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1 INTRODUCTION 

Because of physical and technological constraints the 
sampling of a signal value (that is its sample) at a 
zeroth time is not possible. In other words, the 
sampling time of a single signal sample is always 
greater than zero. Only in an abstract idealized case 
this time can be assumed to be equal to zero, and then 
the signal samples related with this case are 
considered as ideal ones. Moreover, we say that then 
the sampling operation is performed in an ideal way. 

Let us denote here the sampling time of a single 
signal sample by τ  and the sampling period by T, 
respectively. Obviously, the following relation: Tτ ≤  
must hold between these quantities; but, as we know, 
practical reasons require that this inequality is much 
more sharper. That is we have Tτ  . And, this 
could suggest that we can assume approximately 

0τ ≅  (in the sense that the following three cases: 
0τ ≠  but very small with the sampling of signal 

values modelled as an operation of periodic cutting 
out a signal fragment, 0τ →  but always greater than 
zero ( 0τ > ) with the sampled signal spectrum 
normalization with respect to τ , and 0τ =  with a 
preceding normalization of the sampled signal 
spectrum with respect to τ  – do not considerably 

differ from each other) in the analyses involving 
signal samples. 

The above-mentioned believing is however 
misleading; usually, we arrive at different outcomes 
in these three cases. This is strongly manifested in 
calculations of the sampled signal spectrum for these 
kinds of modelling, and analyzed in detail in (Borys 
A. 2020a). 

In this paper, we discuss, from another 
perspective, the differences that occur in calculation of 
the sampled signal spectrum between the following 
two cases: the first one, in which signal samples are 
“smeared” on a time interval τ  (the case of 0τ ≠  
but very small), and the second one, in which the 
signal sampling is performed in an ideal way (the case 
of 0τ = ). We consider them in the context of the 
Shannon’s proof of the reconstruction formula 
(Shannon C. E. 1949). 

Modelling of the “smearing effect” occurring in a 
signal sampling process presented in this paper 
differs, however, considerably from the one used in 
(Borys A. Sept. 2020). Here, the “smeared” samples 
are not modelled as short signal impulses (as in (Borys 
A. Sept. 2020)), but as numbers obtained as a result of 
performing periodically a local averaging of these 
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impulses. So, in effect, we can expect receiving 
outcomes not identical with those we arrived at in 
(Borys A. Sept. 2020). And, really, it is so as we show 
in the next sections. 

Moreover, in view of the above, a question arises 
as to which of the aforementioned approaches to 
modelling of the “sample smearing” effect describes 
in a better way a real, non-ideal signal sampling. This 
problem is, however, not addressed in this paper 
because of a lack in the literature of reliable data on 
behavior of real A/D converters in the “transient” 
interval τ . First, necessary measurements will have 
to be carried out and data collected; we hope that 
some researchers will be interested in performing this 
task.     

The remainder of this paper is structured as 
follows. The next section presents a modelling of the 
“sample smearing” effect via a periodical local 
averaging – in the context of the proof (Shannon C. E. 
1949) of the reconstruction formula that takes into 
account a non-ideal sampling. But, section 3 contains a 
comparison of the results which are achieved with the 
use of the aforementioned models. The paper ends 
with some conclusions. 

2 SHANNON’S PROOF OF RECONSTRUCTION 
FORMULA TAKING INTO ACCOUNT NON-
IDEAL SIGNAL SAMPLING AND POSSIBLE 
DEFINITIONS OF SAMPLED SIGNAL 
SPECTRUM 

Let us take into account a bandlimited signal ( )x t  
of a continuous time t  and denote a maximal 
frequency present in its spectrum by mf . So, as well 
known (Marks II R. J. 1991), (Vetterli M., Kovacevic J., 
Goyal V. K. 2014), (Oppenheim A. V., Schafer R. W., 
Buck J. R. 1998), (Bracewell R. N. 2000), (McClellan J. 
H., Schafer R., Yoder M. 2015), (Brigola R. 2013), (So 
H. C. 2019), (Wang R. 2010), (Ingle V. K., Proakis J. G. 
2012), it is possible to  sample this signal and then 
reconstruct it perfectly if the sampling period T fulfils 
the following condition: 

1 2s mT f f= ≥ , (1) 

where sf  stands for the sampling frequency (rate). 

