecast information on the weather 
and sea conditions of the voyage. The advantage of 
this method is its high interpretability because the 
modelling is based on physical knowledge. However, 
this method has limitations because it simplifies the 
weather, sea conditions, and other conditions of actual 
voyages. Consequently, the obtained models do not 
represent all aspects of ship performance, and there 
are issues with the accuracy of predicting fuel 
consumption and ship’s speed. Therefore, machine 
learning has been adopted for these predictions in 
recent years [5]. This method models a ship's 
navigation performance implicitly by training actual 
navigation data on a machine learning model such as 
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a neural network (NN) [6]. Although this method 
lacks interpretability, unlike modelling in simplified 
situations, it can evaluate ships more accurately 
because it considers actual voyage data. Therefore, 
this method may also be effective in the current 
situation where the data collection infrastructure 
during voyages is becoming easier with the 
development of IT and other technologies. However, 
caution is required when applying machine learning 
models as they may not be effective depending on the 
target of prediction and the number of data available 
for training. Also, one of the explanatory variables 
used as input to the model is the forecast information 
on weather and sea conditions provided by 
meteorological agencies, but it should be noted that 
there are forecast errors. Thus, the authors pay 
attention to the fact that captains use the state of the 
previous day's current for navigation. Since currents 
generally change slowly over time, the previous day's 
currents are expected to contribute to predicting 
ship’s speed on the current day's voyage. Although it 
is not possible to directly measure the actual values of 
the ocean currents, the drift speed vd, which indicates 
the magnitude of the ship's current caused mainly by 
the ocean currents, can be calculated using the ship's 
speed through ground vg and speed through water vw, 
as shown in equation (1). 

= −d g wv v v  (1) 

Based on the mentioned above, this study 
proposes a method for estimating the fuel 
consumption and the ship’s speed using LightGBM 
[7], which can incorporate information on the drift 
speed of the previous voyage. This method improves 
the prediction accuracy of ship’s speed through 
ground, which is significantly affected by sea 
conditions. The proposal method was also found to be 
effective in predicting fuel consumption and ship’s 
speed through water. 

Finally, this paper is organized as follows: Section 
2 introduces the research on the prediction of fuel 
consumption and ship’s speed and machine learning-
based forecasting, while Section 3 identifies the 
dataset's characteristics and the task to be solved. 
Section 4 describes the proposal method, and Section 
5 presents numerical experiments on the drift speed 
and the proposal method. Finally, Section 6 
summarizes the paper and discusses future prospects. 

2 RELATED WORKS 

When predicting a value in various fields, it is a 
common practice to express the relationship between 
explanatory variables (inputs) and objective variables 
(outputs) using mathematical formulas. Similar 
methods have also been applied in the shipping field. 
For instance, in [8], the relationship between hourly 
fuel consumption l/h and ship’s speed vs per hour is 
expressed using a component-separated physical 
model, as shown in equation (2). 
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The first term on the right side represents the 
resistance in calm seas, the second term represents the 
resistance due to wind, and the third term represents 
the resistance due to waves. Here, W is displacement, 
fwind is the resistance component due to wind, and fwave,i 
is the resistance component due to waves. These 
constants, a,a1,a2, and a3,i, can be estimated using 
regression analysis or other methods based on the 
ship's operating variables such as main engine 
revolution and forecast information on weather and 
sea conditions. Also, if the fuel consumption per hour 
in equation (2) is assumed to be proportional to the 
cube of the main engine revolution, as shown in 
equation (3), the ship’s speed through water can be 
predicted. 

γ= 3/ el h N  (3) 

