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1 INTRODUCTION 

Decision-making processes, especially those 
occurring in the transport, held responsibility for the 
safety of people, equipment and the environment. 
Such important decisions should be taken with a 
minimum of uncertainty of the decision maker. This 
uncertainty may be due to the existence of a number 
of factors, such as: the level of training of decision-
makers, the lack of information regarding the 
situation of the surrounding area and sometimes an 
excess of information provided to decision-makers 
simultaneously from multiple sources. 

IT systems become more efficient over time 
regarding constant increase of computing power 
available to standard users. That allows developing 
advanced systems which collect and analyze 
relevant data to support decisions that minimize the 
risk of collision. 

These advanced systems may be used in support 
decisions on the real ships maneuvering and ship 
models and simulators used during the training of 
future officers at training centers. 

Currently still being developed computational 
methods are meuroevolutionary methods which, 
thanks to its efficiency are becoming widely used in 
many fields of science and technology, such as: 
− automation and robotics systems, e.g. control of a 

robot arm (Siebel and Sommer 2007); 
− designing and diagnostic systems, e.g. mobile 

hardware acceleration (Larkin, Kinane and 
O'Connor 2006), search hull damage (Kappatos, 
Georgoulas, Stylios and Dermatas 2009), 
processors design (Ratuszniak 2012), the 
detection and evaluation of the risk of breast 
cancer (Janghel, Tiwari, Kala and Shukla 2012) 

− control systems: for example, a helicopter flight 
stabilization (De Nardi, Togelius, Holland and 
Lucas 2006); 

− decision support systems, e.g. systems applied 
artificial intelligence in computer games 
(Kenneth, Bryant and Risto 2005). 
A large number of positive results of the 

implementation of neuroevolutionary methods 
obtained in many areas of science encouraged the 
author of this paper to undertake research and 
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develop his own algorithms intended for use in 
maritime transport (Łącki 2010b, a). 

In this paper, the extension of the functionality of 
navigational decision support systems is proposed. 
This solution generates specifications of 
maneuvering decisions (rudder angle and propeller 
thrust) that maintain a safe ship trajectory computed 
in the available water channel. In addition to rudder 
angle and propeller thrust this system also includes 
information about time of their execution. It is 
possible in this system that all maneuvering 
decisions may be calculated and presented in real 
time for a given ship dynamics in the presence of 
certain external disturbances. 

1.1 Reinforcement Learning Algorithms 
One of the main tasks in machine learning is to 
create the advanced systems that can effectively find 
a solution of given problem and improve it over 
time. Reinforcement learning is a kind of machine 
learning, in which an autonomous unit, called a 
robot or agent, performs actions in a given 
environment. Through interaction and the 
observation of the environment (by input signals) 
and performing an action he affects this environment 
and receives an immediate score called 
reinforcement or reward (Figure 1). 

Environment
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Figure 1. Interaction of helmsman with an environment. 

The main task of the agent is to take such actions 
to adjust the value R which is the sum of the partial 
reinforcement as much as possible (1). 
𝑅𝑇 = 𝑟𝑡+1 + 𝑟𝑡+2 + ⋯  𝑟𝑇 (1) 

Such abilities are very important for simulating 
helmsman behavior in ship maneuvering on 
restricted waters. 

For simpler layouts learning process can be 
performed using classic approach, i.e. Temporal 
Difference Reinforcement Learning (Tesauro 1995; 
Kaelbling, Littman and Moore 1996) or Artificial 
Neural Networks with fixed structures. Dealing with 

high-dimensional spaces is a known challenge in 
Reinforcement Learning approach (Łącki 2007) 
which predicts the long-term reward for taking 
actions in different states (Sutton and Barto 1998). 

Evolving neural networks with genetic algorithms 
has been highly effective in advanced tasks, 
particularly those with continuous hidden states 
(Kenneth, Bryant and Risto 2005). Neuroevolution 
gives an advantage from evolving neural network 
topologies along with weights which can effectively 
store action values in machine learning tasks. The 
main idea of using evolutionary neural networks in 
ship handling is based on evolving population of 
helmsmen. 

The artificial neural network is the helmsman's 
brain making him capable of observing actual 
navigational situation by input signals and choosing 
an appropriate action. These input signals are 
calculated and encoded from current situation of the 
environment.  

In every time step the network calculates its 
output from signals received on the input layer. 
Output signal is then transformed into one of the 
available actions influencing helmsman’s 
environment. In this case the vessel on route within 
the restricted waters is part of the helmsman’s 
environment. Main goal of the helmsmen is to 
maximize their fitness values. These values are 
calculated from helmsmen behavior during 
simulation. The best-fitted individuals,  which react 
properly to wind effect, become parents for next 
generation. 

2 THE FORCES ACTING ON THE SHIP 

External disturbances acting on a seagoing ship are 
mainly wind, wave and ocean current. In this paper 
the author assumes that the waves in the harbor area 
have little effect on ship maneuvering, and this type 
of interference is omitted in the system. 

As the ship moves forward on the straight path 
(assuming there aren’t any significant distorting 
external forces) there are the two major forces acting 
on her - the force from the propellers and the force 
of water resistance. At a constant speed, these forces 
are equal, but with the opposite direction. 

