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1 INTRODUCTION 

Transportation safety is one of the most important 
problems in shipping. The problem consists of various 
tasks one of which is ensuring that ships carrying 
cargoes are kept seaworthy at any point of the route.  

Container shipping has historically had razor thin 
margins and the current pandemic has also cut 
shipping volumes as well. According to UNCTAD 
review of maritime transport, 2020, shipping 
companies started to significantly reduce capacity in 
the second quarter of 2020 in order to reduce costs 
and keep freight rates from declining [24]. At the 
same time the size of the largest container vessel in 
terms of capacity went up by 10.9% and the global 
shipping fleet has increased by 4.1% which is the 
highest since 2014. Cost cutting measures make the 
problem of keeping ships seaworthy even more 
relevant.  

One of key components in keeping a ship 
seaworthy is a correctly prepared cargo plan. 
Considering the abovementioned factors, relevance of 

optimizing such a plan is evident. Container ship 
stowage planning problem is known as MBPP (Master 
Bay Plan Problem) and its detailed description can be 
found in [5]. In general, it consists of placing a set of n 
containers into a set of m available slots on the ship 
while accounting for structural and operational 
constraints of containers and the vessel itself. 

There have been many attempts to solve the 
problem in the operations research literature. The 
original work includes a simplified integer 
programming model solved by dividing the task in 3 
parts. The first part consists of excluding container 
positions that don’t satisfy some strict requirements. 
Such as excluding reefer containers positions that 
aren’t close by electrical sockets from the total set of 
solutions. The second part separates containers in 
accordance with their destination ports into different 
bays; the containers destined to closest ports are 
stowed closed to the ship’s center. The resulting 
subset is passed to the third part of the algorithm. The 
third part solves a system of equations incorporating 
the subset from the second part. The model doesn’t 
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consider stability or strength parameters; authors 
circumvent this by using a set of simplifications, such 
as lighter containers are loaded on top of heavier 
ones, the total weight of containers stowed in the 
forward part of the vessel is equal (within a margin of 
error) to the total weight of the ones stowed in the aft 
etc.  

In [18] 3D-BPP (3D Bay Plan Problem) approach is 
used, considering ship a 3D bin and dividing the 
containers in a way that allows for parallel 
discharging [1]. Uses an integer model that separates 
containers in 3 categories based on their weight 
(namely light, medium and heavy) and tries to 
minimize the loading time using tabu search. In [2] 
the integer model is being solved via a simple 
heuristics and the ant colony optimization algorithm. 
[4] uses the 3D-BPP approach and includes certain 
dangerous cargoes. In [3] the authors propose two 
additional integer models and heuristic algorithms. 

Authors of [8] use a simplified containership 
model that consists of R rows and C columns and 
carries cargoes to multiple ports. A genetic algorithm 
is used trying to minimize container re-handles. 

In [20] the problem is solved using a branch and 
bound method in order to minimize cargo hatch and 
port cranes movements as well as container re-
handles. 

Authors of [22] propose a ship model including 
bays and ballast tanks and a heuristics that shifts 
containers not satisfying requirements to empty slots. 

In [12] authors propose a method of stowing 
dangerous goods via selecting allowable slows for 
containers and stowing them randomly in one of 
those. 

Authors of [23] propose four integer models for 
different loading cases and use third party solvers for 
obtaining solutions. 

In [6] a vessel is simplified to a single m x n bay. 
Authors use a greedy algorithm to minimize 
containers re-handles. 

Authors of [17] view a vessel as a single bay as 
well and propose an integer model and a heuristics 
for solving it. 

In [21] authors use steepest ascent hill climbing, 
genetic, and simulated annealing algorithms for 
solving the problem while viewing a vessel as a single 
bay. 

Authors of [15] use the model from [5] and particle 
swarm optimization as a method for solving it.  

In [9] a genetic algorithm is used for optimizing a 
solution based on re-handles number, trim and rolling 
period. 

Authors of [19] use a deep reinforcement learning 
network for optimizing containers re-handles and 
shore crane movements. 

In [16] authors propose a Boolean model and use a 
GRASP (greedy randomized adaptive search 
procedure) algorithm to solve the problem. 

Authors of [11] propose a two-step heuristics using 
the divide and conquer paradigm. For obtaining a 

solution the strictest constraints are shifted towards 
the beginning of constraints list which allows to 
disregard incorrect solutions faster.  

In [7] a constraint and an integer programming 
models are proposed for solving the problem.  

Finally, authors of [13] use a tabu search algorithm 
multi-objective optimization which tries to minimize 
the number of re-handles, empty container slots, 
horizontal and longitudinal moments and a single 
crane discharging time. 

The models and methods mentioned above adopt 
various simplifying assumptions that make them 
applicable to a limited number of cases. The 
assumptions include viewing all containers as TEUs 
(twenty equivalent units), viewing a ship as a single 
bay, disregarding structural requirements such as 
impossibility of stowing TEUs on top of FEUs (forty 
equivalent units) and so on. Because of these the task 
of constructing a mathematical model that would 
consider as many constraints as necessary remains 
unresolved and requires a more detailed study. 

