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1 INTRODUCTION 

With the rapid growth of global maritime trade, multi-
ship encounter scenarios in complex navigational 
waters are becoming increasingly frequent, placing 
higher demands on the timeliness and accuracy of 
maritime supervision systems. These scenarios involve 
not only direct navigational conflicts among ships but 
also mutually constrained dynamic decision- making 
processes. Their high complexity and uncertainty make 
traditional two-ship encounter analysis methods 
inadequate. Although the International Regulations for 
Preventing Collisions at Sea (COLREGs) clearly define 
two-ship encounter types such as head-on, crossing, 
and overtaking situations, the dynamic interaction 
characteristics of multi-ship encounters have yet to be 
unified under a comprehensive theoretical framework. 
Existing approaches still face significant limitations in 
terms of scenario representation and relationship 
modeling [1,2]. 

At present, research on ship encounter scenario 
identification primarily focuses on two- ship 
encounters. The main approaches can be categorized 
into indicator-based methods and machine learning-
based methods. Indicator-based methods determine 
the presence of an encounter relationship based on the 
spatiotemporal interactions between two ships. 
Commonly used indicators include ship domain [3], 
velocity obstacles [4], relative distance, and relative 
speed [5]. While these indicators can effectively 
identify potential encounter relationships in simple 
scenarios, they often involve high computational 
complexity and are prone to misidentification in 
special or complex situations [6]. On the other hand, 
machine learning-based methods leverage large 
volumes of historical ship movement data to uncover 
potential encounter patterns, offering stronger 
generalization and adaptability [7]. However, these 
approaches typically rely heavily on labeled data, 
suffer from limited interpretability, and may lack 
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stability when dealing with highly dynamic and 
uncertain environments. 

Compared to two-ship encounter scenarios, multi-
ship encounters involve not only direct navigational 
conflicts between ships but also mutual constraints in 
navigational decision- making, characterized by high 
complexity and uncertainty. In recent years, spatial 
clustering methods have been widely applied to 
identify multi-ship encounter scenarios. These 
methods analyze the spatial distribution patterns of 
ships to detect locally dense areas and identify 
potential encounter groups. Common clustering 
algorithms, such as DBSCAN [8,9] and K- means, have 
demonstrated good performance in processing static or 
near-static ship distribution data. However, these 
approaches primarily rely on the geometric positions 
of ships and fail to fully consider their motion 
characteristics and dynamic interactions, making it 
difficult to reveal the underlying structural 
relationships and potential cooperative behaviors 
among ships. Moreover, clustering-based methods 
typically decompose multi-ship encounters into a set of 
pairwise relationships for analysis, which, while 
simplifying the complexity of scenario identification, 
often overlook the intrinsic interactions among 
multiple ships [10]. 

To more effectively characterize the complex 
interactions among ships in multi-ship encounter 
scenarios, this paper proposes a community detection-
based method for multi-ship encounter identification. 
Unlike traditional clustering methods, community 
detection originates from complex network analysis 
and emphasizes the density and connectivity of 
relationships within a network structure. In this 
approach, a ship interaction network is constructed by 
treating each ship as a node and defining the edge 
weights based on dynamic parameters such as relative 
position, speed, and heading. This results in a 
weighted graph model that captures the dynamic 
interaction patterns among multiple ships. On this 
basis, community detection algorithms are applied to 
identify high-density substructures within the 
network, enabling the effective discovery of ship 
groups that are in potential encounter states. The 
arrangement of the article is as follows: Section 2 
illustrates the methodology of this paper, a case study 
is performed in section 3 to show the results of the 
algorithm and the comparison. and Section 4 discusses 
the proposed method. Section 5 makes a conclusion. 

2 METHODOLOGY 

In this study, the objective is to identify multi-ship 
encounter scenarios within a given maritime region. 
The study is divided into three main parts: (1) AIS data 
preprocessing, (2) construction of the ship encounters 
complex network, and (3) identification of ship 
encounter scenarios by community detection. The 
overview of the methodology is shown in Figure 1 

 

Figure 1.The overview of the methodology 

2.1 AIS processing 

AIS data preprocessing primarily consists of three key 
steps: decoding, anomaly detection, and interpolation. 
First, the raw AIS data in NMEA format is decoded to 
extract essential navigational information, including 
MMSI, latitude, longitude, speed over ground, course 
over ground, and timestamps. Next, a combination of 
rule-based screening and statistical analysis is applied 
to identify abnormal data, such as invalid coordinates, 
sudden speed changes, abrupt course shifts, and 
discontinuities in timestamps. Data points with 
significant errors are either removed or flagged. To 
enhance the completeness and temporal consistency of 
ship trajectories, kinematic interpolation[11] is used to 
fill short-term gaps, and the data is resampled to a 
uniform time interval. This results in continuous, 
smoothed, and high-quality trajectory data suitable for 
multi-ship interaction analysis. The equations of 
kinematic interpolation are as follow: 

