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1 INTRODUCTION 

Hybrid vehicles are now well established on land as 
a viable mode of greener transportation. The use of 
multiple energy sources and converters permits their 
individual benefits to be better utilized, by 
exploiting the inherent disparity between peak and 
average power demands (Schofield et al. 2005). 

At sea, powertrain hybridization would equally 
permit the power demand to be met more effectively 
than by a single source. Yet marine hybrids are still 
not as popular as on land. ‘Conventional’ hybrids on 
marine vessels include diesel-electric systems, 
popular on passenger vessels, as well as CODLAG 
systems found on naval vessels. Such configurations 
of parallel electric and mechanical propulsors permit 
better efficiencies at part-loading and low speeds, 
due to the different sources being better suited for 
different loadings (Woud & Stapersma 2002). These 
hybrids however, differ from automotive ones in that 
they lack an Energy Storage System (ESS), typically 
in the form of chemical batteries. 

The inclusion of an ESS would permit the loading 
of the prime movers to be optimized for greater 
periods of time, by using the ESS as a load bank 

during periods of low propulsion demand. Compared 
with automotive vehicles however, propulsive power 
demands for marine vessels are significantly larger; 
hence, by proportional scaling, the corresponding 
ESS would be excessively large, with an associated 
cost and weight factor. 

The major shortcoming for marine hybrids stems 
from a lack of significant regenerative capability. A 
significant proportion of the energy efficiency for 
automotive hybrids comes from regenerative braking 
(Lukic et al. 2008). This permits energy which 
would otherwise be dissipated as heat at the brakes 
to be recovered to recharge the ESS. However, the 
lack of stop signs and traffic lights at sea much 
reduces the scope for energy recovery from 
deceleration. This is most apparent when comparing 
typical demand profiles between the New European 
Driving Cycle (a European standardized profile) 
representing a typical automotive suburban 
commute, and a typical day cruise for a marine 
vessel (Figure 1). 
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Figure 1. Comparison of automotive (top) and marine vessel 
(bottom) propulsion timelines (Barabino et al. 2009). 

Fuel savings in the case of a marine hybrid are 
hence possible through correct sizing of 
components, such that overall operating points are 
improved over a particular scenario. Defining the 
fuel consumption for a scenario therefore requires a 
model for the hybrid system, which takes the 
scenario power demand as its input. 

2 MODELLING 

The optimal sizing of the hybrid system is simply 
the tip of the iceberg in the hybrid design process. 
Essential for the correct sizing is the demand profile, 
on whose realism the accuracy of the sizing will 
depend. 

The power demand timeline for a marine hybrid 
consists of two parts, namely the propulsion demand 
and the hotel load demand. Also differing from 
automotive hybrids is a more significant hotel load, 
since motoryachts generally need to support onboard 
users for longer periods. 

In determining the fuel consumption, 
consideration must be given to the interaction 
between prime mover, ESS and power demands. 
This requires a complete model of the hybrid system 
which considers all the power flows between the 
various components. 

This model was built in Simulink, since no 
simulation tool was readily available for marine 
vessels. A sixty foot motoryacht was considered, for 
which trials data was available. A parallel hybrid 
configuration was proposed for this existing boat, by 
the addition of a battery bank and an electric 
motor/generator coupled to each diesel engine by a 
gearbox. The separate diesel generator could then be 

omitted by supplying the hotel load from the main 
battery bank and main engines.  

From the trials data, the propulsive power 
demands were input as a Look-Up Table (LUT), 
returning the demanded power for the demanded 
speed. This converts the speed demand timeline to a 
power timeline. The diesel engine is modeled 
similarly, by converting the engine’s performance 
chart into a two-dimensional LUT, taking engine 
speed and power as inputs, and returning the 
instantaneous specific fuel consumption (SFC). The 
cumulative fuel consumption is then the integral of 
the SFC values. The electric machine is modeled by 
its performance characteristic, with the power 
splitting and sharing being determined by a central 
control logic. 

This steady-state modeling is valid since the 
quantities of interest (power flows and operating 
points) are required over a long period of time. 
Hence, transient response is not of particular interest 
for scenario fuel consumption determination. The 
batteries are modeled using Simulink’s built-in 
battery model. This provides a model for Lithium-
ion, Lead-acid and Nickel Metal Hydride batteries. 