Further, assume that, as well known, the sampling 
operation of ( )x t  cannot be performed in an ideal 
way; simply, A/D converters that provide perfect 
signal samples by sampling a signal “pointwise on the 
time axis” do not exist. All the real A/D converters 
need some time, denoted here as τ , to carry out the 
sampling operation. And, a value of the parameter τ  
depends, obviously, upon the design principles and 
electronics that are used in construction of a given 
A/D converter. Therefore, the values that appear at 
outputs of A/D converters must be treated as 
“deformed” or “smeared” ones – in comparison to the 
wished perfect samples. 

Further, note also that the aforementioned 
behavior is usually modelled in the literature by a 
local convolution (with the signal being sampled) 
(Marks II R. J. 1991) or as a local signal averaging; see, 

for example, (Vetterli M., Kovacevic J., Goyal V. K. 
2014). (By the way, note that the latter can be also 
expressed as a convolution, see, for instance, (Borys A. 
2020b).) 

In this paper, we use a description of the non-ideal 
signal sampling that follows from modelling it by a 
local signal averaging. And, this seems to be a 
reasonable approach, as shown in the literature, using 
many convincing arguments, see, for example, (Borys 
A. 2020b), (Borys A. 2020c), (Strichartz R. 1994). Here, 
we exploit a slightly modified version of that 
presented in (Borys A. 2020b). This modification 
regards the instant of “delivering” a “smeared” value 
of a sample. Namely, in modelling of a measuring 
process, this instant must be the one at which a result 
of a local signal averaging process “departs” this 
process. But, unlike this, in a non-ideal sampling, the 
result of a local signal averaging has to be “glued” to 
the instant of beginning the averaging process. 

For illustration, consider Fig. 1. 

 
Figure 1. Illustration to non-ideal sampling: representation 
of an example, not ideally sampled signal (upper curve) in 
form of a series of smeared samples of the signal (forming 
narrow impulses) shown below it (lower curve). Figure 
taken from (Borys A. 2020a). 

In Fig. 1, ( ),S Tx t  means a „smeared” sampled 
signal in which every sample does not represent a 
single value, but it builds up an impulse of width τ . 
So, it can be viewed as “a kind of smearing of a 
discrete sample value on an interval τ ”. And, this 
way of modelling of the non-ideal signal sampling has 
been used in (Borys A. 2020a). But, as opposed to the 
approach applied in (Borys A. 2020a), we assume here 
that the non-ideal signal sampling delivers not 
impulses at an A/D output but discrete sample values 
– as in an ideal case. However, now, they are modified 
by the smearing process of the ones that would have 
been obtained in an ideal sampling. And, they are 
“glued” to the instants of virtual appearances of the 
latter ones. Furthermore, the aforementioned signal 
sample smearing process is modelled here as a local 
signal averaging. 

So, as a result of performing these two operations 
described above, we get 
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where the symbol AV stands for an operator that 
transforms an infinite train of impulses as in Fig. 1 
into an infinite train of single values as shown in Fig. 
2 – according to these two rules given in a descriptive 
form above. The result of this operation is the signal 

( ),A Tx t . And, the next symbol, “small av”, means 
performing a local averaging around an indicated 
“smeared” sample (that is on a given impulse of  

( ),S Tx t ); the result of this operation is denoted here 
by ( )x kT . And finally, ( ),k t T tδ  in (2) means a 
time-shifted Kronecker time function (Borys A. 
2020a), (Borys A. 2020d). 

 
Figure 2. Illustration to transformation of the signal ( ),S Tx t  
shown in Fig. 1 to the signal ( ),A Tx t . Note that the lengths 
of “posts” in Fig. 2 are not equal to the values of ideal signal 
samples ( )x kT . They differ from them and equal the 
values of  ( )x kT . 

