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ABSTRACT: Mathematical Theory of Evidence (MTE) enables upgrading models and solving crucial problems
in many disciplines. MTE delivers new unique opportunity once one engages possibilistic concept. Since
fuzziness is widely perceived as something that enables encoding knowledge thus models build upon fuzzy
platforms accepts ones skill within given field. At the same time evidence combining scheme is a mechanism
enabling enrichment initial data informative context. Therefore it can be exploited in many cases where
uncertainty and lack of precision prevail. In nautical applications, for example, it can be used in order to handle
data feature systematic and random deflections. Theoretical background was discussed and computer
application was successfully implemented in order to cope with erroneous and uncertain data. Output of the
application resulted in making a fix and a posteriori evaluating its quality. It was also proven that it can be
useful for calibrating measurement appliances. Unique feature of the combination scheme proven by the author
in his previous paper, enables identifying measurement systematic deflection. Based on the theorem the paper
aims at further exploration of practical aspects of the problem. It concentrates on reduction of hypothesis frame
reduction and random along with systematic errors identifications.

1 NAUTICAL EVIDENCE

Navigational  evidence  embrace results  of »

observations as well as knowledge within discipline d q
known as nautical science [3]. Observations mainly _ - g
mean taking distances and or bearings. Horizontal “ ‘—1_
angles are also taken from time to time. Results of [ | |

observations are imprecise. It is widely assumed that
any measurement contains systematic deflection
along with random error. It is also assumed that b)
random errors are governed by Gaussian distribution f
or take form of histogram that is empirical diagram of _ _
various tests outputs. Figure 1 shows two schemes of jr ‘ M
taking distance. Both presented cases marked as a) S
and b) differ with systematic defections. At presented
example random deflections feature the same Figure 1. Result of taking distance is an imprecise value that
theoretical or empirical characteristics. is randomly and systematically distorted
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Figure 2 presents situation in which two distances
for two landmarks are taken. Distances were
established for objects located at opposite sides from
the observer position [9]. The scheme is usually
followed in order to identify systematic deflection of
the measuring appliance, which usually is a radar.
Two circles being distance isolines projected on the
chart should be tangent at collinear gradient
directions unless they are distorted. Isolines are
separated by certain distance once measurement
deflections occurred. Breadth of resulted gap enable
reasoning on kind of involved errors. In case when it
is smaller than sum of both random distributions
standard deviations: o1+o2 occurrence of a systematic
error is very unlikely. Figure 2 presents situation for
which the gap is bigger than sum of tripled
deviations: 3-01+3-c2. It means that fixed deflection
occurred and is to be identified. Systematic error is
assumed as being the same for both observations
provided taken with the same appliance. Therefore
distance correction is estimated as half of the
observed gap what is valid with assumption that
random error is negligible.
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Figure 2.

Graphical
measurements, distorted with random and systematic
errors, taken to objects at opposite directions

interpretation of two imprecise

Seafarers know that mean error, related to
standard deviation of the bell function, of a distance
measured with radar variable range marker is a
function of the obtained value and is said to be within
the interval of [+1%; +1.5%] of the measurement.
Taken distance of 10 Nm is a random variable with
mean error inside the range of [+1; £1.5] cables. In
figure 2 distance di is assumed greater than d: (see
also shapes of inserted distribution functions).

Standard deviation is one of the most important
factor in observations accuracy evaluations. In
practice its exact evaluation is rather impossible. Thus
crisp valued mean errors of measurements are
considered inadequate. Instead in recent navigation
books (for example see [12]) measurement mean error
is described as imprecise interval value usually as:
[fo4 to%a] (herein letter d denotes taken distance).
Being interested in an isoline possible deflection one
considers interval [+m; +m*] established along
gradient direction. Since gradient module is equal to
one for distance isoline both before mentioned
parameters are of the same meaning. With fuzzy
arithmetic notation [12] the latest can be rewritten as a
quad (-m*s; -ma; +ma; +m*a). It means fuzzy value with
core of [-m4; +m4] cables and support of [-m*s; +md].
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In order to include such data into upgraded model
one has to engage adequate formal apparatus.

