
599 

1 INTRODUCTION 

One can examine statements like; “student X is a good 
one” or “point (x, y) is a true location of the ship”. 
Evaluating the first, we should consult the student’s 
teacher for his subjective opinion. Belief, uncertainty 
and plausibility measures are expected as an educator 
answer. Second hypothesis is of the same type but 
appears not so easy. Although one can ask nautical 
experts for their help, nonetheless this way of conduct 
seems inadequate. Primarily one has to point at 
reference data. Statement changes a bit and takes the 
form “is the point (x, y) a true location of the ship given 
a set of indications delivered by various accompanied 
navigational observations”. Two-dimensional problem 
can be solved considering each coordinate separately. 

In navigation problem of assessing the belief, 
uncertainty and presumption of the x coordinate as the 
true location in proximity of a given abscissa. The 
assessment here is not subjective. The opinion should 
be based on the indications of a certain positioning 
system. The necessary knowledge available to an 
experienced bridge officer is usually based on available 
samples of observed, random indications of such a 
system – see Figure 1 for illustration. It should be 
added that the interesting location here is 
approximately the point, not exactly in it. In the latter 
case, having density of distributions, inference in 
relation to a specific point is not possible. 

Proposed way of verifying the statement exploits 
collected sets of instances generated by the 
navigational aids. Uses fuzzy systems and methods of 
multi-attribute decision-making. Contribution from 

Nautical Knowledge Extraction and Decision Making 

W. Filipowicz 
Gdynia Maritime University, Gdynia, Poland 

ABSTRACT: One frequently encountered decision-making problem is the evaluation that boils down to judging 
hypotheses. Typically, we determine whether they are true or false, although we may also have doubts. 
Hypotheses can be statements of various kinds. For example, we may wish to classify a given student as belonging 
to the category of good students. Mentioned hypotheses are related to different disciplines, quite often seemingly 
uncorrelated. To confirm this hypothesis, we would most often refer to the subjective opinions of their teachers. 
A similar issue arises in nautical science; for instance, consider the problem of identifying a particular location as 
the most probable one where an observer is situated. Accompanied establishing ranges of the true, false and 
uncertain statement might be subjective. Objectivity could be also considered provided stored sets of instances 
are available. Expected are adequate functionalities of software tools at hand. Functional aspects tends to increase 
nowadays. Random observations are usually accompanied by methods rectifying knowledge regarding their 
behaviour and quality. Available data are explored in order to extract necessary parameters required within the 
inference schemes of evaluating the hypothesis truth.  

 

http://www.transnav.eu 

the International Journal  

on Marine Navigation  

and Safety of Sea Transportation 

Volume 19 

Number 2 

June 2025 

DOI: 10.12716/1001.19.02.32 



600 

belief theory results in ability of the data informative 
context enrichment. The proposed approach refers to 
belief structures and the mechanism of evidence 
aggregation. The association of encoded fragments of 
evidence is a little-known and often undervalued 
mechanism. It allows for the enrichment of the 
informational context of the components. It provides a 
formalized framework through which we can obtain an 
answer regarding the cumulative assessment of a given 
hypothesis in light of opinions originating from 
various sources, often differing in reliability. 

2 UNCERTAINTY MODEL 

Binary logic rules for the two-state distinction of values 
[true, false]. Fuzzy systems of diversification switches 
in understanding these values. The statement can be 
true/false to some extent. A widely possible interval 
model for introducing belief, plausibility and 
uncertainty of the hypotheses being true. Suppose we 
ask a teacher for an opinion about a certain student. 
Only in a few cases will we hear an opinion that clearly 
states a high grade for a student. The evaluator will 
more likely state that based on the exams conducted, 
the student is good, but while direct contacts and 
meetings during practical classes, he believes that, the 
opinion expressed is not entirely true. The teacher has 
doubts reaching a certain value that allows him to 
assess the student as good. Above this level, he would 
not say that the student belongs to this category. In the 
example given, we have three ranges of values: 
conviction or belief, uncertainty and presumption or 
plausibility, above which we have impossibility. The 
state where the truth of the statement is not allowed. In 
practice, interval notation [a, b] is used. The value of a 
denotes the level of conviction, 1-b is the impossibility 
interval, and b-a is the range of uncertainty. 
Determining the appropriate interval involves 
objectively assessed exams, as well as a subjective 
evaluation of the entirety of achievements. From an 
axiological point of view, the most important thing is 
conviction. The range of uncertainty, although 
significant, is of lesser importance. The construction of 
a hierarchy in a set of elements should be based on the 
values of belief. This problem is of particular 
importance during the aggregation of assessments or 
opinions. 