Figure 2. Complete Simulink model of parallel hybrid setup. 

The central control logic controls the power 
demanded from the electrical machine and/or diesel 
engine, depending on the propulsion and hotel 
loadings, as well as the current operating point of the 
components. Critical above all is the batteries’ state 
of charge, which is to be maintained within certain 
limits. 

3 OPTIMIZATION 

Hybrid vehicle design is generally approached from 
a satisfaction of specification.  In a parallel 
automotive hybrid, an internal combustion engine 
(ICE) is sized to cater for the cruising speed 
demand, such that maximum speed on top gear is 
capable of being maintained. The low-speed side of 
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the demand in turn influences the electric motor 
sizing. Together with the transmission system in use, 
this determines the acceleration capabilities of the 
vehicle.  As a first-order design, the ICE can be 
assumed to cater for the steady-state rolling and air 
resistances, such that the electric drive is sized to 
completely meet the acceleration specification.  The 
size of this motor can then be lowered by examining 
the power demanded for acceleration taking also into 
account the power provided by the ICE at low 
speeds (Ehsani et al. 2010). 

For the ESS, the power requirement is selected to 
be greater than the motor’s power rating to take into 
account conversion inefficiencies.  The energy 
requirement is then dependent on the driving pattern 
to be catered for, and hence its regeneration 
potential.  Taking into account the inefficiencies 
associated with the process and the desired initial 
and end capacities, then the stored energy 
requirement can be calculated. This design is then 
followed by simulation, when values such as fuel 
consumption can be calculated.  Iterative design can 
then be performed in order to improve any aspect of 
the system (Ehsani et al. 2010). 

Yet with such a design for satisfaction of 
specification, attributes such as fuel consumption, 
emissions and system weight are secondary values 
over which the designer has no direct control. 
Intuitive design, and experience help to direct the 
design and improve these parameters, however, the 
design does not address these parameters as an 
objective. 

Optimization is a process whereby an objective is 
addressed directly and an extreme value (either 
maximum or minimum) located. This permits 
objectives to be aimed for and designed for, rather 
than following as a secondary consequence from 
design. 

Classical optimization techniques would involve 
the use of mathematical tools such as the Newton-
Raphson or steepest descent methods. These 
however require a mathematical equation for the 
problem description, something which can’t be done 
to quantify the fuel consumption over a scenario. 
Furthermore, these methods all consider continuous 
and linear functions. When considering discrete 
component availability, classical optimization 
techniques fail for this problem. 

Genetic algorithms take a cue from nature as the 
ultimate optimizer. Without requiring in depth 
knowledge of the problem at hand, genetic 
algorithms operate directly on a descriptor of the 
problem, treating the underlying function as a black 
box, requiring only the returned value. This robust 
approach based on simulation is therefore highly 
adept at optimizing hybrid vehicles, evidenced by 

works such as (Desai & Williamson 2009), (Jain et 
al. 2009) and (Hasanzadeh et al. 2005). 

All the possible combinations of components 
making a hybrid setup represent the search space, 
from which the optimal configuration is chosen. In 
keeping with the genetic analogy, the descriptor for 
the component configuration is termed a 
chromosome. Corresponding to each chromosome in 
the search space is a solution in the objective space. 
This maps the chromosome to the objective value of 
interest such as fuel consumption. 

The mapping from search to objective space is 
performed by the fitness function. Optimization is 
therefore performed on the solutions in the objective 
space, returning the fittest chromosome as the 
implementation to be selected. 

Compared to classical methods, genetic 
algorithms are global routines, capable of locating 
population optima, rather than local ones. This is 
done without knowledge of any auxiliary parameters 
such as derivatives of the function, enabling genetic 
algorithms to be a robust method of global 
optimization. 

Operating solely on the chromosome 
representation, the search for optima revolves 
around three operators. Considering a population of 
chromosomes, the selection operator identifies the 
fitter chromosomes to be used to generate the next 
generation. The next generation comes about by 
reproduction, whereby the previously selected 
chromosomes are used to form a new chromosome, 
termed the offspring. This represents the search 
through the search space and is responsible for 
locating the global optimum. Finally, the mutation 
operator provides an insurance against premature 
convergence by introducing a random variation to 
offspring to ensure that the search does not become 
stuck at a local optimum. 

