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1 INTRODUCTION  

One of the main tasks in Artificial Intelligence is to 
create the advanced systems that can effectively find 
satisfactory solution of given problem and improve 
it over time. Intelligent autonomous agents used in 
these systems can quickly adapt to current situation, 
i.e. change their behavior based on interactions with 
the environment (Fig. 1), become more efficient 
over time, and adapt to new situations as they occur.  
 

 
Figure 1. Interaction of helmsman with an environment. 

 
Such abilities are very important for simulating 

helmsman behavior in ship maneuvering on restrict-
ed waters. 

For simpler layouts learning process can be per-
formed using classic approach, i.e. Temporal Differ-
ence Reinforcement Learning (Tesauro 1995, 

Kaelbling, Littman & Moore 1996) or Artificial 
Neural Networks with fixed structures (Braun & 
Weisbrod 1993). Dealing with high-dimensional 
spaces is a known challenge in Reinforcement 
Learning approach (Łącki 2007) which predicts the 
long-term reward for taking actions in different 
states (Sutton & Barto 1998). 

Evolving neural networks with genetic algorithms 
has been highly effective in advanced tasks, particu-
larly those with continuous hidden states (Kenneth 
& Miikkulainen 2005). Neuroevolution gives an ad-
vantage from evolving neural network topologies 
along with weights which can effectively store ac-
tion values in machine learning tasks. The main idea 
of using evolutionary neural networks (ENN) in ship 
handling is based on evolving population of helms-
men. 

The neural network is the helmsman's brain mak-
ing him capable of choosing action regarding actual 
navigational situation of the vessel which is repre-
sented by input signals. These input signals are cal-
culated and encoded from current situation of the 
environment.  

In every time step the network calculates its out-
put from signals received on the input layer. Output 
signal is then transformed to one of available actions 
influencing helmsman’s environment. In this case 
the vessel on route within the restricted waters is 
part of the helmsman’s environment. Main goal of 
the agents is to maximize their fitness values. These 
values are calculated from helmsmen behavior dur-
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ing simulation. The best-fitted individuals become 
parents for next generation. 

2 NEUROEVOLUTION OF AUGMENTING 
TOPOLOGIES 

Neuroevolution of Augmenting Topologies (NEAT) 
method is one of the Topology and Weight Evolving 
Artificial Neural Networks (TWEANN’s) method 
(Kenneth & Miikkulainen 2002). In this method the 
whole population begins evolution with minimal 
networks structures and adds nodes and connections 
to them over generations, allowing complex prob-
lems to be solved gradually starting from simple 
ones.  

The NEAT method consists of solutions to three 
main challenges in evolving neural network topolo-
gy: 
1 Begin with a minimal structure and add neurons 

and connections between them incrementally to 
discover most efficient solutions throughout evo-
lution. 

2 Cross over disparate topologies in a meaningful 
way by matching up genes with the same histori-
cal markings. 

3 Separate each innovative individual into a differ-
ent species to protect it disappearing from the 
population prematurely. 

2.1 Genetic Encoding 
Evolving structure requires a flexible genetic encod-
ing. In order to allow structures to increase their 
complexity, their representations must be dynamic 
and expandable (Braun & Weisbrod 1993). Each ge-
nome in NEAT includes a number of inputs, neurons 
and outputs, as well as a list of connection genes, 
each of which refers to two nodes being connected 
(Fig. 2). 

 
Figure 2. Genotype and phenotype of evolutionary neural net-
work. 

In this approach each connection gene specifies 
the output node, the input node, the weight of the 
connection, and an innovation number, which allows 
finding corresponding genes during crossover. Con-
nection loopbacks are also allowed, as shown in fig-
ure 2. 

2.2 Mutation 
Mutation in evolutionary neural networks can 
change both connection weights and network struc-
tures (Fig. 3). Connection weights mutate as in any 
neuroevolutionary system, with each connection ei-
ther perturbed or not.  

Structural mutations, which form the basis of 
complexity, occur in two ways. Through mutation 
the genome can be expanded by adding genes or 
shrunk by removing them. In the add connection 
mutation, a single new connection gene is added 
connecting two previously unconnected nodes. In 
the add node mutation, the new node is placed, thus 
allowing to create new connections in future possi-
ble mutations. 

 
Figure 3. An example of weights and connection mutation in 
connections genome. 

2.3 Crossover 
Through innovation numbers, the system knows ex-
actly what genes match up with each other. Un-
matched genes are either disjoint or excess, depend-
ing on whether they occur within or outside the 
range of the other parent's innovation numbers. 

In crossing over operation (Fig. 4), the genes with 
the same innovation numbers are lined up. The off-
spring is then formed in one of two ways: in uniform 
crossover, matching genes are randomly chosen for 
the offspring genome. In blended crossover, the 
connection weights of matching genes are averaged. 
These two types of crossover were found to be most 
effective in ENN in extensive testing compared to 
other crossover methods (Kenneth & Miikkulainen 
2002). 
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Figure 4. An example of crossover operation of equally fitted 
parents. 