( ) ( )ia t b m t t= + −  (1.1) 

In this equation, b is a vector representing the initial 
acceleration of the moving object at the starting time ti, 
while m is a vector denoting the change in acceleration 
over time. By integrating the acceleration function, the 
velocity and position functions can be obtained as 
follows: 
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Here, vi and xi are vectors representing the initial 
speed and position. When the two endpoints pi and pj 

of the trajectory segment to be interpolated are known, 
their attribute values can be substituted to solve for b 
and m. 
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2.2 Ship encounters complex network 

To effectively characterize the dynamic interactions 
between ships, this study constructs a ship encounter 
network based on AIS trajectory data. The network is 
modeled as a weighted undirected graph, where each 
node represents a ship. The existence of edges is 
determined by the proximity relationship between 
ships, while the edge weights reflect the intensity of 
potential encounter influence between ship pairs. The 
construction process consists of two main steps: edge 
existence determination and edge weight calculation. 

Firstly, the distance between each pair of ships is 
calculated. If the distance is less than 6 nautical miles, 
the ships are considered to have a potential encounter 
relationship; otherwise, no encounter is assumed 
between them. The equation for calculating the 
distance between two ships is as follows: 
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Where, xi; xj and yi; yj are the latitude and longitude 
coordinates of ship i and ship j, x and y are the 
differences in longitude and latitude between the two 
ships, Mi is the meridian arc length at the location of 
ship i;  is the relative bearing between the two ships; e 
is the eccentricity of the Earth's ellipsoid; and s is the 
distance between the two ships. 

If the distance between two ships is less than 6 
nautical miles, their relative approach rate is further 
calculated. If the approach rate is less than zero, the 
two ships are considered to be approaching each other, 
indicating a potential encounter relationship; 
otherwise, no encounter is assumed. The equation for 
calculating the approach rate is as follows: 
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where ijD  and ijV  are the relative distance and 
speed of ship i and ship j, respectively. Rij represents 
the proximity rate between two ships. 

Once the existence of an edge between two ships is 
confirmed, the edge weight is calculated to quantify 
the encounter intensity. The equation for computing 
the edge weight is as follow: 
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where Dij and Vij are the relative distance and speed of 
ship i and ship j, ij is the angle of intersection of ship i 
and ship j. 

2.3 Identification of ship encounter scenarios by 
community detection 

In order to recognize the ship groups in the multi-ship 
encounter scenario, this paper adopts Louvain 
Community Detection to recognize the community 
structure of the network based on the constructed ship 
encounters complex network. 

The Louvain algorithm[12] aims to maximize 
modularity by identifying densely connected 
subgroups within a network, where intra-community 
connections are strong and inter- community 
connections are sparse. The algorithm consists of two 
main phases. In the first phase, each node is initially 
assigned to its own community, and the algorithm 
iteratively considers moving each node to the 
community of one of its neighbors if such a move 
results in a higher modularity. Once no further 
improvement can be achieved locally, the second phase 
begins. In this phase, the identified communities are 
aggregated into "super-nodes" to construct a new 
network. The process is then repeated on the newly 
formed network until the overall modularity no longer 
increases significantly. The equation for Modularity is 
as follow: 
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where Aij represents the edge weights between ships i 
and j, ki and kj represent the total marginal rights of ship 
i and ship j . m is the sum of the weights of all edges in 
the network. 

The Louvain algorithm identifies communities in 
which nodes are densely connected internally but 
sparsely connected to nodes in other communities. In 
the context of maritime traffic, this implies that ships 
within the same community are more likely to interact 
and influence each other, while ships outside the 
community have relatively limited impact. Each 
detected community can therefore be interpreted as a 
multi-ship encounter scenario. 