Figure 3. Three non-dominated ranks for bi-objective problem. 
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3.1 Multi-objective optimization 
Despite the apparent straight-forwardness of 
optimization using genetic algorithms, optimization 
for a single objective does not reflect real-world 
practicalities. Locating an optimum with respect to a 
single objective would give an optimized solution, 
yet one which inherently ignores any other aspect of 
the problem. Referring to the problem of a hybrid 
motoryacht, optimizing for fuel consumption would 
result in a large battery capacity (to minimize engine 
operation and hence fuel consumption), yet come in 
at a large weight and cost. 

Such a solution would be impractical from an 
application point of view, so a compromise must be 
found between locating an optimized solution from 
the consumption perspective, as well as the weight 
or installation point of view. Compromise should not 
imply substandard performance, but rather an 
addressing of differences. 

A multi-objective optimization problem can 
trivially be converted to a single-objective one by 
means of a weighting vector, where multiple 
objectives are added up after being weighted to form 
a single metric. This however requires a priori 
knowledge of the demanded weighting. Results can 
therefore be biased since this decision is taken 
without any indication of results. 

Basing the weighting after obtaining a set of 
results is possible by using the concept of non-
domination and Pareto-ranking of solutions. Instead 
of delivering a single final solution, a set of 
optimized, compromise solutions is obtained, from 
which the final solution is chosen by the user using 
higher-level information. This higher-level 
information is experience-based and generally 
reflects non-technical influences, such as preference 
for particular components, or an inclination towards 
individual objectives. Though in effect this 
represents the use of a virtual weighting vector, the 
weighting values are applied to a set of results, thus 
the selection is based on actual solutions without 
postulating and introducing blind biases (Deb 2001). 

Figure 4. Proposed parallel hybrid implementation for hybrid 
motoryacht. 

A very popular and efficient algorithm 
implementing a Pareto-based approach is the 
NSGA-II developed in (Deb 2002). The population 
is quickly sorted into ranks using the concept of non-
domination, whereby a solution is said to be non-
dominated with respect to another, if in going from 
one to the other, a certain sacrifice is demanded in 
one objective for a gain in the other, clearly 
illustrated as Figure 3. This shows a number of 
ranks, with R1 being the fittest rank. There is no 
benefit in choosing a solution from the lower ranks, 
but they can be used to search for new solutions, 
possibly giving better results. 

Solutions in the first rank are the fittest, and this 
ranking value is used for selection purposes, as 
opposed to an explicit fitness value. This permits the 
comparison of solutions with multiple objectives. In 
order to further prioritize solutions for selection, a 
crowding metric is used to identify solutions lying in 
more isolated locations. This emphasizes a search in 
zones still unpopulated to enhance the global nature 
of the search. 

4 IMPLEMENTATION 

The model of the proposed parallel hybrid (Figure 4) 
was built in Simulink as outlined previously, with 
the genetic algorithm coded in Matlab. 

The aim was to minimize both fuel consumption 
as well as installation weight, in order to determine 
the best compromise solution. The demand timelines 
are given as Figure 5 for both the propulsion as well 
as the hotel loads. The components to be optimized 
are the diesel engine, the electric motor/generator, 
the gearbox ratio and battery capacity as well as 
type. Optimization is also performed on the 
controller itself. This allows an even broader search 
space and permits the exploration of different 
control strategies. 

Figure 5. Propulsion (top) and hotel load demand timelines for 
sixty-foot motoryacht for day cruise scenario 
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4.1 The controller 
The control strategy determines the points at which 
the vessel changes operating modes. For a parallel 
hybrid, four basic modes are identifiable, namely: 
− Electric-only mode – all loads are supplied by the 

electric system from the batteries. 
− Conventional mode – the diesel engines provide 

propulsion while the hotel load is supplied via in-
verter from the batteries. 

− Assist mode – the electric motor connected to the 
batteries is used to assist the diesel engine during 
acceleration or high power demands, with their 
power added up at the gearbox. 