 
The disjoint and excess genes are inherited from 

the more fitted parent or from both parents, if they 
are equally fitted. Disabled genes (with zeroed 
weight) have a chance of being re-enabled during 
mutation, allowing networks to reuse older genes 
once again. 

Evolutionary neural network can store history 
tracks of every gene in the population, allowing 
matching genes to be found and linked-up together 
even in different genome structures. Old behaviors 
encoded in the pre-existing network structure are not 
destroyed and remain qualitatively the same, while 
the new structure provides an opportunity to elabo-
rate on these original behaviors. 

In agent learning process, the genomes in NEAT 
will gradually get larger through mutation. Genomes 
of different sizes will sometimes result with different 
connections at the same positions. Any crossover 
operator must be able to recombine networks with 
differing topologies, to pass agents skills to next 
generations in meaningful way. Historical markings 
represented by innovation numbers allow NEAT to 
perform crossover without analyzing topologies. 
Genomes of different organizations and sizes stay 
compatible throughout evolution, and the variable-
length genome problem is essentially avoided. This 
methodology allows NEAT to increase the complex-
ity of the structure while different networks still re-
main compatible. 

2.4 Speciation 
Speciation of population can be seen as a result from 
the same process as adaptation (Beyer & Schwefel 
2002), natural selection exerted by interaction 
among organisms, and between organisms and their 
environment (Spears 1995). Divergent adaptation of 
different populations would lead to speciation. Spe-
ciation of the population assures that individuals 
compete primarily within their own niches instead of 
competition within the whole population. In this way 

topological innovations of neural network are pro-
tected and have time to optimize their structure be-
fore they have to compete with other experienced 
agents in the population. 

Generally, during species assigning process, as 
described in (Łącki 2009a), when a new agent ap-
pears in population, its genome must be assigned to 
one of the existing species. If this new agent is struc-
turally too innovative comparing to any other indi-
viduals in whole population, the new species is cre-
ated. 

Compatibility of agent’s genome g with particular 
species s is estimated accordingly to value of dis-
tance between two individuals. This distance is cal-
culated with formula 1: 
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where: c1; c2; c3 - weight (importance) coeffi-
cients; E - number of excesses; D - number of dis-
joints; W - average weight differences of matching 
genes; N – the number of genes in the larger ge-
nome. 

There must be estimated a compatibility threshold 
δt at the beginning of the simulation and if δ ≤ δt 
then genome g is placed into this species. One can 
avoid the problem of choosing the best value of δ by 
making δt dynamic. The algorithm can raise δt if there are 
too many species in population, and lower δt if there are 
too few. 

2.5 Fitness sharing 
Fitness sharing occurs when organisms in the same 
species must compete with each other for life-
sustaining resources of their niche. Thus, a species 
cannot afford to become too big even if many of its 
individuals perform well. 

Therefore, any one species is unlikely to take 
over the entire population, which is crucial for spe-
ciated evolution to maintain topological diversity. 
The adjusted fitness fi

’ for individual i is calculated 
according to its distance δ from every other individ-
ual j in the population: 
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where: fi
 – fitness value of individual i; sh - shar-

ing function; n - number of individuals in whole 
population; - average weight differences of matching 
genes; δ(i,j) – distance between individuals i and j. 

The sharing function sh is set to 0 when distance 
δ(i,j) is above the threshold δt; otherwise, sh(δ(i,j)) is 
set to 1 (Spears 1995). Thus, sum of sh calculates 
the number of organisms in the same species as in-
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dividual i. This reduction is natural since species are 
already clustered by compatibility using the thresh-
old δt. A potentially different number of offspring is 
assigned to every species. This number is propor-
tional to the calculated sum of adjusted fitness val-
ues fi

’ of its members.  
In the first step of species reproduction process 

the system eliminates the lowest performing mem-
bers from the population. In the next step the entire 
population is replaced by the offspring of the re-
maining organisms in each species (Fig. 5).  

 
Figure 5. Evolution within one species in speciated population. 

 
The other selection methods in speciated popula-

tion are also considered in future research, i.e. island 
selection or elite selection of best fitted individuals 
of every species with particular task. 

The final effect of speciating the population is 
that structural innovations are protected. 

3 MULTIROLE SHIP HANDLING WITH 
EVOLUTIONARY NEURAL NETWORK 

The main goal of authors work is to make a system 
able to simulate a set of navigational situations of 
ship maneuvering through a restricted coastal area. 
This goal may be achieved with Evolutionary Neural 
Networks (ENNs). 

 
Figure 6. Sample data signals of ship handling with ENN. 

 

Navigational situation of a moving vessel can be 
described in many ways. Most important is to define 
proper state vector from abundant range of data sig-
nals (Fig. 6) and arbitrary determine fitness function 
values received by the agent. Fitness calculation is 
of primary meaning when determining the quality of 
each agent. Subsequently it defines helmsman's abil-
ity to avoid obstacles while sailing toward designat-
ed goal. 

 
Figure 7. Model of simulated simplified coastal environment. 