2 MATHEMATICAL MODEL 

This study is a continuation of [10]; it tries to improve 
the model presented there and solve it using another 
approach. A container of size t (0=TEU, 1=FEU), 
IMDG class c (c=0 means there’s no dangerous goods), 
is stowed in position (i, j, k) (i – bay number, j & k are 
coordinates inside the bay, ) if xt,c,i,j,k=1. 

 

Figure 1. Coordinates i & k 

 

Figure 2. Coordinates j & k 

The following constraints are taken into account: 
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Constants, sets and variables in the model: 

0.. ,    1              ; max maxi i wherei is thetotal number of TEU bays +    
0.. ,    1                ; max maxj j where j is themaximumwidthof baysinTEU +    
0.. ,    1                ; max maxk k wherek isthemaximumheight of baysinTEU +    

c                   ;tn isthetotal number of IMDGclassccontainers  
      ’  ;  i i are FEU bays numbers  

              ;M isthemaximumstack height inTEU  

 0,1                       ,sw isanadditional variablethat is introduced for every s thlimitation −

( ) ( ) ( )* 1 * 1 * 1 ;max max maxs i j k j k k= + + + + +

1 2 1 2 1 2.. ,              , c c max c c c ci l i l wherel isalongitudinal separationrequirement  −  

  ,              1    2;inTEU betweentwocontainersof IMDGclassesc and c

1 2 1 2 1 2.. ,              , c c max c c c cj w j w wherew isatransversal separationrequirement  −  

  ,              1    2;inTEU betweentwocontainersof IMDGclassesc and c

1 2 1 2 1 2.. ,              , c c max c c c ck h k h whereh isaheight separationrequirement    −

  ,              1    2;inTEU betweentwocontainersof IMDGclassesc and c  

Inequality (1) limits the total number of containers 
to be stowed, (2) makes sure that every FEU container 
is stowed in two TEU positions, (3) limits the number 
of containers occupying the same position to one, (4) 
ensures that no TEUs can be loaded on top of FEUs, 
(5) checks that no FEU can be loaded on top of TEU 
stacks of different heights, (6) checks for IMDG code 
segregation requirements and (7) ensures that all the 
containers are loaded either on top of each other or on 
deck. 

The model presented does not account for strength 
or stability requirements, such checks are planned to 
be performed in the next stage of the study. 

3 SOLVING THE MODEL 

In order to try and solve the abovementioned model a 
genetic algorithm was selected. Multiple authors used 
variations of this approach [8, 9, 21] and showed its 
feasibility. The Genetic Algorithm (GA), often referred 
to as genetic algorithms, was invented by John 
Holland at the University of Michigan in the 1970s 
[14]. It imitates the process of natural selection and is 
used to generate solutions based on mutation, 
crossover and selection operations. The classic 
algorithm requires an initial population of solutions 
which are received either randomly or via a certain 
heuristic. After that two parents are selected from the 
population, crossed over with one another and the 
result is mutated. This forms children which are then 
added to the child population. The operation is 
repeated until the child population is entirely filled. 
Children’s fitness is assessed and the algorithm stops 

when it has reached a certain value or when a pre-
determined amount of time has passed. 

There’s also an alternative approach called a 
steady-state approach which is used in the current 
study. Its main difference consists of updating the 
initial population instead of replacing it altogether. 
Therefore, the children obtained in crossover are 
reintroduced directly into the initial population 
removing some preexisting individuals. 

The fitness function used creates a Boolean 
coefficients matrix of the model based on the given 
containers set. After that it converts the solution to a 
Boolean variables matrix and multiplies the two. The 
resulting matrix is compared to the inequalities’ 
constant matrix. Every equation not satisfied increases 
the candidate’s unfitness by 1. Therefore, the higher 
the result the lower the individual’s fitness is. 

The mutation function changes individual 
containers’ coordinates within the allowed range 
[0..imax], [0..jmax] and [0..kmax] not affecting other 
parameters. 

In order to avoid the linkage problem the uniform 
crossover function is chosen for the task. Similar to the 
mutation function it crosses over actual containers’ 
coordinates not affecting other parts of the matrix. 

For selection a Tournament Selection algorithm is 
chosen, which picks n individuals from the initial 
population and chooses the fittest of those. 

The testing is performed using a simplified ship 
model consisting of 4 TEU bays without covers and 25 
closed containers to be loaded.  

The initial solution is formed via simply filling the 
1st bay (Fig. 3). 

 

Figure 3. Initial solution 

The numbers in cells represent IMDG classes, 0 
means the cargo is not dangerous, x is used to indicate 
a FEU taking up two places.  



752 

As we can see two of the requirements are not 
satisfied, specifically IMDG cargoes segregation, 
which should be at least one vertical column between 
the incompatible containers, and TEUs on top of FEUs 
placement restriction. 

The resulting solution (Fig. 4) is obtained by the 
genetic algorithm and it satisfies all the constraints set 
in the model. Therefore the model in its current state 
can be solved using a steady-state genetic algorithm. 

 

Figure 4. Resulting solution 

4 CONCLUSIONS 

In this paper previously developed mathematical 
model for solving the MBPP problem has been 
modified and presented in a more concise and 
practical way. A generic steady-state genetic 
algorithm has been used and its functions have been 
modified in order to solve the new model taking into 
consideration the new constraints. A numerical 
experiment has been conducted and has shown that 
the developed method can be used to solve the model 
in its current state. 
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