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ABSTRACT A multi-state approach to defining basic notions of the system safety analysis is proposed. A 
system safety function and a system risk function are defined. A basic safety structure of a multi-state series 
system of components with degrading safety states is defined. For this system the multi-state safety function is 
determined. The proposed approach is applied to the evaluation of a safety function, a risk function and other 
safety characteristics of a ship system composed of a number of subsystems having an essential influence on 
the ship safety. Further, a semi-markov process for the considered system operation modelling is applied. The 
paper also offers an approach to the solution of a practically important problem of linking the multi-state 
system safety model and its operation process model. Finally, the proposed approach is applied to the 
preliminary evaluation of safety characteristics of a ship system in varying operation conditions.

1 INTRODUCTION 

Taking into account the importance of the safety and 
operating process effectiveness of technical systems 
it seems reasonable to expand the two-state approach 
to multi-state approach in their safety analysis 
(Dziula, Jurdzinski, Kolowrocki & Soszynska 2007). 
The assumption that the systems are composed of 
multi-state components with safety states degrading 
in time gives the possibility for more precise analysis 
and diagnosis of their safety and operational 
processes’ effectiveness. This assumption allows us 
to distinguish a system safety critical state to exceed 
which is either dangerous for the environment or 
does not assure the necessary level of its operational 
process effectiveness. Then, an important system 
safety characteristic is the time to the moment of 
exceeding the system safety critical state and its 
distribution, which is called the system risk function. 
This distribution is strictly related to the system 
multi-state safety function that is a basic 
characteristic of the multi-state system. Determining 
the multi-state safety function and the risk function 
of systems on the base of their components’ safety 
functions is then the main research problem. 

Modelling of complicated systems operations’ 
processes is difficult mainly because of large number 
of operations states and impossibility of precise 
describing of changes between these states. One of 
the useful approaches in modelling of these 
complicated processes is applying the semi-markov 
model (Grabski 2002). Modelling of multi-state 
systems’ safety and linking it with semi-markov 
model of these systems’ operation processes is the 
main and practically important research problem of 
this paper. The paper is devoted to this research 
problem with reference to basic safety structures of 
technical systems (Soszynska 2005, 2006) and 
particularly to safety analysis of a ship series system 
(Jurdzinski, Kolowrocki & Dziula 2006) in variable 
operation conditions. This new approach to system 
safety investigation is based on the multi-state 
system reliability analysis considered for instance in 
(Aven 1985, Hudson & Kapur 2985, Kolowrocki 
2004, Lisnianski & Levitin 2003, Meng 1993, Xue 
& Yang 1995) and on semi-markov processes 
modelling discussed for instance in (Grabski 2002). 
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2 BASIC NOTIONS 

In the multi-state safety analysis to define systems 
with degrading components we assume that:  
− n  is the number of system's components,  
− Ei, i = 1,2,...,n, are components of a system,  
− all components and a system under consideration 

have the safety state set {0,1,...,z}, ,1≥z  
− the safety state indexes are ordered, the state 0 

is the worst and the state z is the best,  
− Ti(u), i = 1,2,...,n, are independent random 

variables representing the lifetimes of components 
Ei in the safety state subset {u,u+1,...,z}, while 
they were in the state  z  at the moment t = 0, 

− T(u) is a random variable representing the 
lifetime of a system in the safety state subset  
{u,u+1,...,z} while it was in the state z at the 
moment t = 0,  

− the system and its components safety states 
degrade with time t,  

− Ei(t) is a component Ei safety state at the moment 
t, ).,0 ∞∈<t  

− S(t) is a system safety state at the moment t, 
).,0 ∞∈<t  

The above assumptions mean that the safety states 
of the system with degrading components may be 
changed in time only from better to worse. The way 
in which the components and the system safety states 
change is illustrated in Figure 1.  

 

Fig. 1. Illustration of a system and components safety states 
changing 

The basis of our further considerations is a system 
component safety function defined as follows. 

Definition 1. A vector 

si(t , ⋅ ) = [si(t,0), si(t,1),..., si(t,z)], ),,0 ∞∈<t   

,,...,2,1 ni =  

where  

si(t,u) = P(Ei(t) ≥ u | Ei(0) = z) =  P(Ti(u) > t) 
for ),,0 ∞∈<t  u = 0,1,...,z, ,,...,2,1 ni =  is the 
probability that the component Ei is in the state 

subset },...,1,{ zuu +  at the moment t, ),,0 ∞∈<t  
while it was in the state z at the moment t = 0, 
is   called the multi-state safety function of a 
component Ei.  