On the other hand, in recent years, machine 
learning models, particularly neural networks, have 
increasingly been utilized to make predictions across 
various fields [9,10]. One of the advantages of using 
machine learning models is their high expressive 
power. Unlike a modeling using mathematical 
formulas, where the regression function is set based 
on assumptions of the relationship between 
explanatory variables and objective variables, 
machine learning models automatically learn the 
relationship from the data and thus can capture more 
detailed and complex phenomena. Although the 
modeling using mathematical formulas, as shown in 
equations (2) and (3), is highly interpretable, its 
expressive power is limited. Moreover, the function 
used for regression must be manually selected, 
making it prone to errors. In contrast, machine 
learning models are more complex and difficult for 
humans to interpret, but they have the potential to 
achieve high accuracy due to their high expressive 
power. Therefore, in the shipping field, machine 
learning models are being used to predict fuel 
consumption and ship’s speed. For instance, in [11], a 
neural network is used to predict fuel consumption 
based on seven explanatory variables, including 
ship’s speed, main engine revolution, average draft, 
trim, cargo volume, and wind and sea effects. 
Similarly, [5] employs a neural network to predict 
ship’s speed through ground using explanatory 
variables such as main engine revolution, wing angle, 
wind direction, wind strength, sea current direction, 
sea current strength, and elapsed time since entering 
the dock. These studies indicate that the most 
common variables used as explanatory variables in 
predicting fuel consumption and ship’s speed are 
operating variables of the ship, variables representing 
weather and sea conditions, and elapsed time since 
docking. It should be noted that the elapsed time since 
docking is used as an explanatory variable since a 
ship's performance tends to decrease over time due to 
the attachment of marine organisms after it enters the 
dock and is cleaned. Prediction using Transformer or 
LSTM, types of neural network models that can 
consider time series characteristics, has also been 
investigated [12]. With this model, data obtained 



131 

during the voyage can be used as explanatory 
variables, enabling more accurate predictions. 
However, while this model is effective in situations 
where real-time ship’s speed prediction is required, it 
is not suitable when the model is intended to be used 
before sailing, as in this study. Also, there is a study 
that machine learning models, such as XGBoost[13] 
and LightGBM[7], to predict and compare fuel 
consumption of ships[14]. Both models have the 
advantage of achieving high accuracy and speed even 
without a large amount of data. However, as shown 
in [14], LightGBM is generally preferred over XGBoost 
because it is faster and more accurate. Although 
neural networks are commonly used in machine 
learning studies due to their versatility and name 
recognition, decision tree-based machine learning 
models are more effective in certain cases. As 
demonstrated in [15], decision tree models perform 
better than neural network models when the data is 
limited and in tabular form, as in this study. 
Therefore, we use LightGBM, one of the decision tree 
models, in this study. 

3 DESCRIPTION OF DATA CHARACTERISTICS 
AND CHALLENGES IN DEVELOPING THE 
METHOD 

The target ship used in this study is sailing Japanese 
southern part of Pacific Ocean, and from January 3, 
2022 to May 11, 2022, monitoring data such as 
datetime, fuel consumption, ship’s speed 
(water/ground), position (latitude, longitude), wind 
direction and speed (relative), main engine revolution, 
propeller blade angle, direction of course, and 
direction of moving are automatically collected every 
10 minutes. The data is then transmitted to and stored 
on a server on land via ship-to-shore communications. 
In this study, we performed spatiotemporal 
corrections to the grid point value (GPV) data 
provided by the Japan Meteorological Agency (JMA), 
and calculated and appended the wind (wind 
direction and wind speed), waves (wave height, wave 
direction and wave period), and Sea and tidal currents 
(current speed) corresponding to the time and ship 
position of the collected data. The number of data 
recorded during ship operations is approximately 80-
100 per day. Table 1 summarizes the information on 
the data, and Table 2 shows an image of the data 
obtained. 

Note that if the same data is used for both training 
and testing the model, the model already knows the 
answers, resulting in a high prediction accuracy. In 
the field of machine learning, this problem is known 
as leakage, and measures need to be taken to prevent 
it during model evaluation. On the other hand, in the 
data analysed in this study, measurements taken 
during the same voyage tend to be similar. Thus, 
indirect leakage may occur even if the measurements 
were taken at different times, and the data from the 
same voyage needs to be handled with care. 