Figure 1 shows two sets of instances distributions, 
their conventional and modern histograms with 
examples of selected abscissas. Considering each 
coordinate of a location separately thus solving two 
single-dimensional problems is an approach enabling 
verification nautical hypothesis referring to the 
observer location. Moreover relying on density 
functions we should modify the hypothesis, finally it 
takes the form of: “is the neighbourhood of given 
abscissa a range where the true x-coordinate of the 
observer position is located given a set of indications 
delivered by various accompanied navigational 
observations”. 

It should be stressed that the area of interest is the 
neighbourhood of a point, not the point itself. In the 
latter case, if we rely on histograms representing 
distribution densities, reasoning about a specific point 
is not feasible. 

Data for a certain navigation system are shown in 
Figure 1. The history of the system's readings is shown 
as a set of points located around the identified location. 
The distribution of the x-values of these locations are 
shown as histogram, although modern continuous 
density graph is also included. The figures included 
next to the drawing represent vertical and horizontal 
assessments of the distribution.  

 

Figure 1. The set of instances distribution, its conventional 
and modern histogram with examples of selected abscissas 
and quality parameters 

Included figures refer to assessment of the 
distribution. The first indicator reflects the variation in 
the heights of the histogram bars. A higher value is 
preferred, as it indicates a better-formed structure. The 
second value refers to the width of the histogram, 
which in the presented case is the width of a single bin. 
Systems with a smaller range of dispersion are 
favoured, as they indicate lower uncertainty in 
readings. The two indicators for evaluating a given 
system are of different types: the first is qualitative—
higher values indicate better assessments. The second 
is cost-type—lower values are preferred. 

MADM (Multi-Attribute Decision Making) is a field 
of knowledge where such contrasting cases are 
recognized. Unified methods for treating such values 
are proposed [9]. It is often that block of the 
characteristics of observations made at the same time is 
available. Thus upgrading hierarchy among its 
elements is of primary importance. Deferring further 
detail for now, it should be known what the given 
system indication quality is. At the same time, the 
relative belief in the system’s reliability is assessed. It is 
at this point that the fundamental difference appears 
between the problem of evaluating a student and 
determining location based on readings from various 
systems. The second case involves geometric 
relationships. What is sought is belief and plausibility 
regarding the neighbourhood of a given x-coordinate 
as the area of the most likely observer location. These 
attributes result from the analysed reading but also 
depend on geometry, the relative position of the 
reading and the considered coordinate [1]. Belief is 
therefore variable. Figure 1 also contains two lines 
associated with two example x-coordinates. The 
proposed method for calculating plausibility refers to 
continuous functions. Since histograms do not satisfy 
this condition, they require transformation—a concept 
previously proposed by the author [2][3]. 
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For a system, the maxima of belief and plausibility 
regarding the location of the coordinate around which 
the observer's position is most likely are identified with 
converted histograms. As the distance from the point 
of maximal values, increases, both of these indicators 
decrease. A reduction in belief has been assumed with 
increasing distance from the maximum of the 
continuous histogram. The value of uncertainty is a 
characteristic feature of the distribution and remains 
constant, regardless of the considered abscissa. The 
sum of belief and uncertainty gives the value of 
plausibility, which therefore decreases. In contrast, the 
value describing the impossibility of supporting the 
considered hypothesis increases. This implies that the 
true location coordinate should be sought elsewhere. 

2.1 Simple Belief Structures and Their Aggregation 

A practical problem belonging to the decision-making 
category may look as follows. Two sources provide 
evaluations of the same student. One of the student’s 
teachers claims to be convinced that the student is 
good. Based on exam results, he assesses his belief level 
on a [0, 1] scale at 0.45. Based on personal interactions, 
he concludes that the student could be considered good 
up to a level of 0.85. However, beyond that threshold, 
the student should no longer be regarded as this 
category. The second evaluator is more sceptical. He 
ultimately sets his belief at 0.20 and suggests a wider 
uncertainty interval, which in this case should be 0.65. 