Similarly, we can define a system multi-state 
safety function. 

Definition 2. A vector 

sn(t , ⋅ ) = [sn(t,0), sn(t,1),..., sn(t,z)], ),,0 ∞∈<t  

where 

sn(t,u) = P(S(t) ≥ u | S(0) = z) = P(T(u) > t)  (1) 
for ),,0 ∞∈<t  u = 0,1,...,z, is the probability that the 
system is in the state subset },...,1,{ zuu +  at the 
moment t, ),,0 ∞∈<t  while it was in the state z at 
the moment t = 0, is called the multi-state safety 
function of a system.  

Under this definition we have    

sn(t,0) ≥ sn(t,1) ≥ . . . ≥ sn(t,z), ).,0 ∞∈<t  

Further, if we introduce the vector of probabilities 

p(t , ⋅ ) = [p(t,0), p(t,1),..., p(t,z)], ),,0 ∞∈<t  

where    

p(t,u) = P(S(t) = u | S(0) = z)  
for ),,0 ∞∈<t u = 0,1,...,z, is the probability that the 
system is in the state u at the moment t, ),,0 ∞∈<t  
while it was in the state z at the moment t = 0, then   

sn(t,0) = 1, sn(t,z) = p(t,z), ),,0 ∞∈<t   (2) 

and  

p(t,u) = sn(t,u) – sn ),1,( +ut  ,1,...,1,0 −= zu  (3) 

).,0 ∞∈<t  

Moreover, if  

sn(t,u) = 1 for t ≤ 0, u = 1,2,...,z, 

then  

m(u) = ∫
∞

0
,),( dtutns  u = 1,2,...,z,  (4) 

is the mean value of the system lifetime in the safety 
state subset },,...,1,{ zuu + while  

,)]([)()( 2umunu −=σ  u = 1,2,...,z,  (5) 
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where   

,),(2)(
0

dtuttun ns∫=
∞

 u = 1,2,...,z,  (6) 

is the standard deviation of the system lifetime in the 
state subset },...,1,{ zuu +  and moreover 

)(um = ∫
∞

0
,),( dtutp  u = 1,2,...,z, (7) 

is the mean value of the system lifetime in the state u 
upon that the integrals (4)-(5) and (6) are 
convergent.  

Additionally, according to (2)-(4) and (7), we get 
the following relationship  

),1()()( +−= umumum ,1,...,1,0 −= zu  

).()( zmzm =   

 Close to the multi-state system safety function, its 
basic characteristic is the system risk function 
defined as follows.  

Definition 3. A probability 

r(t) = P(S(t) < r | S(0) = z) = P(T(r) ≤ t), ),,0 ∞∈<t  

that the system is in the subset of states worse than 
the critical state r, r ∈{1,...,z} while it was in the 
state z at the moment t = 0 is called a risk function of 
the multi-state system. 

Under this definition, from (1), we have 

r(t) = 1 - P(S(t) ≥ r | S(0) = z) = 1 - sn(t,r),  (8) 

),,0 ∞∈<t  

and, if τ is the moment when the risk exceeds 
a permitted level δ, ,1,0 >∈<δ  then 

=τ r ),(1 δ−   

where r )(1 t− , if it exists, is the inverse function of 
the risk function r(t) given by (8). 

3 BASIC SYSTEM SAFETY STRUCTURES 

The proposition of a multi-state approach to 
definition of basic notions, analysis and diagnosing 
of systems’ safety allows us to define the system 
safety function and the system risk function. It also 
allows us to define basic structures of the multi-state 
systems of components with degrading safety states. 

For these basic systems it is possible to determine 
their safety functions. Further, as an example, we 
will consider a series system. Other safety structures 
can be defined and analysed similarly. 

Definition 4. A multi-state system is called a series 
system if it is in the safety state subset },...,1,{ zuu +  
if and only if all its components are in this subset of 
safety states. 