− Charging mode – the diesel engine is run to pro-
vide propulsion and also supply the electric gen-
erator to recharge the batteries. Hotel load is sup-
plied off the electric generator. 
A speed and/or power level can be defined to 

control the changeover of modes, depending on the 
battery state of charge. Charging mode is enabled 
whenever the battery is discharged, while the other 
propulsion modes are only possible if the charge 
level is sufficient. 

Operating the diesel engine at low power levels 
will result in high SFC values, in addition to 
suboptimal performance in terms of combustion, 
leading to higher wear and maintenance 
requirements. Thus, using electric propulsion for 
low demands is an obvious candidate for improving 
fuel consumption. However, raising the point to 
which electric propulsion is maintained necessitates 
increasing the battery size. Hence, the correct 
balance must be found. Likewise, the point at which 
assist mode is demanded can permit engine 
downsizing, but can lead to significantly longer 
charging times. 

Figure 6. Power flows, with component set points decided by 
controller 

The point at which assist is performed is a 
function of the diesel engine’s loading, and hence 
the level of parallel operation demanded between 
motor and engine. Varying this level therefore 
allows the assist point to be optimized in order to 
determine the best load sharing. The changeover 
from electric-only to conventional mode is defined 
mainly by the electric motor’s power and speed 
ratings, since electric operation is permitted only in 
this window. 

Figure 6 illustrates the relation between the 
controller and the other simulated components. 
Based on the power demands and each components’ 
current operating point, the controller outputs the 
desired setpoints for each component depending on 
its control strategy. 

4.2 Chromosome representation 
Based on these variables for optimization, the 
chromosome for searching through the search space 
was defined as consisting of the following elements: 
− Diesel engine index 
− Battery type 
− Number of parallel batteries 
− Electric motor rating 
− Gearbox ratio 
− Engine power sharing point 
− Electric-only launch power 

These all represent a particular hybrid setup from 
a database of components taken from manufacturer 
brochures. Thus every solution actually represents 
implementable setups. Real number representation is 
used, since this permits infinite database growth 
(without requiring chromosome modification as with 
binary coding) as well as avoiding Hamming cliffs 
which present an artificial hindrance to a gradual 
search (Deb 2001). 

Using real numbers requires some modification to 
the standard algorithm, namely that a blending 
operator is used instead of explicit crossover. BLX-α 
was implemented with an α-parameter of 0.5 to give 
the best balance between exploration and 
exploitation (Herrera et al. 1998). 

4.3 Crowding-distance metric 
The aims of multi-objective optimization are to 
identify the fittest possible set of compromise 
solutions, as well as explore the search space for a 
broader scope to this set. Deb proposes a crowded 
distance metric which identifies the biggest 
rectangle which can be fitted around a solution in the 
objective space (Deb et al. 2002). Yet this was found 
to give unsatisfactory results in this implementation, 
with limited final solution diversity. This is 
explained as being due to solutions having different 
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chromosome makeup, yet giving similar solution 
values, thus decreasing an objective space metric’s 
effectiveness. 

This was further noted by Desai in (Desai & 
Williamson 2009) for a similar application. Desai’s 
approach in the search space involved calculation of 
the Euclidean distance for between each point. This 
however is quite computationally intensive. The 
authors propose a novel uniqueness counter which 
counts the number of repetitions for each element 
for each chromosome in a population. Figure 7 
illustrates the functioning of this uniqueness counter 
on a sample population. This serves as an indicator 
as to how unique a solution actually is. Thus, during 
selection, in case of a tie between two solutions of 
equal rank, a more unique solution is preferred to 
ensure future diversity. 

5 RESULTS 

The algorithm was run for 100 generations in order 
to iterate towards the optimal rank of solutions. The 
equipment data was loaded from the component 
database, while the scenario hotel and propulsion 
timelines were obtained from previous work carried 
out within MI-SE@MALTA for a day cruise 
scenario for the 60-foot motoryacht under 
consideration (Grech 2009). 

Figure 7. Uniqueness counter on sample population 

Figure 8. Solutions in objective space over 100 generations. 
Note convergence towards left hand side of space 

A population of size 200 was used, together with 
a mutation constant equal to the reciprocal of the 
chromosome length (Deb 2001). This gives a 
mutation rate proportional to the number of variables 
involved. A constraint of 10 tons is also introduced. 
This serves to focus the search below a total weight 
of 10 tons, representing a realistic figure which 
would otherwise involve a significant performance 
loss due to the added installation weight. It must be 
noted that as a first order model, the demand power 
is considered to be independent of loading, though in 
actual fact increased loading would increase power 
demand and correspondingly the fuel consumption. 