2 IMPRECISE NAUTICAL EVIDENCE AND ITS
ENCODING

In possibilistic approach uncertain evidence is
represented with sets and masses of confidence
attributed to these sets. Sets embrace relations
between hypothesis and evidence spaces. Relations
can be binary or fuzzy ones [1, 13, 14]. Fuzzy sets
embrace grades expressing possibilities of belonging
of consecutive hypothesis items to the sets related to
each piece of evidence. Therefore appropriate
relations between considered frames are encoded into
evidence representation, which takes the form
specified by formula (1).

m(e;) = {(#; (%), S (& = (X)), -+,

(4 (35)s f (€ = 1, (5D} @

What does hypothesis frame mean for navigator?
What area should it cover in case of discrete version
of the problem is considered? Hypothesis frame is to
be considered as search space where for example true
isoline, due its erroneous nature, is being located [5,
6]. It should also be perceived as a collection of chart
points that represent fixed position of the ship.
Results of combination of evidence related to two
random variables that projected on the plane are
separated by certain distance, were examined in
previous paper by the author [10]. Like at figure 2
there were considered variables referred to isolines
related to distances taken for two objects situated at
opposite directions. It was assumed that variables
could be distorted with systematic error apart from
random one. Identifying permanent measurement
shift is an important nautical issue.

Figure 3 shows histogram with probabilities of the
true isoline being located in the vicinity of the
observed one. The histogram was prepared based on
bell function, width of each bin is equal to quarter of
normalized standard deviation. Figures within each
bin indicate probability that the true line related to the
measurement is located within particular strip
provided random error is taken into account. It
should be noticed that due to discrepancies in
statistical investigations regarding measurements
distributions parameters presented bin limits are
rather range valued [8, 9]. For normal distribution
width of the search frame should be confined to 6-m,
to six folded standard deviation of given isoline (see
also figures related to extreme bins). It should be
pointed that it is not always the case. Figure 2 shows
search space limited to area located in between
obtained distance isolines. In view of particular
evidence related to distances taken for landmarks
situated at opposite directions only half of the
distribution is valid. The true location of the observer
is to be located within shown gap. Only meaningless
support can be attributed to contrary statement.

In presented application evidence representation
consists of pairs [5]: fuzzy vectors  p(x;)
representing locations of a set of each points {xi}



within sets related to each piece of evidence — degrees
of confidence assigned to these vectors
fle; > p;(x,)) . Degrees of confidence reflect
probability of true isoline being located within given
strip area can be obtained from presented drawing
(see figure 3).

Confidence intervals for bell function

Isoline fragment

Figure 3. Histogram showing probabilities of the true isoline
being located in the vicinity of the measured one

Strip areas are related to confidence intervals
established for probability distribution functions and
are assumed to be adjusted to the evidence at hand.
For bell function they are quite often assumed as: half,
single, double and triple of standard deviation. Figure
4 shows probabilities of the true isoline being located
in the vicinity of the measured one. Bins width are
assumed equal to a single unified standard deflection.
First of each pair of figures placed within bins are
those obtained for unconfined search frame. Then the
space was reduced to range [-0.4; 4.8] of standard
deviation. Second figure in each pair of numbers
placed within bins are modified due to available
evidence limitation.

Algorithm I

1 Sum up all probabilities attributed to ranges that
are outside of the search frame. Include reduction
of probabilities for partial inclusion (see extreme
bins of included rectangle at figure 4)

2 All modified probabilities that are greater than
zero divide by complement of the total calculated
in step 1

Algorithm I guarantees that only focal elements
are included into created belief structures [2]. Focal
items are those with non zeroed masses assigned.
Additionally total of all masses assigned to focal
elements, without uncertainty, is one.
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Figure 4. Histogram showing probabilities of the true isoline
being located in the vicinity of the measured one and its
modified version.