 

 

 

Table 1. Information on data ________________________________________________ 
Period  Number    Measurement   Forecast data  
    of data   data used in    used in 
         this study    this study ________________________________________________ 
2022/1/3- 10329    datetime,    wind  
2022/5/11 (Data while  latitude/     direction(deg), 
    the ship is   longitude(deg),  wind  
    moving   fuel       speed(m/s), 
    during the  consumption(ℓ),  wave  
    measurement ship’s speed    height(m), 
    period)    through water  wave direction  
         (knot),     (deg), wave  
         ship’s speed    period (s), 
         through ground  wave height  
         (knot),     (m), 
         main engine    wave  
         revolution(rpm),  period(s), 
         propeller blade   current speed  
         angle(deg),    (m/s) 
         direction of     
         course(deg),    
         direction of     
         moving(deg),    
         inlet and outlet   ________________________________________________ 
 
Table 2. Image of data ________________________________________________ 
datetime   latitude  longtitude  …  current  
                 speed ________________________________________________ 
2022/1/3 0:00  33.4334  131.7932   …  0.22 
2022/1/3 0:10  33.4003  131.7121   …  0.17 
:      :    :     :  : 
2022/5/11 23:50 32.7342  132.4278   …  0.21 ________________________________________________ 
 

Although the data used in this paper is comparable 
to data typically measured on a ship, there are three 
issues that need to be addressed. The first issue is that 
the ship’s speed through water includes errors. While 
the ship’s speed through ground can be measured 
almost accurately using GPS, the ship’s speed through 
water is measured using a sensor installed on the 
bottom of the ship. These errors include bias and 
change over time and can affect the value of the 
prevailing current, which is calculated using equation 
(1). Therefore, it is necessary to develop a method that 
is somewhat robust to errors. 

The second issue involves devising a method to 
incorporate information on the previous voyage's drift 
speed. As previously mentioned, data is measured 
every 10 minutes, and a certain amount of data from 
the previous voyage has been accumulated. While it is 
possible to use all of the data for forecasting, there is a 
lot of unnecessary information, and the computation 
time increases significantly. Thus, it is necessary to 
appropriately extract the necessary information and 
use it for forecasting. 

The third issue pertains to the limited information 
available from the previous day's data. While data 
from the previous day can be obtained, only data 
from on the actual navigated route can be collected 
(refer to Figure 1). Therefore, it is necessary to 
supplement the drift speed for coordinates other than 
the route taken. However, the completion of 
coordinates for which no data is available may 
introduce noise. Thus, a method needs to be 
developed to incorporate the drift speed information 
as noise-free as possible. 
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Figure 1. Relationship between the route and the data 

4 PROPOSAL METHOD 

In this section, the proposal method is explained in 
detail. Section 4.1 provides an overview of the 
proposal method, while Section 4.2 describes the 
module designed to extract the necessary information 
on the drift speed from the previous day's voyage 
data. Section 4.3 explains LightGBM machine learning 
method and the advantages of using it in the 
proposed model. 

4.1 Overview of the Proposal method 

Figure 2 illustrates the overall diagram of the proposal 
method: LightGBM receives inputs that include the 
features extracted by the module that appropriately 
extracts drift speeds from the previous voyage's data, 
ship coordinates, ship operating variables, and 
forecast data on weather and sea conditions. Based on 
these feature values, the system estimates and outputs 
the target variables, namely fuel consumption, ship’s 
speed through water, and ship’s speed through 
ground. 

As discussed in Section 3, there were three main 
issues in this research: (1) extracting necessary 
information from a large amount of previous voyage 
data, (2) accounting for errors in ship’s speed through 
water, and (3) appropriately supplementing the drift 
speed at coordinates not covered by the previous 
voyage. The proposal method addresses the first issue 
by using a module to extract information on drift 
speed from the previous voyage's data, and addresses 
the second and third issues by using LightGBM. 

 
Figure 2. Overall diagram of the proposal method 

4.2 Module to properly extract drift speeds from the data 
of the previous voyage 

As mentioned earlier, it is necessary to extract only 
the necessary information from the data from 
previous voyages since there is a lot of unnecessary 
information. Given that the drift speed typically 
depends on the coordinates, we believe that the drift 
speeds around the coordinates to be predicted are 
useful for the forecast, and conversely, there is no 
need to consider the drift speeds at coordinates 
further away from the coordinates to be predicted. 
Therefore, we extract data as follows. First, we 
perform meshing (N × M) on the square region 
containing the coordinates of the possible paths 
during the voyage. Next, if the data corresponding to 
each cell of the meshed coordinates is available in the 
previous voyage data, we calculate the drift speed 
using equation (1) and embed the information in the 
cell. Then, the system extracts drift speeds contained 
in the h cells on the left, right, top, and bottom of the 
cell whose coordinates correspond to the coordinates 
to be predicted. Cells with no information are also 
extracted as None, indicating that they have no 
information. The above flow is summarized in 
Algorithm 1, and Figure 3 illustrates the algorithm 
when N=6, M=12, and h=1. When inputting features to 
LightGBM, they are named with the cell to be 
predicted as the center (0, 0), and the positive 
directions are right and down. An example of this is 
shown in Figure 4.  