Corollary 1. The lifetime T(u) of a multi-state series 
system in the state subset },...,1,{ zuu +  is given by  

T(u) = )}({min
1

uTini≤≤
, u = 1,2,...,z. 

The scheme of a series system is given in Figure 2. 

 

Fig. 2. The scheme of a series system 

It is easy to work out the following result.  

Corollary 2. The safety function of the multi-state 
series system is given by 

),( ⋅tns  = [1, )1,(tns ,..., ),( ztns ], ),,0 ∞∈<t  

where  

),( utns  = ∏
=

n

i
i uts

1
),( , ),,0 ∞∈<t  u = 1,2,...,z. 

From Corollary 2, we immediately get the following 
result.  

Corollary 3. If components of the multi-state series 
system have exponential safety functions, i.e., if  

si(t , ⋅ ) = [1, si(t,1),..., si(t,z)], ),,0 ∞∈<t  

where 

])(exp[),( tuuts ii λ−=  for ),,0 ∞∈<t 0)( >uiλ ,  

u = 1,2,...,z, ,,...,2,1 ni =  

then its safety function is given by  

),( ⋅tns  = [1, )1,(tns ,..., ),( ztns ],  

where   

),( utns  = ])(exp[
1

∑−
=

n

i
i tuλ  for ),,0 ∞∈<t   

u = 1,2,...,z.      
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4 SHIP SAFETY IN CONSTANT OPERATION 
CONDITIONS  

We preliminarily assume that the ship is composed 
of a number of main subsystems having an essential 
influence on its safety. These subsystems are 
illustrated in Figure 3.  

 
 

Fig. 3. Subsystems having an essential influence on ship’s 
safety 

On the scheme of the ship presented in Figure 3, 
there are distinguished her following subsystems:  

1S  – a navigational subsystem,  

2S  – a propulsion and controlling subsystem, 

3S  – a loading and unloading subsystem,  

4S  – a hull subsystem, 

5S  – a protection and rescue subsystem,  

6S  – an anchoring and mooring subsystem, 

7S  – a social subsystem. 

In our further ship safety analysis we will omit 
the social subsystem 7S  and we will consider its 
technical subsystems 1S , 2S , 3S , 4S , 5S  and 6S  
only.  

According to Definition 1, we mark the safety 
functions of these subsystems respectively by 
vectors  

si(t , ⋅ ) = [si(t,0), si(t,1),..., si(t,z)], ),,0 ∞∈<t   

,6,...,2,1=i  

with co-ordinates  

si(t,u) = P(Si(t) ≥ u | Si(0) = z) = P(Ti(u) > t)  
for ),,0 ∞∈<t  u = 0,1,...,z, ,6,...,2,1=i  where Ti(u), 
i = 1,2,...,6,  are independent random variables 
representing the lifetimes of subsystems Si in the 
safety state subset {u,u+1,...,z}, while they were in 
the state z at the  moment t = 0 and Si(t) is a 
subsystem Si safety state at the moment t, ).,0 ∞∈<t  

Further, assuming that the ship is in the safety 
state subset {u,u+1,...,z} if and only if all its 
subsystems are in this subset of safety states and 

considering Definition 4, we conclude that the ship 
is a series system of subsystems 1S , 2S , 3S , 4S , 5S , 

6S  with a scheme presented in Figure 4. 

 
Fig. 4. The scheme of a structure of ship subsystems 

Therefore, the ship safety is defined by the vector  

),(6 ⋅ts = [ )0,(6 ts , )1,(6 ts ,..., ),(6 zts ], ),,0 ∞∈<t  

with co-ordinates 

),(6 uts = P(S(t) ≥ u | S(0) = z) = P(T(u) > t)  

for ),,0 ∞∈<t  u = 0,1,...,z,  where T(u) is a random 
variable representing the lifetime of the ship in the 
safety state subset  {u,u+1,...,z} while it was in the 
state z at the moment t = 0 and S(t) is the ship safety 
state at the moment t, ),,0 ∞∈<t  and according to 
Corollary 2, is given by the formula  

),(6 ⋅ts = [1, )1,(6 ts ,..., ),(6 zts ], ),,0 ∞∈<t   (9) 

where  

),(6 uts = ∏
=

6

1
),(

i
i uts , ),,0 ∞∈<t  u = 1,2,...,z. (10) 