Here, to model the local signal averaging, we use 
its description presented in detail in (Borys A. 2020b) 
and (Strichartz R. 1994). So, along these lines, we 
write 

( ) ( ) ( )( )

( ) ( )

fromav   to 

 ,
kT

kT

x kT x t kT x t kT

x a kT d
τ

τ

λ τ λ λ
+

= = = + =

= + −∫
  (3) 

where the function ( )a t  is assumed to have the 
following form (Borys A. 2020b): 

( ) 1   for  0   and  0  elsewherea t tτ τ= < < . (4) 

Note further that, because of a sifting character of 
the function ( )a t  given by (4) – in the interval from 
0 to τ , (3) can be rewritten as 

( ) ( ) ( )x kT x a kT dλ τ λ λ
∞

−∞

= + −∫ . (5) 

So, we conclude from (5) that the averaged 
(smeared sample) value ( )x kT  can be expressed as 
a convolution of the signal ( )x t  with an impulse 
response ( )a t τ+ , and that is calculated for the 
instant kT . (For the needs of our further derivations, 
we assume that this convolution exists for all t∈ , 
where   denotes the set of real numbers.) 
Moreover, note that the above convolution can be 
equivalently calculated in the frequency domain as a 

product of the following Fourier transforms: ( )X f  
and  ( )( ) ( ) ( )exp 2a t A f j fτ π τ+ =  with ( )⋅  
denoting a standard Fourier transform (of a given 
function), ( )A f  standing for this transform for 
( )a t , and 1j = − . Furthermore, by carrying out a 

few standard calculations involving properties of 
Fourier transformation, we obtain 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

sinc

sin
exp exp  ,

Y f X f a t X f f

f
j f X f j f

f

τ τ

π τ
π τ π τ

π τ

= ⋅ + = ⋅

⋅ =


  (6) 

where ( )Y f  means the aforementioned product, 
but the definition of the function ( )sinc fτ  used 
here follows from a comparison of the first and the 
second line of (6). 

Let us now come back to the assumed band-
limitedness of the signal ( )x t . It means that its 
Fourier transform ( )X f  has nonzero values only in 
the range ,m mf f< − >  (that is this is a support of 
this function). Further, because of this reason the 
function ( )Y f  given by (6) is also bandlimited to 
the interval ,m mf f< − > . So, it allows its 
periodization (i.e. obtaining a repetition of this 
function in form of a Fourier series). But, because of 
the reasons explained in (Borys A. 2020e), we extend 
here the support of ( )Y f  to the interval 

2, 2s sf f< − > , and consequently construct a 
corresponding Fourier series with a fundamental 
frequency 0 sf f=  (not  2 m sf f≤ ). 

In what follows now, we proceed similarly as in 
(Borys A. 2020e). That is we perform first 
periodization of the function ( )Y f  to a periodic 
one, say, ( )pY f , and expand it in a Fourier series. 
Next, we express coefficients of this series through the 
samples ( )y kT  of the function 
( ) ( )( )1y t Y f−=  , where ( )1− ⋅  stands for the 

inverse Fourier transform. And, in the next step, we 
introduce them into the aforementioned Fourier 
series. In this way, we get the discrete time Fourier 
transform (DTFT) McClellan J. H., Schafer R., Yoder 
M. 2015), (Vetterli M., Kovacevic J., Goyal V. K. 2014),  
(Wang R. 2010), (Ingle V. K., Proakis J. G. 2012) of the 
sampled (discrete) signal ( )y kT , which is equal to 

( )pY f . And, we call it a spectrum of this signal, say, 
SPECT1 (it forms a first of its possible definitions). 
Next, we recall at this point that a different definition 
of the spectrum of the aforementioned sampled signal 
is also possible (Borys A. 2020f); it is named the 
modified DTFT in (Borys A. 2020f) (in short, DTFTm). 
Furthermore, we know from (Borys A. 2020e) that the 
following: SPECT2 DTFTm= =  ( )Y f=  holds, 
where SPECT2 stands (in short) for the second 
possible spectrum definition – of the sampled signal 
( )y kT .  