 
In the simplified simulation model there are no 

moving vessels in the area (Fig. 7) (Łącki 2009b). 
Helmsman observes current situation which is 

mapped into input signals for his neural network. In 
general considered input signals indicating (i.e.): 
− The ship is on the collision course with an obsta-

cle, 
− Ships course over ground, 
− Ships angular velocity, 
− Distance to collision, 
− The ship is approaching destination, 
− Ships angle to destination, 
− The ship is heading out of the area, 
− Danger has increased, 
− Danger has decreased, 
− Ship is heading on goal. 

All the input signals are encoded binary (Łącki 
2010a). Neural network output value is the rudder 
angle. It is crucial for effectiveness of simulation to 
determine the number of neural network outputs. 

More outputs mean more calculations but on the 
other hand better accuracy and fidelity of designed 
environment. Additionally too many outputs in-
crease complexity of the learning process, thus mak-
ing an agent unable to quickly adapt to new situa-
tions. This accuracy vs. performance dilemmas were 
examined extensively in previous works (Łącki 
2008-2010). 
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The fitness value of an individual is calculated 
from arbitrary set action values, i.e.: 
− -1 for increase of the distance to goal in every 

time step,  
− -10 when ship is on the collision course (with an 

obstacle or shallow waters), 
− +10 when she's heading to goal without any ob-

stacles on course,  
− -100 when she hits an obstacle or run aground,  
− +100 when ship reaches a goal, 
− -100 when she departs from the area in any other 

way, etc. 
In the simplified simulation model speed of the 

ship was constant. In the advanced model, in which 
one considers a set of possible task, there must be 
possibility for the agent to adjust speed of the vessel. 
Situation evaluation can be treated as multi-criteria 
problem which calculates a danger of getting strand-
ed on shallow water, encountering a vessel with 
dangerous cargo, getting to close to shore, etc. It can 
be estimated with available optimization algorithms 
(Filipowicz, Łącki & Szłapczyńska 2005) with func-
tion of ship's position, course and angular velocity, 
information gained from other vessels (if considered 
in the model) and coastal operators.  

3.1 Multirole ship handling system 
Situation Determining Unit (SDU) is an intelligent 
module responsible for grouped helmsmen manage-
ment (Fig. 8). 

 
Figure 8. Complementary multirole neuroevolutionary ship 
handling system. 

 
This unit constantly receives information from 

state of the environment, processes it, determines ac-
tual navigational situation and regarding it chooses 
the best fitted group of helmsmen for this task. SDU 
is designed with neuroevolutionary system. The best 
performing neural network is the one making deci-
sions. Its performance is determined regarding fit-

ness values reinforcing the neural network by Fit-
ness Value Estimator. With elite selection method 
this neural network participates in creation of new 
generation of SDU’s.  

State vector is dynamic in that its signals depend 
on current navigational situation chosen by SDU. 
Set of available actions is determined in the same 
way. An example of input and output signals for 
general navigation task is presented on figure 9. 

 
Figure 9. Input and output signals in general navigation task. 

 

List of considered possible tasks: 
− General navigation – during this task SDU ob-

serves possible collision warnings. All the vessels 
are treated as points. Action: coarse rudder angle. 

− Collision avoidance – The vessels involved in 
collision situation are treated as 2D objects. Ac-
tion: precise rudder angle, propeller thrust con-
trol, 

− Turning – Action: rudder deflection, propeller 
thrust and bow/stern thrusters’ control, 

− Mooring – Action: propeller thrust and bow/stern 
thrusters’ control, rudder deflection. 
Two different multirole models of restricted wa-

ters environment can be taken into consideration in 
the advanced system: 
− Single vessel multirole population simulation, 
− Multi-task multi-agent simulation. 

In the first model the main goal is to train popula-
tion of helmsmen to safely handle a particular model 
of a ship in specified single multirole task (i.e. safe 
passage trough congested water channel, approach to 
dock and mooring). In this case agents compete sim-
ultaneously with each other in one population (may 
be grouped into species) to handle a ship as best as 
possible. Any other vessels in the area are treated as 
stationary or moving objects on reasonably predicta-
ble routes (Fig 10). 
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Figure 10. Example of an environment with simultaneous mul-
tirole population of helmsman. 

The second model consist a small number of dif-
ferent vessels in the same restricted waters with 
helmsmen as the best trained agents for particular 
ships (Fig. 11). In this case every helmsman has dif-
ferent goal and different environmental situation, 
depending on actions taken by other helmsmen on 
the other vessels. 

 
Figure 11. Example of multi-task multi-agent environment. 
There are four agents allocated on four vessels. Starting points 
of the vessels are indicated with black outlines while goals for 
them are marked with white ones. 

4 REMARKS 

Neuroevolution approach to intelligent agents train-
ing tasks can effectively improve learning process of 
simulated helmsman behavior in ship handling 
(Łącki 2008). Neural networks based on NEAT in-
crease complexity of considered model of ship ma-
neuvering in restricted waters.  

Implementation of multirole division of helms-
men population in neuroevolutionary system allows 
simulating complex agents’ behavior in the envi-
ronments with much larger state space than it was 
possible in a classic state machine learning algo-
rithms (Łącki 2007). In this system it is also very 
important to change parameters of genetic opera-
tions dynamically as well as the input signals vector 
and set of available actions. 
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