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1 INTRODUCTION 

In recent papers delivered by the author, fuzzy 
systems and Mathematical Theory of Evidence were 
used as a platform for processing uncertainty [4, 5, 6]. 
Models require methods to obtain objective 
evaluation of uncertainty. In nautical science, sets of 
random variables instances are exploited as main 
source of knowledge on observations. Usually they 
were perceived as governed by Gaussian dispersion 
patterns. Knowing the magnitude of standard 
deviations enables introduction of an observation 
rough assessment. This attitude is popular among 
navigators. Modern computer procedures accept 
uncertainty as an element of a processing scheme. 
Identification of doubtfulness was discussed in the 
author’s publications [7, 8]. Proposed approach 
exploited evidence proximity exploration and 
engaged principles of fuzzy systems. Suggestion was 

that an application should include analyses of 
available raw recorded instances in order to extract 
required range of useful parameters. Introducing 
uncertainty model enriches the approach. This paper 
contains presentation of dealing with doubtfulness 
using its popular model. Association of uncertainty 
items are included and result with its increased 
informative context discussed. Further, histograms 
conversion is recalled and their embedded belief and 
uncertainty extracted. Concluded part concentrates on 
numerical example being an output of the application 
implementing presented approach. For those who 
want to get deeper insight into the terminology and 
the engaging scheme of reasoning the author 
recommends recent excellent book [1]. 
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2 MODELLING UNCERTAINTY 

Let us consider a problem of evaluation of a truth of a 
statement. It is popular that to some extent the 
proposition is considered true. There is also interval 
where it is treated as uncertain. Finally, range of false 
truth of the statement might exist. Figure 1 presents 
probability vs possibility diagram as uncertainty 
representation. The polyline is a membership function 
that specifies fuzzy probability set of the proposition 
truth. One can use interval [a, b] to define the function 
[10]. The abbreviation indicates three subsets: [0, a); 
[a, b); [b, 1] that feature the diagram. It should be 
noticed that a and b are equivalent to belief and 
plausibility measures adopted in Mathematical 
Theory of Evidence (MTE) [11]. One can upgrade 
models for popular statements such as “I am 
convinced that something is true, at the same time 
some doubtfulness exists and lack of acceptance 
might also be present”. In formal way, the proposition 
can be written using Equation (1). Formula (1a) could 
be followed for mentioned uncertainty model [2]. 
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Figure 1. Diagram of uncertainty representation 

Fragments of evidence and hypotheses exist in 
inference schemes. To some extent each piece of 
available data supports given hypothesis, uncertainty 
of the backing is unavoidable. Quite often lack of 
support also occurs. In nautical science, there are 
observations and sets of points considered as potential 
true locations of a vessel. Each measurement supports 
the true location to certain degree. Mentioned 
relations can be meant as conditional dependencies. 
Conditional relationships can be considered as a 
function that identifies belief and plausibility of 
support measures for hypothesis items embedded 
within each of the evidence fragments. Observations 
neighbourhood explorations were subject of the recent 
publication by the author [8]. 

3 COMBINING UNCERTAINTIES 

Many persons or methods might evaluate the same 
statement. It is usual that extent the proposition is 
considered true varies. The same refers to uncertainty 

and false truth of the statement. Problem of combined 
assessment of a truth of the statement assessed by 
different experts or delivered from various sources 
appears practical. Figure 2 presents diagrams of 
uncertainty representations and result of their 
combination. Intervals [ai, bi] were used to define the 
respective membership functions. Note that 
assignment feature lower uncertainty contributes 
more decisively to the result of combination. It is in 
line with popular meaning of weighted contribution 
from various quality inputs. The idea is native for 
MTE’s scheme of combination.  

 
Figure 2. Two diagrams of uncertainty representations and 
result of their combination 

In formal way, the two propositions can be written 
using Equation (2). Formula (2a) could be followed for 
mentioned uncertainty models. 

( ) ( )( ) ( )( ) { } { }( )( ){ }
( ) ( )( ) ( )( ) { } { }( )( ){ }

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

m ,  ,  ,  , , ,  ,

m ,  ,  ,  , ,  ,  ,

e T m T F m F T F m T F

e T m T F m F T F m T F

=

=

 (2) 

( ) ( ) ( ) { }( ){ }
( ) ( ) ( ) { }( ){ }

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

m , ,  ,  1 , ,  ,  

m ,  ,  , 1 , , ,  

e T a F b T F b a

e T a F b T F b a

= − −

= − −
 (2a) 