 
Figure 3. Image of the algorithm when N=6, M=12, and h=1 

 
Figure 4. Image of feature naming 

________________________________________________ 
Algorithm 1 Extraction of drift speed from data of previous 
voyage ________________________________________________ 
Require: Coordinate of target c, Data of previous voyage D 
1:  map ≔ Initialize an N × M array with None 
2:  for d in D do 
3:   i,j ≔ Calculate i,j corresponding to the squares of  
     map from the upper table of coordinates  
     contained in d 
4:   map[i,j] ≔ the value of the drift speed using  
     equation (1) from the ship's speed through  
     ground and water included in vd 
5:  end for 
6:  drifts ≔ Initialize an (2h+1) × (2h+1) array with None 
7:  s,t ≔ Calculate s,t corresponding to the squares in  
     map from c 
8:  for i in -(2h+1)...(2h+1) do 
9:   for j in -(2h+1)...(2h+1) do 
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10:    drifts[i,j] ≔ map[s+i,t+j] 
11:   end for 
12:  end for 
13:  drifts ≔ Flatten drifts to one dimension 
14:  return drifts ________________________________________________ 

4.3 LightGBM 

LightGBM is a machine learning method that employs 
an ensemble of multiple decision trees and is widely 
recognized for its speed and accuracy. To provide an 
overview of LightGBM, we briefly describe the 
decision tree on which LightGBM is based (for a 
detailed description of LightGBM, refer to [7]). The 
trained decision tree is a tree structure, in which non-
terminal nodes have rules expressed in terms of 
specific features and threshold values, and terminal 
nodes have predicted values of the objective variable. 
When data is inputted into the model, a rule-based 
decision is made to determine if a particular 
explanatory variable in the data exceeds the threshold 
value set at the node or not. The process is repeated 
until the terminal node is reached, and the objective 
variable value of the terminal node is output as a 
predicted value. During training, the feature values 
and threshold values of each node are determined to 
ensure accurate predictions for the training data. 
Figure 5 illustrates an example of a decision tree and 
data for predicting ship’s speed through ground. This 
figure is used to explain the forecasting process. At 
the root node, the branching rule is whether the main 
engine revolution is greater than or less than 620. The 
example data has a main engine revolution of 630, so 
it branches to the right child node. At the branched 
child node, the rule for branching is whether the wave 
height is greater than or less than 0.5, and since the 
wave height is 0.199 in the data, the node branches to 
the left child node. Since the branched child node is 
the terminal node, the predicted ship’s speed through 
ground is output as 28.31, which is set as the 
predicted objective variable value. Although a 
detailed explanation is omitted here, LightGBM 
generates multiple decision trees and outputs the 
predicted value of each tree. The model outputs a 
final prediction that takes the predictions of each tree 
into account.  

 
Figure 5. Image of forecasting method using decision trees 

In this study, LightGBM was utilized to predict the 
objective variable, as shown in Figure 2. Drift speeds 
from previous voyages and other variables, such as 

ship coordinates, ship operating variables, and 
forecast data on weather and sea conditions, were 
included as explanatory variables for the model. 

As discussed in Section 2, machine learning 
methods have recently been applied to the shipping 
field. However, many of the machine learning 
methods employed are neural networks. Among 
them, LightGBM was chosen for this research for 
three reasons. 

Firstly, LightGBM is more effective in learning for 
the present data. Neural networks are better suited for 
tasks with unstructured data, such as images and 
sound, rather than structured data like table data used 
as input in this study. Additionally, a large amount of 
data is typically required for training neural 
networks, as explained in Section 3. However, the 
present data comprises only 10,000 cases, which is not 
large enough to train a neural network effectively. On 
the other hand, LightGBM can learn sufficiently with 
this amount of data. 