3 CASE STUDY 

3.1 Data description and processing 

To validate the proposed methodology, we conducted 
a case study using real-world Automatic Identification 
System (AIS) data collected from the Yangtze River 
Estuary, China. The dataset spans a 24-hour period 
from May 27 to May 28, 2019. Figure 2 illustrates the 
visualization of raw AIS trajectories within the study 
area. The AIS data underwent rigorous preprocessing 
to ensure reliability. First, erroneous entries were 
removed. Anchored ships were filtered out by 
retaining only ships with speeds between 2 and 20 
knots. To address irregular sampling intervals in the 
raw data, we implemented a kinematic interpolation 
method. Specifically, trajectory gaps exceeding 2 
seconds were filled, ensuring temporal consistency and 
spatial continuity. Table 1 shows the AIS configuration 
information for the case study 

 

 



890 

Table 1 Configuration of the case study 
Item Configuration 

Area: Yangtze River Estuary 
Latitude: 122°E to123°E 
Longitude: 30.5°N to 31.3°N 
Time: 2019-05-20 16:00:00 to 05-21 15:59:59 
Speed: 2 knots to 40 knots 

 

 

Figure 2. AIS trajectories 

3.2 The construction of ship encounters complex network. 

In this study, we constructed a complex ship encounter 
network to represent potential interactions among 
ships within a specific region. The network was then 
partitioned into distinct encounter communities, each 
representing a multi-ship encounter scenario. 
Throughout this paper, we refer to these scenarios as 
multi-ship encounter communities. 

In this case study, we first extracted AIS data 
corresponding to the timestamp 2019-05- 21 09:31:58, 
and set the encounter threshold to 6 nautical miles. The 
distance between each pair of ships was calculated 
using Equation (3). For ship pairs within this threshold, 
their relative approach was determined based on 
Equation (4). If a ship pair was determined to be 
approaching each other, the encounter influence—i.e., 
the edge weight in the network—was computed using 
Equation (5). In Equation (5), the weighting 
coefficients, and are set to 0.3, 0.3, and 0.4, respectively. 
The constructed ship encounter complex network is 
illustrated in Figure 3. 

In Figure 3, the link between the two ships only 
indicates the existence of a encounter influence 
between the two ships and does not represent the 
magnitude of the encounter influence 

 

Figure 3. Ship encounters complex network 

3.3 The identification of multi-ship encounter scenario 

After constructing the ship encounter complex 
network, we applied the Louvain algorithm for 
community detection to identify multi-ship encounter 
scenario in the network. The modularity calculation 
used in the Louvain algorithm is detailed in Equation 
(6). 

In the Louvain algorithm, the resolution parameter 
controls the granularity of community division, 
thereby revealing community structures at different 
scales. This parameter needs to be selected according 
to the actual situation; typically, the range is between 
0.1 and 5.0. Smaller resolution values tend to identify 
larger communities, while larger resolution values 
tend to identify smaller communities. In this study, we 
set the resolution to 1, and we consider the community 
size obtained under this resolution to be appropriate. 

Figure 4 shows the results of identifying a multi-
ship encounter scenario using community detection, 
where each color represents one identified community, 
i.e., a multi-ship encounter scenario 

 

Figure 4. Identification of multi-ship encounter by 
community detection 

Table 2 provides the MMSI information of the ships 
with the ships identified in the multi- ship encounter 
communities, based on the community detection 
method. 

 

Table 2. MMSI in different multi-ship encounter 
communities 
Community MMSI 

0 219xxx000, 412xxx860, 413xxx750, 13xxx650, 413xxx290, 
413xxx820, 413xxx780, 413xxx110, 413xxx430, 
413xxx000, 563xxx900, 

5 354xxx000, 412xxx720, 412xxx520, 412xxx440, 
413xxx000,413xxx770, 413xxx620, 413xxx650, 
413xxx630, 413xxx890, 414xxx260, 414xxx230, 

4 351xxx000, 354xxx000, 412xxx290, 412xxx690, 
412xxx580, 413xxx370 413xxx770, 413xxx810, 
413xxx490, 413xxx110, 413xxx040, 413xxx070, 
413xxx000, 413xxx920, 413xxx040, 413xxx330, 
414xxx000, 477xxx900, 538xxx255, 538xxx202, 
538xxx464, 564xxx000, 613xxx545, 636xxx895 

11 412xxx450, 412xxx710, 413xxx770, 413xxx320, 
413xxx050, 413xxx030, 413xxx170, 413xxx240 
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4 DISCUSSION 

4.1 The validation of the methodology 

In this section, we verify the effectiveness of our 
proposed method by analyzing the topological 
connection characteristics of each identified multi-ship 
encounter community. First, we examined the 
encounter connections within and between 
communities, as shown in Figure 5. 

Figure 5 presents a comparison of internal and 
external connections for each community. The results 
demonstrate that the number of internal connections 
within communities is significantly higher than 
connections between different communities, indicating 
that our community partitioning successfully captures 
dense connection patterns in the complex network of 
ship encounters. 