Combination scheme [3, 10] adopted for 
association of two structures being belief distributions 
and illustrated at Figure 2 is presented in Table 1. First 
structure is shown in shaded part of the first raw, 
second one presents first column. Each cell contains 
two elements: involved set and a mass attributed to 
the set. Note that for an assignment total mass is equal 
to 1. Single element sets identify range of true (T) and 
false statement (F). Sets consisting of two items 
represent uncertainty. Association partial results are 
included in other cells of the Table. Each result 
contains two elements: combined involved sets and 
product of their masses. Intersection of engaged sets 
are required while conjunctive structures association 
is carried out. In considered case two sets common 
part is empty when {T} and {F} are being combined. 
Instead of empty set ∅ uncertainty equivalent 
molecule {T, F} was used in respective cells. In this 
way non-null generating associations are obtained. It 
should be noted that the idea follows the Hau-
Kashyap and Yager concepts [9, 12] of normalization. 
The one is recommended for discussed scope of 
applications.  
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Table 1. Combination scheme ________________________________________________ 
set    {T1}   {F1}   {T1, F1}  Result 
mass   0.100   0.150   0.750 ________________________________________________ 
{T2}   {T}   {T, F}   {T}   {Tr} 
0.45   0.045   0.068   0.338   0.403 
{F2}   {T, F}   {F}    {F}    {Fr} 
0.35   0.035   0.053   0.263   0.345 
{T2, F2}  {T}   {F}    {T, F}   {Tr, Fr} 
0.20   0.020   0.030   0.150   0.253 ________________________________________________ 
Ti – range of i-th true statement equals to ai 
Fi – range of i-th false statement equals to 1-bi 
Ti, Fi – range of i-th uncertainty equals to bi - ai 

 
One expert claims that he beliefs that given 

statement is true with probability at most 0.10. The 
upper limit of accepting the proposition as true is 0.85. 
Thus, the range of uncertainty is 0.75 and simple 
model takes the form [0.10, 0.85]. Other expert beliefs 
that the statement is true with probability up to 0.45. 
The upper limit of accepting the proposition as true is 
0.65. This time the range of uncertainty is 0.20 and 
simple model takes the form [0.45, 0.65]. Obtaining 
overall opinion on the truth of the statement is the 
challenge. Adequate solution delivers combination of 
available expertise, obtained model is [0.403, 0.656] 
(see result diagram at Figure 2). 

In nautical practice, there are randomly distorted 
indications. Referring to one of the observations given 
position represents the true observer location with 
probability at most a1. Note that probability is meant 
as product of density and width of adjacent area. 
Hereto unitary range is assumed. The upper limit of 
accepting the representation as true is b1. Thus, the 
range of uncertainty is b1- a1 and simple model takes 
the form [a1, b1]. Other observation indicates that the 
statement is true with probability up to a2. The upper 
limit of accepting the proposition as true is b2. This 
time the range of uncertainty is b2 - a2 and simple 
model takes the form [a2, b2]. Association of available 
indications evaluates the truth regarding given 
location. Combination result diagram is very much 
like the one shown at Figure 2. Note that more 
assertive individual, this with lower uncertainty, 
dominates the final solution. Challenging are 
proposals of methods estimating uncertainty models 
elements [ai, bi]. 

4 DISCOVERING DEPENDENCIES AND THEIR 
UNCERTAINTIES 

Figure 3 illustrates the idea of proposed processing 
scheme aiming at dependencies extracting. Part a) 
displays a piece of evidence (labelled o2) with a set of 
instances showing its dispersion. The four hypothesis 
points labelled with Hi is also presented. The 
statement that a given location Hi is the true position 
gain some endorsement from this piece of available 
evidence. From the Figure, one can perceive that H1 is 
the point with the highest support in this matter 
provided lack of a systematic deflection. For the case, 
conditional dependence P(H│O) is to be considered 
as a function that identify measure of support for 
hypothesis item Hi embedded within an evidence 
fragment oj. Thanks to the relationships appropriate 
supports can be obtained and evaluated. Respective 
metric is calculated and analysed. To obtain the 

support, x- and y-axis histograms are upgraded based 
on crude data, instances related to the indication. 
Then they are converted to gain stipulated continuous 
shape. 

Part b) of Figure 1 shows the result of processing 
the initial instance set. At first raw data are converted 
to step-wise histograms. For these structures, 
evaluation of trustfulness of an observation at hand is 
to take place. Uncertainty of 0.37 is estimated for 
presented case. The value is obtained based on 
vertical and horizontal expansion of each histogram. 
Respective partial metricises are also presented.  

a)  

b)  

c)  

Figure 3. (a) Single observation with an example of its two-
dimension dispersion set and four hypothesis locations; (b) 
horizontal and vertical axis histograms; (c) histograms and 
their converted to continuous function versions. 