In practice, a single assessment is required—one 
that consolidates all available opinions. Such a 
cumulative evaluation provides a more accurate and 
complete picture of the student being assessed. The 
parameters of this resulting evaluation might be 
calculated using non-null generating conjunctive-like 
aggregation of the available belief structures. 

Each opinion allows for the definition of an 
individual, simple belief distribution. The two simple 
belief structures, based on the available evaluations of 
the student, are shown in Table 1. The column labelled 
{T} contains the belief values for the statement; the 
student is good. The second column {¬T} includes data 
regarding the impossibility that the student is good. 
The last column {T, ¬T} contains the uncertainty, i.e., 
doubts regarding the assessment. 

Table 1. Two belief structures on statements regarding 
student evaluations 
Structure {T} {¬T} {T, ¬T} 

I 0,450 0.400 0,150 
II 0,200 0,150 0,650 

{T} belief values for the statement; the student is good 
{¬T} impossibility that the student is good 
{T, ¬T} uncertainty that the student is good 
 

Two belief structures of the presented forms, 
referring to the same domain of discourse, can be 
combined. [6][7]. This leads to an enrichment—
compared to the original assignments—of 
informational content. The aggregation (association) of 
two structures results in a belief distribution with 
cumulative content, characterized by a richer 
informational context. 

The elements of the resulting structure are 
calculated from the intersections of each pair of subsets 
from the aggregated structures. The intersection of two 

sets may be empty. The subsets {T} and {¬T} share no 
common elements; in such a case, the aggregation 
operation yields the union of the arguments—i.e., the 
set {T, ¬T}. In the context of this application, this 
corresponds to uncertainty. All of this is consistent 
with a method proposed by Hau and Kashyap [5]. This 
type of association can be described as 
conjunctive/disjunctive, characterized by the absence 
of empty values. The masses associated with the 
resulting sets are obtained as products of the masses of 
each paired element being combined. This basic 
scheme of conjunctive association is most easily 
implemented using a two-dimensional 
representation—an example is shown in Table 2. 

Table 2. Conjunctive-like combination of two simple belief 
structures on statements regarding student evaluations 
  Structure II  
 set mass {T} {¬T} {T, ¬T} result 
  0,200 0,150 0,650  

Structure I {T} {T} {T, ¬T} {T} {T} 
 0,45 0,090 0,068 0,293 0,413 
 {¬T} {T, ¬T} {¬T} {¬T} {¬T} 
 0,4 0,080 0,060 0,260 0,343 
 {T, ¬T} {T} {¬T} {T, ¬T} {T, ¬T} 
 0,15 0,030 0,023 0,098 0,245 
 

The number of columns in such a table corresponds 
to the number of elements in one of the structures, and 
the number of rows equals the number of elements in 
the second assignment. Each element corresponds to 
an event or option with a non-zero mass. Elements 
assigned a mass of zero do not affect the aggregation 
results, and for this reason, they should not appear in 
the respective structure [4][7]. 

Table 2 presents the aggregation of the belief 
structures based on the student evaluations. The first 
few columns show data from the first evaluator. The 
second evaluator’s opinions are shown in the first 
rows. The table's interior contains the intermediate 
results of the conjunctive/disjunctive aggregation for 
each pair of elements. The final result, obtained by 
summing the values assigned to identical sets, is 
presented in the last column. The probabilistic-
possibilistic diagrams of the student assessments and 
the result of their assembly are shown in Figure 2. 

 

Figure 2. Diagrams of the student’s evaluations and the 
combination result 

Compared to the more favourable evaluation, we 
observe a slight decrease in the belief that the student 
is good (relative to the first evaluator’s value). The 
uncertainty range increases (compared to the smaller 
value), while the indicator suggesting that the student 
should not be considered good decreases (relative to 
the higher original value). It is worth noting that the 
result confirms the subjective, common-sense 
assessment of the student being evaluated. 
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2.2 Nautical belief assignments 

Let us return to the nautical example. The problem lies 
in seeking support for the hypothesis that the 
coordinate of the observer’s true position lies in the 
vicinity of a given x-value based on density diagrams. 
Thus two sort of models are used. Student’s assessment 
rely on possibilistic-probabilistic approach while 
reasoning on position fixing exploits possibilistic-
density one. The agreement between the two 
approaches is obtained by assuming a unit width of the 
neighbourhood of a given abscissa. What is sought is 
the total, cumulative support, derived from two 
independent observations.  