The progression of the genetic algorithm is seen 
in Figure 8, where starting off from a random 
distribution in the objective (solution) space, the 
solutions increase in fitness by gradually migrating 
towards the left hand side of the objective space.  

Figure 9 illustrates the final rank of optimized 
solutions. These are all rank 1, expected since an 
overall fitness improvement is demanded. Infeasible 
solutions (greater than 10 tons) are not illustrated in 
this figure. It is from this plot that the final solution 
is chosen by the user, coupled with further 
information obtained from examination of the 
solution chromosomes themselves. 

A sample of the solution chromosomes is listed in 
Table 1. These chromosomes correspond to the 
solutions observed in Figure 9 in the objective space. 
All solutions utilize the same diesel engine as the 
conventional system (895kW rated power). This is 
understandable since the top speed requirement is 
not reduced, which demands around 800kW of 
propulsion power. Though electrical assistance is 
possible, the energy capacity required from the 
batteries would be excessive, resulting in a very 
heavy solution, and hence these solutions are 
dominated and discounted in early generations. 

Figure 9. Final rank of optimized solutions 

Also universally chosen was the option of having 
no gearbox connected to the electrical machine. 
Previous work (Sciberras & Norman 2010) without 
controller optimization had indicated a trend towards 
high speed machines coupled to a reduction gearbox. 

544 



Figure 10. Component timelines for day cruise scenario. Chosen solution returns fuel consumption of 560.19 kg at a total weight of 
5380kg. 

Table 1. Selection of solution chromosomes after 100 generations. Repeated solutions have been omitted for clarity 
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The controller optimization however now allows 
the motor’s operating point to be variable and hence 
the additional weight of a gearbox can be avoided by 
locating a different launching power value. 

The results clearly indicated the trend towards an 
energy dense solution. This involved Lithium-ion 
batteries and permanent magnet machines. Lithium-
ion batteries offer the best specific energy capacity, 
essential for a marine hybrid where energy 
recuperation is largely absent. Though these involve 
significant cost compared to traditional lead 
batteries, their performance is highly superior (Lukic 
et al. 2008). 

Likewise, permanent magnet machines offer 
greater power densities compared to conventional 
machines. This is due to the field excitation being 
provided by permanent magnets, removing the need 
for external excitation, and therefore greater 
efficiencies. This in turn implies a greater proportion 
of stored energy being converted to usable power. 
Permanent magnet machines are therefore more 
compact and lighter compared to their conventional 
cousins and are nowadays available off the shelf 
from several manufacturers. Permanent magnet 
machines also provide for more efficient generation 
capability. 

The final setup choice is made by the user based 
on Figure 9 (visualizing the objective space) and 
Table 1 (illustrating the search space).  Engineering 
experience and intuition now come into play, as well 
as reflecting preferences towards objectives. Aiding 
in the decision making, the user can visualize and 
examine the power flows for the selected solutions, 
such as Figure 10, by simulating a particular 
solution’s behavior. 

6 CONCLUSIONS 

Objective design by simulation permits optimization 
of hybrid vehicles such that attributes such as fuel 
consumption can be aimed for and achieved by 
correct design. Classical optimization techniques are 
not able to successfully operate on complex models 
such as hybrid vehicles, hence genetic algorithms 
present a very powerful and robust way of arriving 
at optima by mimicking natural evolution. 

A model was developed to calculate the fuel 
consumption of a hybrid motoryacht based on 
steady-state parameters.  In turn, an optimization 
algorithm was developed to choose the best hybrid 
components as well as optimal controller values.  
This allows a hybrid vehicle to be virtually ‘bred’ 
from a computer. 

Optimization is essential in marine hybrids, since 
the absence of regeneration implies that any savings 
must come about by improved component operating 

points. Intuitive design satisfies performance 
requirements, but does not guarantee fuel savings.  
This is emphasized by design by simulation, coupled 
with a robust optimization routine. 
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