Based on obtained results, further on rectangular 
cells structures are transformed to injective diagrams 
of density functions shown at part c) of the Figure. 
Taking advantage of fuzzy sets and Bayesian 
conditional dependencies, an adequate converting 
method was implemented. Locally injective function 
is required in order to obtain solutions for many 
problems engaging random variables [7]. Figure 3 
presents a basic scheme followed at the first stage of 
imprecise data handling. At the stage uncertainty 
embedded in initial data set are to be discovered and 
injective density functions identified. The function 
diagram shows support plausibility of density a 
position being located approximately particular point. 
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5 HISTOGRAMS EVALUATION AND 
CONVERSION 

Randomly distorted evidence can be accompanied by 
sets of recorded instances, which are traditionally 
converted to a histogram. It displays a diagram of the 
distribution of observed data. A histogram consists of 
adjacent rectangles, primarily erected over non-
overlapping intervals. The histogram is usually 
normalized and displays relative frequencies 
considered as empirical probability densities. It shows 
the proportion of cases that fall into each of bins. The 
intervals are usually chosen to be of the same width, 
percentage of the value limits the range very often. It 
is assumed that family of instances sets of relative 
frequencies are given as a result of a long term 
observations. Histograms quality should be evaluated 
in order to get knowledge and variables processed in 
many applications. Although histograms are popular 
and widely used, attempt of their quality assessment 
was proposed by the author [8]. 

Histograms should be subject to evaluation, 
intuitively and objectively. MTE’s scheme of 
combination stipulates knowledge of uncertainty 
embedded within engaged structures. Histograms 
quality differs. Differentiations refer to their bin 
heights and ranges as well as to the whole structure 
expansion. Uncertainty refers to a certain feature 
within the discussed scope. The number of items with 
the same or almost the same value of the feature 
defines uncertainty. In this view, uncertainty might be 
related to distinguishability. One should note that 
points within single cell are not distinguishable. 
Following this way of reasoning one can conclude 
that the wider is histogram the higher is its 
uncertainty. For this reason, uncertainty of 
rectangular cells histogram is higher compare to 
continuous version of density distribution (see Figure 
3). 

 
Si i-th histogram cell, crisp valued limited area showing 
number of observations falling within the range. 
fi is membership function for i-th cell.  
g1 is a diagram of converted histogram. 
Figure 4. Three bins histogram with membership functions 
for each cell for uncertainty level 0.05 

The idea of bin-to-bin additive method is crucial 
for the histograms transformations concept [7]. 
Modern approach enables treating rectangular cells as 
fuzzy density sets. Limitations of such sets are 
established by membership functions which diagrams 
are uncertainty dependent. Figure 4 presents 
diagrams of membership functions for three cells 

histogram with rather low uncertainty level (assumed 
0.05). Table 2 gathers data referring to items presented 
in the Figure. The Table contains membership grades 
for each of the marked points within consecutive cell. 
The assigned cell densities are included in the last 
raw. Result measures, highest densities approximately 
i-th point are included in the second last column. 
Included values are plausibility measures since way 
of their calculations refers to fuzzy systems well-
known formula [3]. Note that density contributed by a 
cell is a product of the cell density and grade of 
belonging to the bin. One should perceive the value as 
bi, the title used in Figure 2. Thus to get belief (ai) one 
should subtract uncertainty from plausibility value. 
The values are included in the last column. 
Table 2. Grades of belonging to the histogram cells and 
result of bin to bin product summation for example set of 
points ________________________________________________ 
point   µi(S1)  µi(S2)  µi(S3)  pl(xi)  bel(xi) ________________________________________________ 
x1   0.830  0.000  0.000  0.291  0.241 
x2   0.910  0.100  0.000  0.371  0.321 
x3   0.000  0.002  0.990  0.130  0.080 ________________________________________________ 
m(Si)  0.350  0.520  0.130 ________________________________________________ 
µi(Sk) grade of i-th point belonging to k-th bin 
pl(xi) plausible, highest probable density measure in the  
  vicinity of i-th point 
bel(xi) belief, highest certain density measure in the vicinity  
  of i-th point 

 
Si i-th histogram cell, crisp valued limited area showing 
number of observations falling within the range. 
fi is membership function for i-th cell.  
g2 is converted histogram. 
Figure 5. Three bins histogram with membership functions 
for consecutive cells for uncertainty level 0.44 