3 CASE STUDY

The concept of exploiting evidence that is meant as
encoded facts and knowledge, in supporting
decisions in navigation is based on measurement
distributions and fuzziness. Introduced confidence
intervals (see figure 3) define probabilities of true
isolines being located within appropriate strips
established along gradient directions. Modified
probabilities are incorporated into belief assignments
that enable the modelling of uncertain, imprecise
data. Imprecision is due to random errors but
systematic deflections occur quite often. This kind of
error is to be identified and eliminated. The
identification of a permanent measurement shift is an
important practical nautical issue.

In this chapter considered are observations
engaging two distances made for two objects situated
at opposite directions as seen from the observer’s
position. Both observations resulted in isolines that
are assumed to be distorted with random errors and
include systematic deflection. Random errors
distribution means are supposed to be within the
range of +1% of the measured distance. Possible limits
of the estimated mean are within +15% of their value.
Data used in numerical experiment are gathered in
tablel.

Table 1. Summary of data used in numerical experiment

observation 1 observation 2

distances 30 cables 50 cables
mean errors 0.3 cables 0.5 cables
mean error limits  [0.255; 0.345] cables [0.425; 0.575] cables
subjective 90% 80%
confidence
evaluation
gap width 0.58 cables
(see figure 2)
for case a)
gap width 3 cables
for case b)

Based upon presented nautical evidence navigator
should reason on quality of measurements and
possibly identify systematic deflection. He is
supposed to answer two questions: what is the
systematic error of the applied measuring device and
how random error might affected his evaluation.
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Figure 5 shows two examples in which pairs of
observations made for two objects situated at opposite
directions from ship position. Each of the
observations is marked with small circular shape
placed at abscissa axis that is assumed collinear with
gradient directions. Observation’s random error
distribution are depicted with two bell functions that
represent extreme value of assumed standard
deviation (see also interval valued data in table 1).
Shapes emphasising interval valued limits of mean
error are also included. Search space was confined by
both isolines, its discrete points represent true
location of the vessel. Question which of them best
represents the true location is resolved through
reasoning base on results of evidence combination
scheme.

Left hand side of illustrations placed in figure 5
presents situation in which gap between isolines is
due to random errors. Case a) presents two
observations for which systematic deflection should
be rather excluded since gap between isolines is
smaller than sum of mean errors. Statement is rather
unlikely for right hand side case. The gap can be
estimated as sum of three folded mean errors. Thus
probability that systematic error was involved is
rather high. In order to cover the isolines gap,
consequently to create artificial free of systematic
error case, mean errors were increased during
iterative combination process. Final stage situation in
which enlarged observations mean errors cover the
gap as well as association result was presented at
figure 6.

It should be stressed that figures 5 and 6 remain
closely related. Based on results of combination
illustrated at figure 6 (notice direct reference to
case 5b) one can reason on solution to problem
presented at figure 5a). Note that for the latest case
location of true measurement in between extreme
observations can be easily evaluated. Therefore one
can reason on influence of random errors on final
observations’ evaluation as, for example, presented in
right case 5b). Combination results are transferable
for the two cases. Systematic error can be estimated as
interval valued equal to observations gap mean
distorted with random deflection. Herein the scheme
of approach was exploited in order to demonstrate
practical aspects of the methodology.

It was proven [10] that belief and plausibility
measures that are calculated based on results of the
combination of two pieces of evidence related to two
random variables governed by Gaussian distributions
with given approximate standard deviations for
which appropriate isolines are separated with certain
Euclidean distance (case 5a) and those obtained from

Table 2. Summary of numerical experiment results

association of evidence related to random variables
governed by the same distributions with approximate
standard deviations magnified by certain constant
with isolines being separated with distance
incremented with the same value (case5b) are
mutually dependent on this constant. The proposition
was further exploited in order to calculate data
included in table 2.

interval valued mean errors
of the first and second
isoline

second
measurement

Figure 5. Two cases related to pairs of observations made
for two objects situated at opposite directions

Figure 6. Case presented at figure 5b with proportionally
enlarged observations mean errors