 

Figure 3. Distributions of the x-coordinates of the instances of 
two systems, their densities in the form of histograms and 
continuous functions, and an exemplary abscissa in the 
vicinity of which the location of the true position of the 
observer is determined 

The situation is illustrated in Figure 3, which 
presents density distributions for two systems of 
differing precision. It can be observed that the first 
system (I) dominates the second (II) in terms of the 
narrower spread of its distribution area. 

The goal is to determine the support for the 
hypothesis that the true coordinate of the observer's 
position lies near the marked x-value. The dataset 
characterizing the two simple belief structures is 
shown in Table 3. The characteristic values of the 
respective belief structures were calculated for the 
abscissa marked in Figure 3, based on the continuous 
graphs shown there. The distributions are labelled I 
and II, and they differ primarily in the spread of the 
observed instances. Vertical shape of the step-wise 
histogram (I) also dominates over the second one (II). 

Table 3 Two simple belief structures defined from the 
histories of two independent systems 
Structure {T} {¬T} {T, ¬T} 

I 0,456 0,430 0,114 
II 0,138 0,524 0,338 

 
Structure I corresponds to a distribution with less 

dispersion. Furthermore, the distance between the 
considered coordinate and the centre of dispersion of 

this system is very small. This results in significantly 
higher belief—derived from this observation—in 
support of the hypothesis that the neighbourhood of 
the given x-value represents the true coordinate 
location, compared to the belief derived from the 
second observation. Let us compare the relevant belief 
values: 0.456 versus 0.138. At the same time, the 
uncertainty ranges for each case display opposite 
magnitudes. These are shown in the last column: the 
uncertainty induced by the first observation is 
significantly lower than that from the second, namely: 
0.114 versus 0.338. The method for calculating such 
values in the case of simultaneous indications from 
systems of varying accuracy will be presented in the 
following section. 

Table 3. Conjunctive-like combination of two simple belief 
structures from Table 2 
  Structure II  
 set mass {T} {¬T} {T, ¬T} result 
  0,138 0,524 0,338  

Structure I {T} {T} {T, ¬T} {T} {T} 
 0,456 0,063 0,239 0,154 0,233 
 {¬T} {T, ¬T} {¬T} {¬T} {¬T} 
 0,43 0,059 0,225 0,145 0,430 
 {T, ¬T} {T} {¬T} {T, ¬T} {T, ¬T} 
 0,114 0,016 0,060 0,039 0,337 
 

Possibilistic-density diagrams of supporting the 
hypothesis of the true coordinate location 
approximately the considered x-value (Figure 3) are 
shown in Figure 4. 

3 DETERMINING THE COMPONENTS OF BELIEF 
STRUCTURES FOR DATA SETS 

In nautical science, we often work with so-called 
simultaneous observations—data sets whose element 
distributions indicate different degrees of uncertainty. 
Their practical application requires the definition of 
universal rules of procedure. Evaluating quality and 
building a hierarchy within the available data sets are 
fundamental tasks. 

 

Figure 4. The graphs of the support for the hypothesis of 
locating the true coordinate of the observer's position in the 
vicinity of the abscissa marked in Figure 3 

Figure 5 presents the density distributions of 
instances for four observations, shown as both 
histograms and continuous functions, along with 
sample x-values near which support is calculated for 
the hypothesis of the observer's true location. Each 
system is described using the data gathered in Table 5, 
which defines a multi-criteria decision-making 
problem (shaded columns), as well as its solution using 
the SAW (Simple Additive Weighting) method [9]. 

The first of the marked columns contains data 
labelled di1/vi1. The values before the slash di1 
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correspond to the horizontal spreads of the x-values of 
instance sets for systems I, II, III, and IV. These 
represent the bin widths [in pixels] of the individual 
histograms. Smaller values are favoured, as they 
indicate systems with greater precision. For this 
reason, this attribute is considered cost-type. The 
importance weight for this attribute has been 
arbitrarily set to 0.75. The second marked column 
contains data labelled di2/vi2. The di2 values reflect the 
vertical spreads of the histograms. These are calculated 
based on the differences in histogram bin heights (i.e., 
the number of cases) across each system’s structure. 
Larger values are favoured, as they indicate histograms 
with better shaping. Therefore, this attribute is 
considered qualitative. Its importance weight was 
arbitrarily set to 0.25. This means that the horizontal 
spread of the instances (i.e., the system’s precision) is 
considered more important than the vertical shaping of 
the histogram. 