When the ship is turning the additional forces act 
on the rudder and lateral forces from water pressure 
appear. During this maneuver, the ship loses a little 
of her velocity and the pivot point moves back 
toward amidships. 

2.1 Effect of wind in the ship handling 
Under pressure of wind force, depending of the 
ships’ design (location of the superstructure, the 
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deployment of cargo and on-board equipment, etc.) 
she tends to deviate from the course, with the wind 
or into the wind. The smaller the speed and draft of 
the ship, the greater the influence of wind. Of 
course, the size of the side surface exposed to wind 
is essential to the ships movement. 

When ship moves forward the center of effort of 
the wind (WP) is generally close to amidships, away 
from pivot point (PP). This difference creates a 
substantial turning lever between PP and WP thus 
making the ship to swing of the bow into the wind 
(with the superstructure deployment at stern) 
(Figure 2). 

Figure 2. Wind effect and turning lever of ship mowing 
forward. 

For ship moving forward there are defined terms 
of relative wind speed Vrw and angle of attack γrw as 
follows (Fossen 2011): 

𝑉𝑟𝑤 = �𝑢2𝑟𝑤 + 𝑣2𝑟𝑤 (2) 

𝛾𝑟𝑤 =  − arctan�𝑣𝑟𝑤,𝑢𝑟𝑤� (3) 

where: 
𝑢𝑟𝑤 = 𝑢 − 𝑢𝑤 (4) 

𝑣𝑟𝑤 = 𝑣 − 𝑣𝑤 (5) 
where: u, uw, v, vw are longitudinal and lateral 
velocities of ship and wind, respectively. 

Wind forces acting on ship are generally 
calculated as follows: 

𝑋𝑤𝑖𝑛𝑑 = 1
2
𝜌𝑎𝑖𝑟𝑉𝑟𝑤2 𝐶𝑋(𝛾𝑟𝑤)𝐴𝐹𝑤 (6) 

𝑌𝑤𝑖𝑛𝑑 = 1
2
𝜌𝑎𝑖𝑟𝑉𝑟𝑤2 𝐶𝑌(𝛾𝑟𝑤)𝐴𝐿𝑤 (6) 

𝑁𝑤𝑖𝑛𝑑 = 1
2
𝜌𝑎𝑖𝑟𝑉𝑟𝑤2 𝐶𝑁(𝛾𝑟𝑤)𝐴𝐹𝑤𝐿0𝑎 (6) 

where: 

− ρair – air density, 
− Ax – surfaces affected by wind, 
− L0a – ship’s length, 
− Cn – coefficients calculated from available 

characteristics of ships’ model (Figure 3.), 

Figure 3. Equations coefficients for relative wind. 

3 NEUROEVOLUTION OF AUGMENTING 
TOPOLOGIES 

Neuroevolution of Augmenting Topologies (NEAT) 
method is one of the Topology and Weight Evolving 
Artificial Neural Networks (TWEANN’s) method 
(Kenneth and Risto 2002b). In this method the 
whole population begins evolution with minimal 
networks structures and adds nodes and connections 
to them over generations, allowing complex 
problems to be solved gradually starting from simple 
ones.  

The modified NEAT method consist four 
fundamental rules which deal with challenges that 
exist in evolving efficient neural network topology:  
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1 Begin with a minimal structure and add neurons 
and connections between them gradually to 
discover most efficient solutions throughout 
evolution. 

2 Cross-over disparate topologies in a meaningful 
way by matching up genes with the same 
historical markings. 

3 Separate each innovative individual into a 
different species to protect it disappearing from 
the population prematurely. 

4 Reduce oversized topologies by removing 
neurons and connection between them to provide 
and sustain good overall performance of a whole 
population of helmsmen. 

3.1 Genetic Encoding 
Evolving structure requires a flexible genetic 
encoding. In order to allow structures to increase 
their complexity, their representations must be 
dynamic and expandable (Braun and Weisbrod 
1993). Each genome in NEAT includes a number of 
inputs, neurons and outputs, as well as a list of 
connection genes, each of which refers to two nodes 
being connected (Figure 4.). 

Figure 4. Genotype and phenotype of evolutionary neural 
network. 

In this approach each connection gene specifies 
the output node, the input node, the weight of the 
connection, and an innovation number, which allows 
finding corresponding genes during crossover. 
Connection loopbacks are also allowed, as shown in 
figure 4. 

3.2 Genetic operations 
There are two main genetic operations: cross-over 
and mutation. During cross-over two individuals 
(parents), exchange their genetic material in purpose 
of creating new individual (an offspring). The 

system knows exactly which genes match up with 
which through innovation numbers. Genes that do 
not match are either disjoint or excess, depending on 
whether they occur within or outside the range of the 
other parent’s innovation numbers. 

In crossing over operation, the genes with the 
same innovation numbers are lined up. The offspring 
is then formed in one of three ways: 
− In uniform crossover: matching genes are 

randomly chosen for the offspring genome, with 
all disjoints and excesses from both parents.  