To practically prove above proposition, results of
the combination of evidence related to two pairs of
random variables represented by distances taken to
different landmarks were examined. Example
variables referred to isolines related to the distances
taken for two objects located at counter bearings.
Unlike second pair the first one was likely to remain
free from systematic error. Further permanent error
estimation was achieved with iterative imprecise
evidence combination scheme. In each step
proportional increment of isolines mean errors took
place. Iterations stopped once maximum belief and
plausibility measures are recorded for the same
hypothesis point while the mass of inconsistency
remained low (see data in table 2). Further looping
results in decreasing of belief and plausibility
measures.

belief  hypothesis plausibility hypothesis solution inconsistency  mean errorI') mean error II')
point number point number

- - 0.157 1 0.05 0.714 0.30 0.50

0.131 23 0.710 23 1.15 0.003 1.18 1.95

0.098 23 0.699 23 1.15 0.001 1.30 2.15

0.064 23 0.690 23 1.15 0.001 1.37 2.26

1) iteratively increased values are presented
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Figure 7 presents diagrams of plausibility values
variations during iterative combination process.
Bottom curve represents results of the initial stage of
calculations. They refer to situation illustrated at
figure 5b. Randomly distorted isolines approximately
separated with doubled permanent deflection. More
data regarding this situation are gathered in the first
row of table 2. Row number one reads that
uncertainty, in this case meant as inconsistency due to
not overlapping evidence cases, is very high. Its value
of 0.714 suggests rather contradictory data, one piece
of evidence supports hypothesis points separated
from those endorsed by the second one. Highest
plausibility value indicates solution point that is
located at the first isoline. Mean error of this
measurement is smaller and assigned confidence is
higher than for the second case (see data in table 1).

Three uppermost diagrams at figure 7 refer to last
stages of iterative combination process. Combination
scheme shows the same point of the hypothesis frame
that is clearly distinguished as solution to the
problem. Iterative association engaged incremented
values of mean errors. From data gathered in table 2
one can notice that at the final stage of processing
sum of increased mean distortions covers isolines
intersection gap. For all last three cases uncertainty
remains low, belief and plausibility are high and both
these measures clearly indicate the same hypothesis
point. The latest also mean that solution remains
stable.
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Figure 7. Diagrams showing plausibility values variations
during iterative combination process

Benefits that can come out of the presented
proposition were depicted within examples devoted
to distance error analyses. Two pieces of evidence,
one free from systematic error and another distorted
with this kind of deflection, were associated. Results
of combinations were confronted in order to mine for
general practical aspects. Examination of the outcome
empirically proves the correctness of the presented
theorem and enables calibration of the nautical
appliance. Utilization of the lemma for position fixing
based upon multiple observations [7] taken with the
same tool and possibly distorted with systematic error
is straightforward. At first pair or pairs of
observations enabling permanent shift indication
should be selected. Constant should be extracted and
further used for standard deviations of all
observations adjustment. Modified evidence are to be
encoded and combined afterwards.

Algorithm II

1 Assign initial data, evaluate approximate
observations mean errors and their uncertainty
(known discrepancies in their estimation)

2 Identify limits of the hypothesis frame and adjust
probabilities for selected confidence intervals (see
algorithm I)

3 Prepare belief structures, normalize! and combine
them

4 Calculate total of inconsistency masses

5 Calculate belief, plausibility measures based on
results of combination. Locate belief and
plausibility maxima

6 Quit if belief and plausibility maxima refer to the
same point, consistency is below required
threshold and sum of modified mean errors covers
isolines gap

7 Modify mean errors with given constant and go to
step 3

Output generated by software implementing
algorithm II for previously defined numerical
example are presented in table 3, in which apart from
constant C all data refer to cables as distance unit.
Two distances for opposite locations objects were
taken with medium class radar. Mean errors were
estimated as: 0.3 and #0.5 cables respectively. Their
possible random distortions were assumed to be
*15%. Presented data refer to four last iterations for
which maximum of plausibility value remained high
and referred to the same solution indicated value is
1.15. Collected data include mean errors multiplier C
with calculated two random deflections & along with
interval valued systematic error. Based on introduced
lemma for each multiplier random errors were
estimated. The evaluation is based on proposition that
enable migration to “free from systematic error case”
(see both illustrations at figure 5). Please also note
that direction of random shifts can not be indicated.
Available evidence do not allow to state what signs of
random deflection might be thus interval valued
permanent errors were calculated taking into account
both possible randomness directions (both negative
and positive extreme values).