Similar to Figure 4 is the next Figure 5, which 
presents diagrams of membership functions for three 
cells histogram with much higher uncertainty level 
assumed equal to 0.44. Due to higher uncertainty, 
ranges of membership functions expand compare to 
those presented at Figure 4. For discussion on relation 
between scope of range and doubtfulness, refer to [8]. 
Table 3 contains data referring to items presented in 
the Figure. The Table contains membership grades for 
each of marked points within consecutive cell. As 
before the assigned cell densities are included in the 
last raw. Result plausibility measures also referred to 
as bi, highest possible densities approximately i-th 
point are included in the second last column. Result 
belief measures also referred to as ai, lowest densities 
approximately i-th point are included in the last 
column. Grades of belonging to adjacent cells are 
much higher compare to those included in table 2. 
Figure 4 and 5 present three cells histogram and its 
two converted versions obtained for various 
uncertainty levels (see curves g1 and g2 at respective 
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Figure). Both were obtained using presented scheme 
of calculations regarding three example points. 
Obviously, number of locations involved was much 
greater.  
Table 3. Example set of points, their belonging to the 
histogram cells and result plausibility ________________________________________________ 
point   µi(S1)  µi(S2)  µi(S3)  pl(xi)  bel(xi) ________________________________________________ 
x1   0.960  0.410  0.005  0.550  0.110 
x2   0.980  0.910  0.120  0.832  0.392 
x3   0.040  0.590  0.980  0.448  0.008 
m(Si)  0.350  0.520  0.130   ________________________________________________ 
µi(Sk) grade of i-th point belonging to k-th bin 
pl(xi) plausible highest, probable density measure in the  
  vicinity of i-th point 
bel(xi) belief highest, certain density measure in the vicinity  
  of i-th point 

6 EVALUATING UNCERTAINTY 

Random data evaluation aims at the discovery of 
certain patterns included within available sets of their 
instances. MTE combination scheme stipulates 
probability assignments, which include uncertainty. 
Differentiations refer to the histogram bin heights and 
ranges as well as to the structure expansion. 
Uncertainty refers to a certain feature within the 
discussed domain. In discussed field, uncertainty is 
related to discernibility. The more discernible abscissa 
points the less amount of uncertainty contains 
histogram. Thus, the diversity of bin heights can be 
proposed as a factor to measure distinguishability. 
The average of cases falling below and above the 
mean line of a histogram can be perceived as an 
objective measure of a bin heights diversity. Inserted 
numbers in Figure 2 are respective metrics for each 
the presented cases. The greater the numbers and 
smaller the horizontal extension the “better” is a 
histogram. Total of points that fall above and below 
presented horizontal line may be zero when uniform 
distribution of the feature is involved. Note that this is 
in line with the popular understanding of uncertainty. 
One can perceive doubtfulness as thinking of 
something that might be somewhere within a given 
scope but there is no hint as to where in particular. 
One can perceive histogram with the same cells 
heights as extremely unreliable. It should be noted 
that in such case total of instances below and above 
the central line is zero. As mentioned above, the 
number of items with the same value of the feature 
defines uncertainty. Thus, considering two histograms 
with the same numbers of bins and different bin 
widths, one can assume that wider structure embeds 
greater uncertainty. 

a)  

b)  

c)  

Figure 6. Results of case study engaging four observations, 
selected histograms converted versions and four hypotheses 
points. (a) four observations with their recorded dispersion 
sets, hypotheses points are also included (b) dispersion set 
for observation number 4, its histogram and converted 
diagram (c) converted histograms for observations 1 and 4 
with exploded insertion containing belief and uncertainty 
measures for example mesh of points. 

Results of a case study engaging four observations 
with their instances dispersions, selected sets 
converted versions; four hypotheses points 
histograms and result of exploration of included space 
of discernment are presented at Figure 6. Exploded 
insertion contains belief measures and uncertainties 
for selected mesh of points. 

Set of hypothesis points from figure 6, their 
supporting by depicted observations and measures 
that they are the true location of the ship are gathered 
in the Table 4. Available indications feature included 
relative uncertainty. Given the input data one should 
consider point x3 as the best approximation of the ship 
location. The point feature the highest belief and 
reasonable uncertainty. 

6.1 Normalizing a pool of data 

Position fixing problem exploits a pool of various 
quality observations. They need to be evaluated prior 
to the final usage. Preparing a pool of data requires 
their normalization in order to achieve uniform 
density distributions [8]. This enable construction of 
adequate conditional dependency functions. Also 
expected is relative uncertainties vector to enable 
definitions of basic probability assignments. Fixing 
aims at the selection of a point that represents the true 
location of a ship in best way. An evidence fragment 
supports the choice of each item from the considered 
set of hypothesis. Degrees of support are expressed as 
conditional dependability that rely on credibility 
attributed to the evidence items. Those with low 
uncertainty should contribute to the selection more 
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decisively. To implement the idea, one has to create a 
hierarchy for available evidence. 