The vij values placed after the slashes are the 
normalized values corresponding to each attribute. 
The calculation methods for these values are shown in 
Table 6. The appropriate formula is applied depending 
on the attribute type: cost or qualitative. 

Table 5. Example characteristic data of the x-coordinate 
distributions of the instances observed for the four 
positioning systems 
System horizontal 

expansion 
di1/vi1 (cost 
0.75) 

vertical 
expansion 
di2/vi2 
(quality 0.25) 

ranking 
value 

maximum 
density/belief 

I 20.9/1.00 6.5/1.00 1.00 0.46/0.28 
II 44.3/0.00 6.4/0.89 0.22 0.66/0.06 
III 22.7/0.92 5.9/0.33 0.78 0.50/0.21 
IV 33.2/0.47 5.6/0.00 0.36 0.60/0.10 

 
Table 6. Methods of transforming attributes from the 
decision table of a multi-criteria problem 

qualitative attribute min

max min

ij j
ij

j j

d d
v

d d

−
=

−
 (1) 

cost attribute min

max min

j ij
ij

j j

d d
v

d d

−
=

−
 (2) 

 

Table 7. Set of basic factors and proposed formulae for their 
estimation 
 factor formula of 

evaluation 
meaning 

1 fdmax=plmax read from the 
graph  

plausibility for the centre of the 
graph, maximum of the continuous 
density function (see line 1 at 
Figure 5) 

2 belmax C*fdmax maximum belief obtained from the 
maximum of the continuous density 
function (see line 2 at Figure 5) 

 uncrtmin fdmax - belmax minimum uncertainty of the system 
 fdi read from the 

graph 
the value of the continuous density 
function for a given abscissa (see 
line 3 at Figure 5) 

 beli belmax*fdi/fdmax the belief measure evaluated from the 
continuous density function for a 
given abscissa (see line 4 at Figure 5) 

 uncrti fdmax – beli the uncertainty measure for i-th 
abscissa 

C constant ratio, assumed as reduced system’s ranking value (see 
Table 5) 

 

 

Figure 5. The set of instances distribution, its conventional 
and modern histogram with examples of data for selected 
abscissas 

Ranking values are obtained by multiplying matrix 
V by the transposed weight vector. The resulting 
values are placed in the fourth column of Table 5. The 
best system turned out to be System I, with a ranking 
value of 1.00. The worst is System II, with the value of 
0.22. The ranking values determine the quality 
hierarchy of the evaluated systems. They define the 
membership function shapes when using fuzzy 
systems, and consequently, they determine the shape 
of the transformed density distributions [4]. The 
ranking-based transformations influence the belief 
values regarding the truth of hypotheses in the central 
regions of the distributions. The dataset, ordered 
according to the ranking list, reveals an increasing 
trend in uncertainty across the systems. In such 
conditions, the belief values at the central coordinates 
of the distributions tend to decrease progressively. 

The last column of Table 5 shows the maximum 
value of the continuous density function of each 
distribution. It also lists the belief value associated with 
the likelihood that the observer's coordinate lies near 
the x-value of the highest distribution density. The 
highest belief corresponds to the best system. This 
value depends on the ranking function and reaches a 
minimum for the lowest-rated distribution. In this way, 
an important practical principle is realized: that the 
estimated position should depend primarily on the 
most reliable data sources. 

The set of calculated coefficients necessary for the 
construction of belief structures is shown in Table 7. It 
shows parameters characterizing the distributions of 
instances of individual navigation aids, but also ways 
of evaluating the measures of belief and presumption 
for any given abscissa. 
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Figure 6. Density distributions of instances for four 
observations in the form of histograms and continuous 
functions, and sample abscissas, in whose neighbourhoods 
the support for the hypothesis about the location of the true 
position of the observer is determined 

To illustrate the above-mentioned issues, the 
following section presents distributions reflecting the 
levels of support for the hypothesis that the true 
coordinate lies near the specified x-values shown in 
Figure 6. The dataset provides the foundation for 
defining the relevant belief structures. 