Table 3. Four last iterations results

C o1 &2 gap width S~ S*

3.933 0292 0470 0.763 1.119  1.881
4133 0278 0.448 0.726 1.137  1.863
4333 0265 0427 0.692 1.154  1.846
4567 0252 0405 0.657 1172 1.828

Final results extrapolations for various gap’s width
are included in table 4. From data gathered in the first
row of table 4 one can read that for isolines gap of 0.8
cables probability of an measurement being within
the gap is 0.721. At the same time thanks to evidence
combination (see data in table 2) solution for the case
are random errors of 0.295 and 0.505 respectively. As
can be seen from table 4 appropriate random errors
tend to decrease but probability of particular case are
getting smaller and smaller. Probability that

1 General idea of normalisation was presented in [15], specificity of
nautical applications in this respect was discussed by the author in
(8]
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systematic error is within range of [1.40;1.60] is reduced to 0.399.
Table 4. Final extrapolation results
std deviation ratio distance  probability I probability II sum of probabilities i Soi S S*
1 0.8 0.497 0.445 0.721 0295 0505 1.10 1.90
0.75 0.6 0.477 0.385 0.679 0221 0379 1.20 1.80
0.5 0.4 0.420 0.289 0.587 0.148 0253 1.30 1.70
0.25 0.2 0.289 0.156 0.399 0074 0126 1.40 1.60
4 SUMMARY informal interpolation were introduced. For selected
decreasing isolines gaps probability of the true isoline
Thanks to Mathematical Theory of Evidence being located within were calculated. For each

approaches towards theoretical evaluation of tasks
including imprecise data are to be reconsidered. One
of such problem is indication and evaluation of a
measurement systematic error. In nautical practice in
order to calculate compass correction one has to know
direction to a landmark or celestial body.
Alternatively one has to make observations for objects
that are located at opposite bearings. Application of
Mathematical Theory of Evidence in order to reason
on nautical appliance calibration was presented in the
paper. At first range of hypothesis frame was reduced
in order to guarantee correctness of a posteriori
reasoning in selected nautical applications. Seafarers
know where true measurement is supposed to be
located. Observations are assumed to be made for
landmarks situated at opposite sides are examples
where such locations can be easily identified. Due to
proposed reduction combination inconsistency mass
remain small while belief and plausibility are
relatively high. Usually high inconsistency mass
indicates poor quality nautical evidence. Yet another
reason for large conflicting mass is wrongly defined
hypothesis frame, consequently it is not supported by
evidence at hand.

In the second part of the paper proposition
regarding unique feature of nautical evidence
combination scheme was exploited. Statement
regarding behaviour of the association process was
presented and proven in recent paper delivered by
the author. Theorem enables reasoning on random
and systematic errors of observations made for objects
situated at opposite sites as seen from observer’s
position.

In presented numerical example two distance
observations distorted with random and systematic
errors were considered. Obtained measurement data
along with nautical knowledge were encoded into
belief structures which were further iteratively
combined. Iterations were quitted once stable solution
was achieved. Given this solution reasoning
regarding combination of systematic deflection free
data was carried out. Thanks to MTE particular
distance between isolines solely due to random errors
could be achieved. It is identified by hypothesis point
with the highest support measures in view of
evidence at hand. It subsequently gives basement for
random errors estimations and systematic deflection
evaluation. Result fixed error appears interval valued,
range of obtained values depends on required
threshold probability. To estimate limits results of
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presented case the true location of the ship could be
also estimated based on obtained results.
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