It is quite often that relative rather than absolute 
uncertainty is of primary importance. Position fixing 
is an example problem where relativity of 
uncertainties really matters. The idea is establishing 
grades affecting the final solution by each piece of 
evidence compared to other ones. The relative weight 
of contributing to the final solution is an important 
issue. Given a set of histograms, their ranges and bin 
heights for each structure, adequate measures can be 
calculated [8]. 
Table 4. Example set of points, their supporting by 
observations at hand and measures that they are the true 
location of the ship ________________________________________________ 
  plausibility of support from   data on  
  observation:        representing a fixed  
              position ________________________________________________ 
point o1/0.15 o2/0.29 o3/0.28 o4/0.26 bel(xi)  pl(xi) un(xi) ________________________________________________ 
x1  0.613  0.537  0.463  0.416  0,145  0.585 0,44 
x2  0.474  0.514  0.540  0.514  0,192  0.582 0,39 
x3  0.363  0.473  0.594  0.593  0,214  0.604 0,39 
x4  0.000  0.364  0.659  0.627  0,157  0.557 0,40 ________________________________________________ 
oi/X i-th observation with its relative uncertainty 
bel(xi) belief measure that xi is the true location of the ship  
  (refers to ai in the uncertainty model) 
pl(xi) plausibility measure that xi is the true location of the  
  ship (bi in the uncertainty model) 
un(xi) uncertainty that xi represents true location of the ship  
  (bi - ai) in the uncertainty model)  
 

Vertical and horizontal layout uncertainty of a 
histogram are considered. Measures referred to 
variety of bin heights and to their widths enabled 
estimation of an overall uncertainty. Doubtfulness 
amount and shape of the membership functions are 
mutually dependent. Both are main factor that decide 
on shape of converted histograms, which can be seen 
as conditional dependencies adequate diagrams. Pool 
of data required for solving the problem engaging 
distorted data, needs additional normalization. 
Processing introduces comparable probability density 
distributions. For this purpose, expected is ranking 
regarding decisiveness on affecting the solution. Items 
with lower uncertainty are of greatest influence in this 
respect. Final ranking list regarding amounts of 
embedded uncertainty for the poll of four 
observations is {o1/0.15, o4/0.26, o3/0.28, o2/0.29}. 
Indication o1 mostly decide on the final selection. 
Figure 6 part c) includes example application 
screenshot with belief and uncertainty calculated for a 
rectangular frame of discernment. The distinguished 
fragment contains items with the highest beliefs along 
with rather low uncertainties. 

7 CONCLUSIONS 

In nautical practice, there are randomly distorted 
indications or observations. Referring to one of the 
available items one can discover support that given 
position represents the true observer location. Range 
the proposition is considered true varies from 
observation to observation. The same refers to 
uncertainty and false truth of the statement. Items 
such as belief, plausibility and uncertainty are 

included in uncertainty model that is presented at the 
beginning of the paper. Combining models, 
assessments of a truth of the statement extracted from 
various observations delivers fixed position. At the 
beginning, the paper contains combination of two 
structures being belief functions. It should be noted 
that result diagram is very much like less uncertain 
compound. More accurate observations dominate 
others while position fixing or other problems 
involving randomly distorted data. Individuals that 
are more assertive dominate final opinion. 

Exploiting presented model one requires methods 
of extracting data from sets of recorded instances of 
given random variable. Proposal of exploration of the 
raw data deliver good estimates of uncertainty 
models. Partial results of processing are items of the 
popular uncertainty model architecture. For example, 
locally injective transformed histogram shows 
plausibility measures. It can upgraded with reference 
to given uncertainty. Overall evaluation of reasoning 
on the true location can be delivered by combination 
of the assignments created based on available 
indications. Calculated belief and uncertainty 
measures are helpful when the fixed position is 
selected. Solution is an item feature highest belief, in 
case of ambiguity one has to choose smallest 
uncertainty. 

Uncertainty regarding vertical and horizontal 
layout of a histogram are considered. Measures 
referred to variety of bin heights and to their widths 
enabled estimation of an overall and relative 
uncertainty ranked among the available observations. 
Shape of the cell’s membership functions depends on 
doubtfulness feature by given piece of evidence. 
Converted histograms can be seen as conditional 
dependencies diagrams [7]. Pool of data used for 
position fixing needs to be normalized. Additional 
processing introduces uniform, relatively balanced 
density distributions. Initial reference vector is 
required in order to obtain the hierarchy and 
subsequently adequate probability assignments. 
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