 

Figure 5. Comparison of encounter relations internal and 
external in communities(scenario) 

In real maritime traffic environments, these dense 
connections indicate that ships within the same 
community face encounter conflicts with multiple 
ships simultaneously. These ships and their encounter 
relationships collectively form a multi-ship encounter 
scenario. This finding provides evidence that our 
proposed method, based on complex network 
community detection, effectively identifies areas with 
dense ship encounters—specifically, the multi-ship 
encounter scenarios existing in the region. 

 

Figure 6. Distribution of connection strengths for internal 
and external in communities 

Furthermore, we analyzed the distribution of 
connection strengths for each identified multi-ship 
encounter community, as shown in Figure 6. The 
average strength of internal connections was found to 
be substantially higher than that of external 

connections. This significant difference demonstrates 
that encounter conflicts within each multi-ship 
encounter community are considerably more intense 
than conflicts between communities. In identifying 
multi-ship encounter scenarios, ships belonging to the 
same community exhibit more frequent and stronger 
interactions, while interactions between ships from 
different communities are notably weaker. This pattern 
aligns closely with the characteristics of real-world 
multi-ship encounters. The statistical features 
illustrated in both figures collectively validate the high 
accuracy and reliability of our proposed community 
detection method in extracting multi-ship encounter 
scenarios. 

4.2 The comparision with DBSCAN 

In this section, we use the DBSCAN algorithm to 
recognize the multi-ship encounter scenarios in the 
region, and compare the results with those of the 
proposed method in this study, and the results are 
shown in Figure 7. 

 

Figure 7. The comparison of community detection and 
DBSCAN 

DBSCAN is a density-based clustering algorithm 
that identifies clusters by evaluating the density of data 
points. In Figure 6, to ensure consistency with the 
parameters used in the community detection method, 
the neighborhood radius was set to 6 nautical miles, 
and the minimum number of points (MinPts) was set 
to 2. As shown in the figure, DBSCAN is capable of 
effectively identifying densely grouped ships. 
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However, it also highlights two key limitations: first, 
the occurrence of density-connected clusters, where 
ships that are spatially close but belong to different 
traffic behaviors are incorrectly grouped together; and 
second, the identification of noise points. These noise 
points refer to isolated ships that do not meet the 
density threshold, which may lead to the exclusion of 
potential multi-ship encounter scenarios, resulting in 
recognition errors. 

In contrast, community detection methods such as 
the Louvain algorithm do not rely on spatial density 
but instead partition the network based on the 
encounter relationships between ships. By optimizing 
network modularity, the algorithm effectively 
identifies tightly connected and frequently interacting 
groups of ships, making it more suitable for analyzing 
complex ship dynamics and potential multi-ship 
encounters. Moreover, community detection 
demonstrates stronger robustness and adaptability, 
allowing it to reliably uncover meaningful encounter 
clusters even in cases where the network structure is 
complex or the spatial distribution is uneven. 

5 CONCLUSIONS 

In this study, we proposed a community detection-
based method for identifying multi- ship encounter 
scenarios within a specific region using complex 
networks. Specifically, after preprocessing the regional 
AIS data, we divided it into time slices and represented 
each ship as a node in the network. The encounter 
influence between ship pairs—calculated based on 
geographic distance, relative motion, and crossing 
angle—was used as the weight of the edges. In this 
way, a weighted complex ship encounter network was 
constructed. We then applied the Louvain algorithm to 
perform community detection, aiming to identify 
encounter communities within the network. Each 
community represents a multi-ship encounter scenario 
in the region. Finally, a case study using real AIS data 
from the Yangtze River Estuary was conducted, and 
the results demonstrated that the proposed method can 
effectively identify multi-ship encounter situations in 
regional maritime traffic. 

Finally, we further validated the effectiveness of the 
proposed method by analyzing the internal and 
external connectivity of the identified multi-ship 
encounter communities. We also compared our 
approach with DBSCAN, highlighting the strengths of 
our method. While DBSCAN is capable of effectively 
identifying dense clusters of ships, it may misclassify 
noise points and suffer from the issue of density-
connected clusters. In contrast, the community 
detection method based on the Louvain algorithm is 
more robust in identifying complex multi- ship 
encounter scenarios and provides clearer structural 
insights. However, despite its advantages, the 
proposed method also has certain limitations. The 
accuracy of community detection largely depends on 
the resolution parameter in the Louvain algorithm, 

which requires careful tuning to balance the 
granularity of the detected communities. Moreover, 
although the method performs robustly in detecting 
ship encounters under most conditions, it may struggle 
in cases where ships are evenly distributed, making 
community boundaries less distinct. Future work will 
focus on enhancing the adaptability of the algorithm by 
integrating additional factors to improve performance 
in such scenarios. 
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