Secondly, LightGBM is robust to a certain degree 
of error. This model is independent of the numerical 
scale of explanatory variables due to its rule-based 
module for determining outputs, as explained earlier. 
Therefore, it is unaffected by implicit errors in drift 
speeds computed in equation (1). For instance, even if 
the data contains an error of ε, a rule with a threshold 
shifted by ε is automatically learned when a rule is 
created for a certain node. 

Thirdly, there is no need for supplementation of 
the drift speeds. As explained in Section 4.2, the drift 
speeds around the coordinates to be predicted are 
input to LightGBM. These features include None, 
which indicates that there is no data. In general 
machine learning methods, including neural 
networks, when None is given as input, the user must 
appropriately supplement the numerical values, 
which can easily lead to a decrease in prediction 
accuracy. However, LightGBM can treat None as 
input as it is, and it learns by taking the None 
information into account. This eliminates the need for 
the user to be involved in the completion of numerical 
values and has the advantage of achieving higher 
prediction accuracy compared to other methods. 

5 NUMERICAL EXPERIMENTS 

This section aims to validate the accuracy of the drift 
speed calculated by equation (1) and the proposal 
method. Section 5.1 details the learning and 
evaluation procedures utilized in numerical 
experiments. In Section 5.2, experiments were 
conducted to verify the accuracy of the drift speed, 
and in Section 5.3, experiments were conducted to 
validate the proposal method. 

5.1 Model training and evaluation method 

To conduct the training and testing, a walk-forward 
method is utilized. Specifically, training is initially 
performed using data collected from January 3, 2022, 
to April 15, 2022, while the ship is in motion. 
Subsequently, data from April 16, 2022, is used as the 
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test set to predict the fuel consumption and ship’s 
speed of the ship during its operation. The training 
and test sets are then shifted by one day, as depicted 
in Figure 6. The accuracy of the predictions for all 
data in the test period is evaluated using this method. 
Note that the number of the data between January 3 
and April 15 is 8602. 

 
Figure 6. Walk-forward method 

The accuracy of the error of the prediction for data 
i, Accuracyi is calculated as in equation (4). Note that 
the average value of the objective variable for all data 
while the ship is moving is y , the true value of the 
objective variable in the data is yi, and the value of the 
objective variable predicted by entering the 
explanatory variables for data i in the model is yi. 

−
=

ˆ i i

i

y y
Accuracy

y
 (2) 

Since this index is the accuracy of the error, the 
unit is %, and the closer to 0, the better the value. We 
also compute Accuracyi for all data used in the test and 
evaluate its mean value and standard deviation. 

Note that the machine learning model has several 
hyperparameters that must be set by the analyst 
during training. These hyperparameters significantly 
affect the performance of the model, and 
hyperparameter tuning is a crucial step in model 
learning. There are three main methods for 
hyperparameter tuning: random search, grid search, 
and Bayesian optimization. In this study, we use 
Bayesian optimization, which efficiently searches for 
the optimal parameters using Gaussian process 
regression, and allows for efficient hyperparameter 
tuning in a limited amount of time. Specifically, we 
use the best parameters among 30 iterations for the 
training of our model. 

5.2 Experiment 1: Validity of the drift speed 

In this study, we examined the effectiveness of this 
method for predicting drifting speed based on the 
captain's use of the previous day's sea conditions for 
voyage planning. However, it is uncertain whether 
the value is accurate enough for forecasting as it is not 
directly measured. Therefore, in this section, we 
conduct an experiment to verify the validity of the 
predictions by comparing the prediction accuracy of 
LightGBM with and without using the drift speed as 
an explanatory variable, assuming that the prediction 
of the ship’s speed through ground, which is most 
affected by the sea conditions, will be performed. 

Specifically, we compared the accuracy of two 
models: LightGBM that predicts the ship’s speed 
through ground by entering the main engine 
revolution, propeller blade angle, latitude, longitude, 
direction of course, direction of proceeding, wind 
direction, wind speed, wave height, wave direction, 
wave period, ocean current, port arrival and 
departure, and time since the last dock 
entry(calculated from the date and time of the 
modeling data) as explanatory variables, and a 
LightGBM model that inputs drift speeds calculated 
using equation (1) as additional explanatory variables, 
the variables described above. If the prediction error 
accuracy of the latter model is sufficiently smaller 
than that of the former model, then the drift speed is 
shown to be an effective feature. Note that ship’s 
speed through water and ground are not used as 
inputs, so no leakage occurs. The drift speeds are 
calculated using the ship’s speed through water and 
ground measured at the same time as the data to be 
predicted, so they cannot be used in actual operation. 
Therefore, this experiment was conducted to evaluate 
the degree to which the characteristic drift speeds 
reflect the state of the oceanographic phenomena. 