Applying (9)-(10), we can find  

– the mean value of the system lifetime in the safety 
state subset },,...,1,{ zuu +    

m(u) = ∫
∞

0
6 ,),( dtuts  u = 1,2,...,z,  

– the standard deviation of the system lifetime in 
the state subset },...,1,{ zuu +   

,)]([)()( 2umunu −=σ  u = 1,2,...,z,  

where   

,),(2)( 6
0

dtuttun s∫=
∞

 u = 1,2,...,z,  

– the mean values of the ship lifetimes in the 
particular states 

),1()()( +−= umumum  ,1,...,1,0 −= zu   

).()( zmzm =   

Moreover, if the safety critical state is r, r 
∈{1,...,z}, then the ship risk function is given by  
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 r(t) = 1 - P(S(t) ≥ r | S(0) = z)  

       = 1 – 6s (t,r), ),,0 ∞∈<t  (11) 

and, if τ is the moment when the risk exceeds 
a permitted level δ, ,1,0 >∈<δ  then   

=τ r ),(1 δ−   

where r )(1 t−  is the inverse function of  r(t) given by 
(11).  

5 SHIP OPERATION PROCESS 

Technical subsystems 1S , 2S , 3S , 4S , 5S , 6S  
indicated in Figure 3 are forming a general ship 
safety structure presented in Figure 4. However, the 
ship safety structure and the ship subsystems safety 
depend on her changing in time operation states. 

Considering basic sea transportation processes the 
following operation ship states have been specified: 

1z – loading and unloading of cargo, 

2z – route planning, 

3z – leaving and entering the port,  

4z – navigation at restricted water areas,  

5z – navigation at open sea waters.  

In this case the ship operation process Z(t) may be 
described by (Dziula, Jurdzinski, Kolowrocki & 
Soszynska 2007):  

− the vector of probabilities of the process initial 
operation states ,)]0([ 51xbp  

− the matrix of the probabilities of the process 
transitions between the operation states 55][ xblp , 
where 0)( =tpbb  for ,5,...,2,1=b  

− the matrix of the conditional distribution 
functions 55)]([ xbl tH  of the lifetimes ,blθ  ,lb ≠  of 
the process lifetimes ,blθ  ,lb ≠  in the operation 
state bz  when the next operation state is ,lz  
where  )()( tPtH blbl <= θ  for ,5,...,2,1, =lb  

,lb ≠  and 0)( =tH bb  for .5,...,2,1=b  

Under these assumptions, the lifetimes blθ  mean 
values are given by  

][ blbl EM θ= ∫=
∞

0
),(ttdH bl  ,5,...,2,1, =lb  .lb ≠      (12)  

The unconditional distribution functions of the 
lifetimes bθ  of the ship operation process )(tZ  at the 
operation states ,bz  ,5,...,2,1=b  are given by  

)(tH b  = ∑
=

5

1
),(

l
blbl tHp  .5,...,2,1=b  

The mean values E[ bθ ] of the unconditional 
lifetimes bθ  are given by   

][ bb EM θ=  = ∑
=

v

l
blbl Mp

1
, ,5,...,2,1=b  

where blM  are defined by (12). 

Limit values of the transient probabilities at the 
operation states  

)(tpb = P(Z(t) = bz ) , ),,0 +∞∈<t  ,5,...,2,1=b  

are given by   

bp  = )(lim tpb
t ∞→

 = ,5

1
∑
=l

ll

bb

M

M

π

π  ,5,...,2,1=b               

where the probabilities bπ  of the vector 51][ xbπ  
satisfy the system of equations   







∑ =

=

=

5

1
.1

]][[][

l
l

blbb p

π

ππ
  

6 SHIP SAFETY IN VARIABLE OPERATION 
CONDITIONS 

We assume as earlier that that the ship is composed 
of 6=n  subsystems ,iS  ,6,...,2,1=i  and that the 
changes of the process )(tZ of ship operation states 
have an influence on the ship subsystems safety and 
on the ship safety structure as well (Dziula, 
Jurdzinski, Kolowrocki & Soszynska 2007). Thus, 
we denote the conditional safety function of the ship 
subsystem iS  while the ship is at the operational 
state ,bz  ,5,...,2,1=b  by 