Table 8. The ordered belief structures for the abscissas 
shown in Figure 6 along with the partial results of their 
sequential association 
 Structure {T} {¬T} {T, T¬} {T}C {¬T}C {T, T¬}C 

Abscissa 
451 

I 0.388 0.540 0.072 intermediate results 1 
III 0.244 0.501 0.255 0.211 0.444 0.345 
IV 0.042 0.402 0.556 0.141 0.564 0.295 
II 0.015 0.344 0.641 0.097 0.657 0.246 

Abscissa 
484 

I 0.308 0.54 0.152 intermediate results 2 
III 0.323 0.501 0.176 0.203 0.442 0.355 
IV 0.069 0.402 0.529 0.146 0.554 0.300 
II 0.022 0.344 0.634 0.102 0.645 0.253 

Abscissa 
529 

I 0.081 0.54 0.379 intermediate results 3 
III 0.248 0.501 0.251 0.134 0.596 0.270 
IV 0.099 0.402 0.499 0.107 0.645 0.248 
II 0.031 0.344 0.625 0.078 0.711 0.212 

 
Table 8 shows three sets of belief structures for each 

of the x-values illustrated in Figure 6. Each set is sorted 
according to decreasing system-ranking value. The 
calculations of the presented elements are based on the 
maximum values for each system, taking into account 
the offset of the x-values from the peak density location 
of the respective system. It is assumed that as the 
distance between the x-value and the peak increases, 
the corresponding belief decrease. In the last three 
columns of Table 8, the results of successive 
associations of the four distributions shown alongside 
are presented. The outcome of this operation is a 
sequence of three belief structures, labelled as 
"intermediate result x". The first structure in each trio 
is the result of aggregating the two best distributions 
from the respective set of four. Initially, in the first two 
cases, these are structures I and III. The following 
results involve aggregating the previous result with 
structure IV, and then combining that new result with 
the last distribution. Within each trio of results, the 
belief values decrease, the uncertainty levels tends to 
increase, while the indicator corresponding to the 

rejection of the hypothesis—that the correct coordinate 
lies near the x-value—remains the same. 

An interesting case is that of a belief distribution in 
which the uncertainty reaches a value of 1. This 
structure then takes the form m∅ = {0, 0, 1}, and it serves 
as a neutral element in the aggregation process. This 
means that the aggregation operation ⊗ in the form 
m∅ ⊗ mi results in mi. 

4 SUMMARY 

This paper presents a method for encoding opinions 
that include an element of doubt. The proposed 
approach uses an interval model, which allows for the 
creation of belief structures that are elements of the 
Mathematical Theory of Evidence (MTE), also known 
as belief theory. This scheme provides a mechanism for 
aggregation that enriches the informational context of 
arguments. Two sort of models were used; 
possibilistic-probabilistic and possibilistic-density one. 
The agreement between the two approaches is 
obtained by assuming the neighbourhood of a given 
abscissa of unit width. 

The available opinions come from various sources 
and may be more or less objective. From a nautical 
perspective, an important task is the exploration of 
data regarding instances and observations, leading to 
the extraction of opinions on hypotheses about the 
observer's correct location. The available sets of 
observations represent different levels of reliability, 
making it necessary to define a hierarchy among these 
elements so that the implementation of the concept 
produces solutions that meet quality standards. 

Preparing a ranking list is a multi-criteria decision-
making problem. This field provides a range of 
methods for building hierarchies within a set of 
alternatives. One of the simplest is the additive method 
known by the acronym SAW (Simple Additive 
Weighting). Determining a ranking for a set of 
simultaneous observations is a challenge addressed in 
this work. The proposed approach utilizes sets of 
instances observed for each system used to determine 
the observer’s position. 

The computed utility values define the hierarchy of 
relative quality among the systems under 
consideration. These values determine the forms of 
membership functions in the context of using fuzzy 
sets. Consequently, they allow for defining the shapes 
of density distribution functions, usually perceived in 
the form of "step-like" histograms. The transformed, 
continuous form of the density distribution employs an 
approach assuming that histogram bins are fuzzy sets 
[2][3]. 

The ranking function values form the basis for 
calculating belief in the truth of the considered 
hypotheses, especially in the central regions of the 
distributions. The data set, sorted in descending order 
according to the ranking list, organizes the systems 
from best to worst. The differences in ranking values 
make it possible to determine the degree of qualitative 
dominance of one system over another. 
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