The results of the experiment are shown in Table 2. 
The results indicate that the use of drift speeds 
improves the error accuracy by more than 1% on 
average, and the standard deviation is also improved 
by more than 0.5%. This suggests that the drift speed 
is a good feature that captures the sea condition.  
Table 2. Results of Experiment 1. ________________________________________________ 
Method          Mean of   Standard  
            Accuracyi  deviation of 
                 Accuracyi ________________________________________________ 
LightGBM without drift speeds 2.311    1.782 
LightGBM with drift speeds   1.234    1.200 ________________________________________________ 

5.3 Experiment 2: Effectiveness of the proposal method 

This section presents experimental results conducted 
to confirm the effectiveness of the proposal method. 
Four methods, namely neural networks, LightGBM, 
LightGBM with the drift speeds from the previous 
voyage (proposal method), and a component-
separated physical model (for reference), are used to 
predict fuel consumption, ship’s speed through water 
and ground. Their evaluated values are compared. 
The component-separated physical model is a model 
that predicts using mathematical equations with 
parameters estimated based on physical findings. 
However, as introduced in [8], this experiment uses a 
model with parameters identified by NPO Marine 
Technologist using collected data from July 2, 2021, to 
October 6, 2021, when the ship was put into service. 
Therefore, this model is different from the machine 
learning model evaluated using data up to the 
previous day, and cannot be compared simply. 
However, this comparison is made for reference 
purposes in this experiment. Note that the model 
outputs predicted values for the objective variable by 
inputting the main engine revolution, propeller blade 
angle, latitude, longitude, direction of course, 
direction of proceeding, wind direction, wind speed, 
wave height, wave direction, wave period, and ocean 
current. In addition to the explanatory variables used 
in the component-separated physical model, the 
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neural network and LightGBM make predictions by 
inputting the elapsed time since the last docking and 
the port arrival/departure as explanatory variables. 
Note that the neural network is implemented using 
scikit-learn's MLPRegressor. The hidden layer of the 
neural network uses relu as the activation function 
and Adam is used as the optimization algorithm for 
the neural network. In addition to these variables, the 
proposal method also inputs as explanatory variables 
the drift speed extracted from the data of the previous 
voyage using the module described in Section 4.2. In 
the experiments described in this section, test data for 
which no previous voyage’s data existed were 
excluded from the evaluation. Moreover, while 
machine learning models can be updated easily, the 
component-separated physical model of [8] is difficult 
to update frequently due to practical works. For this 
reason, the parameter of the model already settled 
and used in actual weather routing operations was 
used in this experiment. 

Table 3 presents the mean and standard deviation 
of the errors in predicting fuel consumption , ship’s 
speed through water , and ship’s speed through 
ground  for each method. The frequency 
distribution of the errors in the predictions is shown 
in Figures 7-9. Note that the neural network 
predictions are excluded from each figure due to their 
large errors. 
Table 3. Results of Experiment 2 ________________________________________________ 
Method   Fuel    Ship’s speed   Ship’s speed  
     consumption through water through ground ________________________________________________ 
Neural    7.492＋6.273 57.36±42.17  32.66±25.60 
Network  
LightGBM  0.666±0.594  1.316±1.354   2.225±1.761  
LightGBM  0.651±0.617  1.300±1.408   2.033±1.666 
with drift  
speeds  
(proposal  
method)  
component- 1.102±1.002  1.778±1.550   3.426±2.860 
separated  
physical  
model  
(for reference) ________________________________________________ 
 

 
Figure 7. Frequency distribution of errors related to 
forecasting fuel consumption 

 
Figure 8. Frequency distribution of errors related to the 
prediction of ship’s speed through water 

 
Figure 9. Frequency distribution of errors related to the 
prediction of ship’s speed through ground 

Following three findings were introduced from the 
experimental results. Firstly, the neural network had 
the worst performance for all prediction targets and 
was unable to make any predictions. There are two 
possible reasons for this outcome. The first is the 
small amount of data available. The second is the 
limited information relative to the number of data. We 
did not prepared enough to work with in this 
experiment for the neural network. In addition, as 
explained in Section 2, the feature values of data from 
same-day voyages tend to be similar, resulting in 
insufficient learning due to a small amount of 
substantially different data. 