),()( ⋅ts b
i = [1, ),1,()( ts b

i ),2,()( ts b
i  ..., ),()( zts b

i ], (13) 

where for ),,0 ∞∈<t  ,5,...,2,1=b  ,,...,2,1 zu =  

),)()((),( )()(
b

b
i

b
i ztZtuTPuts =>=   (14) 

and the conditional safety function of the ship while 
the ship is at the operational state ,bz  ,5,...,2,1=b  by 
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),()( ⋅tb
bns = [1, ),1,()( tb

bns ),2,()( tb
bns  ..., ),()( ztb

bns ],  (15) 

where for ),,0 ∞∈<t  ,5,...,2,1=b  },6,5,4,3,2,1{∈bn  
,,...,2,1 zu =  

),,()( utb
bns ).)()(( )(

b
b ztZtuTP =>=       (16) 

The co-ordinate ),()( uts b
i  defined by (14) of the 

safety function (13) is the conditional probability 
that the subsystem iS  lifetime )()( uT b

i  in the state 
subset },...,1,{ zuu +  is not less than t, while the 
process Z(t) is at the ship operation state .bz  
Similarly, the co-ordinate ),()( utb

bns  defined by (16) 
of the safety function (15) is the conditional 
probability that the ship lifetime )()( uT b  in the state 
subset },...,1,{ zuu +  is not less than t, while the 
process Z(t) is at the ship operation state .bz   

In the case when the ship operation time is large 
enough, the unconditional reliability function of the 
system is given by 

),(6 ⋅ts = [1, ),1,(6 ts ),2,(6 ts  ..., ),(6 zts
 ], ,0≥t   

where  

),(6 uts ))(( tuTP >= ),()(5

1
utp b

bn
b

b s∑≅
=

 (17) 

for ,0≥t  },6,5,4,3,2,1{∈bn ,,...,2,1 zu =  and )(uT  is 
the unconditional lifetime of the ship in the safety 
state subset }.,...,1,{ zuu +   

The mean values and variances of the ship 
lifetimes in the safety state subset },...,1,{ zuu +  are  

,)()}([)(
5

1

)(∑≅=
=b

b
b umpuTEum ,,...,2,1 zu =  (18) 

where  

∫=
∞

0

)()( ,),()( dtutum bb
bns   

for },6,5,4,3,2,1{∈bn ,,...,2,1 zu =   and 

∫ −=
∞

0

2
6 ,)]([),(2)]([ umdtuttuTD s  ,,...,2,1 zu =  

and ),()( utb
bns is given by (16) and ),(6 uts is given by 

(17).  
The mean values of the system lifetimes in the 

particular safety states ,u  are   

),1()()( +−= umumum ,1,...,2,1 −= zu   

),()( zmzm =   

where ),(um  ,,...,2,1 zu =
 
are given by (18). 

Moreover, if the safety critical state is r, r 
∈{1,...,z}, then the ship risk function is given by  

r(t) = 1 – 6s (t,r), ),,0 ∞∈<t   (19) 

where ),(6 rts a is given by (17), and if τ is the 
moment when the risk exceeds a permitted level δ, 

,1,0 >∈<δ  then   

=τ r ),(1 δ−   

where r )(1 t−  is the inverse function of  r(t) given by 
(19).  

7 CONCLUSIONS 

In the paper the multi-state approach to the analysis 
and evaluation of systems’ safety has been 
considered. Theoretical definitions and preliminary 
results have been illustrated by the example of their 
application in the safety evaluation of a ship system. 
The ship safety structure used in the application is 
very general and simplified and the subsystems 
safety precise data are not know at the moment and 
therefore the results may only be considered as an 
illustration of the proposed methods possibilities of 
applications in ship safety analysis. However, the 
obtained evaluation may be a very useful example in 
simple and quick ship system safety characteristics 
evaluation, especially during the design and when 
planning and improving her operation processes 
safety and effectiveness. 

The results presented in the paper can suggest that 
it seems reasonable to continue the investigations 
focusing on the methods of safety analysis for other 
more complex multi-state systems and the methods 
of safety evaluation related to the multi-state systems 
in variable operation processes (Soszynska 2005, 
2006) and their more adequate applications to   the 
ship transportation systems and processes (Dziula, 
Jurdzinski, Kolowrocki & Soszynska 2007). 
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