− In blended crossover: the connection weights of 
matching genes are averaged, disjoints and 
excesses are chosen randomly. 

− In elite crossover: disjoints and excesses are taken 
from more fit parent only, all redundant genes 
from less fit parent are discarded. All matching 
genes are averaged. 
These types of crossover were found to be most 

effective in evolution of neural networks in 
extensive testing compared to other methods of 
crossover (Kenneth and Risto 2002a). 

Disabled genes have a chance of being re-enabled 
during mutation, allowing networks to make use of 
older genes once again. 

Evolutionary neural network can keep historic 
trails of the origin of every gene in the population, 
allowing matching genes to be found and identified 
even in different genome structures. Old behaviors 
encoded in the pre-existing network structure have a 
chance to not to be destroyed and pass their 
properties through evolution to the new structures, 
thus provide an opportunity to elaborate on these 
original behaviors. 

Through mutation, the genomes in modified 
NEAT will gradually get larger for complex tasks 
and lower their size in simpler ones. Genomes of 
varying sizes will result, sometimes with different 
connections at the same positions. Any crossover 
operator must be able to recombine networks with 
differing topologies, which can be difficult. 
Historical markings represented by innovation 
numbers allow NEAT to perform crossover without 
analyzing topologies. Genomes of different 
organizations and sizes stay compatible throughout 
evolution, and the variable-length genome problem 
is essentially solved. This methodology allows 
NEAT to increase complexity of structure while 
different networks still remain compatible. 

Additionally different sizes and structures of 
networks group their genetic material into species. 
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3.3 Speciation 
Speciation of the population assures that individuals 
compete primarily within their own niches instead of 
competition within the whole population. In this way 
topological innovations of neural network are 
protected and have time to optimize their structure 
before they have to compete with other experienced 
agents in the population. 

During species assigning process, as described in 
(Łącki 2010c), when a new individual appears in 
population, its genome shall be assigned to one of 
the existing species. If this offspring is structurally 
too innovative comparing to any other individuals in 
whole population, the new species is created. 

In the first step of species reproduction process 
the system eliminates the lowest performing 
members from the population. In the next step the 
offspring replaces eliminated worst individual 
(Fig. 5). 

Figure 5. Example of reproduction in elitist selection method. 

4 SIMULATION RESULTS 

The main goal of authors work is to make a system 
able to simulate a safe passage of ship moving 
through a restricted coastal area in heavy and 
variable wind conditions. This goal may be achieved 
with Evolutionary Neural Networks. 

Figure 6. Sample data signals of ship handling with ENN. 

Navigational situation of a moving vessel can be 
described in many ways. Most important is to define 
proper state vector from abundant range of data 
signals (Fig. 6.) and arbitrary determine fitness 
function values received by the helmsman. 

The main input signals are gathered from data 
listed below: 
− Ships course over ground, 
− Ships angular velocity, 
− The ship is on the collision course with an 

obstacle, 
− Distance to collision, 
− The ship is approaching destination, 
− Ships angle to destination, 
− The ship is heading out of the area, 
− Distance to current canal borders, 
− Ship is heading on goal, 
− Distance to goal, 
− Wind velocity, 
− Angle of wind. 

All the input signals are encoded either binary (0 
or 1) or as a real values between 0 and 1. Some of 
the input signals may be calculated as multi-criteria 
values (Filipowicz, Łącki and Szłapczyńska 2006). 
Neural network output values are signals for rudder 
angle (δ) [deg] and thrust control [rpm]. 

Fitness calculation defines helmsman ability to 
avoid obstacles and react to wind forces while 
sailing toward designated goal. The fitness value of 
an individual is calculated from arbitrary set action 
values, i.e.: 
− -10 when ship is on the collision course (with an 

obstacle or shallow waters), 
− +10 when she's heading to goal without any 

obstacles on course,  
− -100 when she hits an obstacle or run aground,  
− +100 when ship reaches a goal, 
− -100 when she departs from the area in any other 

way, etc. 
In the simulation of safe passage through 

restricted waters there are no moving vessels in the 
area (Fig. 7.). In this situation when ship enters a 
heavy side wind channel, there is a risk to hit an 
obstacle if no action is being made by the helmsman. 
Artificial helmsman observes current situation which 
is encoded as input signals for his neural network 
and calculates the best (in his opinion) rudder angle 
(Figure 8). 
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Figure 7. Model of windy coastal environment. 

Figure 8. Simulation results of the systems performance in 
heavy wind environment. 

5 REMARKS 

Neuroevolution approach to intelligent agents 
training tasks can effectively improve learning 
process of simulated helmsman behavior in ship 
handling (Łącki 2008). Artificial neural networks 
based on NEAT increase complexity of considered 
model of ship maneuvering in restricted waters.  

Implementation of additional disturbances from 
wind in neuroevolutionary system allows simulating 
complex behavior of the helmsman in the 
environments with much larger state space than it 
was possible in a classic state machine learning 
algorithms (Łącki 2007). Positive simulation results 
of maneuvers in variable wind conditions encourage 
to add other input signals to the system, like river 
currents, which will be included in future research. 
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