Secondly, the prediction accuracy of all methods 
except neural networks is generally acceptable. Table 
3 demonstrates that even in the worst case, the error 
accuracy of the component-separated physical model 
for predicting ship’s speed through ground is 
approximately 3.4%, suggesting that all methods have 
an accuracy that is generally acceptable in practical 
terms. 

Thirdly, the proposal method's predictions are the 
most accurate for all prediction targets, and it 
performed well even when the neural network could 
not learn. This result indicates that the proposal 
method can handle complex events in actual voyages 
with not so much data and demonstrates its 
superiority. However, as previously mentioned, it is 
not possible to make a fair comparison with the 
component-separated physical model since it has been 
some time since its set parameters of the model. 
Figure 10 shows the results obtained when the 
component-separated physical model was applied to 
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data at the beginning of its creation to predict the 
ship’s speed through water (referred to as the 
component-separated physical model (original)), 
added to the results in Figure 8. It can be seen that the 
prediction for the ship’s speed at the beginning of the 
model has a smaller error. This suggests that the 
parameter of the component-separated model tends to 
change over time due to hull fouling and other 
factors, and that the estimated ship’s speed tend to be 
larger than the actual measured values. Therefore, it is 
essential to update the parameters as required to 
make accurate estimates. Note that the proposal 
method is completely black-boxed, and it is not 
possible to explain the reasons for the outputs 
generated from a given input. However, the proposal 
method, which can be updated easily, is believed to 
offer practical advantages. 

 
Figure 10. Graph of component-separated physical model 
(Original) added to the results in Figure 8 

6 CONCLUSION 

In this study, we aimed to enhance the prediction 
accuracy of fuel consumption, ship’s speed through 
water, and ground in order to achieve highly accurate 
weather routing. In previous studies, many features 
used to predict them were commonly measured and 
readily available, such as ship operating control 
variables and predicted values of weather and sea 
conditions, while few other features were used. 
Additionally, neural networks have often been 
employed in machine learning models. In this study, 
we focused on the fact that captains and crews use the 
sea conditions from the previous voyage and 
proposed a method that combines LightGBM with a 
module for integrating the drift speed from the 
previous voyage as feature. In experiments, after 
confirming that the drift speed calculated using 
equation (1) is an effective feature for predicting the 
ship's speed over ground, we compared the 
prediction accuracy of the neural network, LightGBM, 
the proposal method, and the component-separated 
physical model introduced in [8] as a reference for 
comparison. The results showed that the proposal 
method was more accurate than the other methods, 
especially in predicting the ship’s speed through 
ground. In addition, considering changes in hull 
performance over time, it is desirable to update the 
model frequently, but he proposal method has the 
advantage that the model can be easily updated, and 

is found to be useful in practice. However, the 
proposal method lacks the ability to explain the 
prediction results, and in practice, it is considered 
effective when used in combination with a 
component-separating physical model. 

Although the proposal was made with pre-voyage 
use in mind, as shown in experiment 1, if the drift 
speed is an effective characteristic that represents the 
state of the sea conditions, data measured during the 
voyage several tens of minutes or hours in advance 
can be used for forecasting as in [12]. Thus, it is 
possible to optimize the route sequentially based on 
the data measured during the voyage by extending 
this study. Additionally, as described in Section 2, a 
ship's operational performance temporarily improves 
when it enters a dock due to cleaning, after which its 
performance gradually declines due to the attachment 
of marine organisms. Therefore, the time elapsed after 
a ship enters the dock plays a critical role in 
predicting the ship’s speed through ground. Hence, 
creating a machine learning model using data that 
includes the entire period from the day the dock ends 
to the day the ship enters the next dock would be 
desirable. However, the data used in this study were 
not so much, and the period of data used for training 
was only about four months, making such training 
impossible. Thus, the accuracy of the proposal 
method could be further improved by using several 
years' worth of data for training. 

Based on the above, future work will include 
sequential route optimization and the creation of 
more accurate models with more data for practical 
use. 
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