Both these spectra occur in the “inverse part” of 
the Shannon’s proof; that is in 
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And, we see that the way they occur in (7) is 
exactly the same as in its counterpart in (Borys A. 
2020e). So, we conclude, similarly as in (Borys A. 
2020e), that the “clever” Shannon’s proof of the 
reconstruction formula does not provide, also here, 
any tool for resolving the question of which of them: 

( ) ( )1SPECT1 DTFT p
k

Y f Y f k T
T

∞

=−∞

= = = −∑   

or ( )SPECT2 DTFTm Y f= =   

is a correct one? This is so, as already found in (Borys 
A. 2020e), because the Shannon’s proof does not need, 
in fact, to use such a notion as the sampled signal 
spectrum. 

Further details and explanations concerning the 
above, the interested reader finds in (Borys A. 2020e). 

3 COMPARISON OF RESULTS PROVIDED BY 
TWO MODELS THAT TAKE  INTO ACCOUNT 
FINITE DURATION OF GETTING SIGNAL 
SAMPLE 

As already said, the method presented here of taking 
into account a finite duration of getting a sample – in 
a model of the non-ideal signal sampling – is not the 
only one possible. One can, for example, model also a 
train of non-ideal samples of a signal as a train of 
impulses, as illustrated in Fig. 1 (upper curve). That is 
as a signal ( ),S Tx t  denoted there. And, there is no 
problem with calculation of its spectrum, as shown in 
(Borys A. 2020a). Moreover, it has been shown in 
(Borys A. 2020a) that  

( ) ( ),S T k
k

X f a X f k T
∞

=−∞

= −∑ , (8) 

where ( )X ⋅  and ( ),S TX f  stand for the Fourier 
transforms (spectra) of the signals ( )x t  and 

( ),S Tx t , respectively. And, the coefficients ka  in (8) 
are given by 

( ) ( )exp sincka j k T k T
T
τ π τ π τ= − ⋅ . (9) 

We remark at this point that the detailed 
derivations and explanations concerning (8) and (9) 

have been provided in (Borys A. 2020a). They are not 
repeated here because of a lack of space as well as to 
avoid accusation of auto-plagiarism. Moreover, the 
reference (Borys A. 2020a) is well available. 

For performing comparisons between the sampled 
signal spectra foreseen in the discussed models – in a 
clear way, let us denote now by SPECT =  
( ) ( )1

k
T X f k T

∞

=−∞

= −∑  the spectrum which one 
obtains in the highly celebrated and commonly used 
model (see, for example, (Marks II R. J. 1991), (Vetterli 
M., Kovacevic J., Goyal V. K. 2014), (Oppenheim A. 
V., Schafer R. W., Buck J. R. 1998), (Bracewell R. N. 
2000), (McClellan J. H., Schafer R., Yoder M. 2015), 
(Brigola R. 2013), (So H. C. 2019), (Wang R. 2010), 
(Ingle V. K., Proakis J. G. 2012)) that uses Dirac deltas 
in description of the sampled signal in the continuous 
time domain. Further, let us denote by 

( ),SPECT0 S TX f=  given by (8). 

In what follows, we remark that: 
1. The form of SPECT0 for positive values of the 

parameter τ  is identical with the one of SPECT, 
except the coefficients which multiply the shifted 
spectra ( )X f k T− . They are given by (9) in the 
first case and are identically equal to 1 T  for all 
the indices k in the second one. 

2. Because of the oscillatory-damping character of the 
magnitude of the coefficients ka  (see (9)) the 
same character has also the magnitude of SPECT0. 
So, this is also the character of the aliasing and 
folding effects in the sampled signal spectrum via 
this model. Obviously, it differs substantially from 
the case of SPECT. 

3. An expectation that the problem of modelling 
properly a non-ideal behavior of getting samples 
in the signal sampling process can be uniquely 
resolved by describing it through local signal 
averaging operations on short time intervals τ , as 
discussed in this paper, turned out to be only a 
vain hope. At least with regard to the spectrum of 
the sampled signal. Furthermore, note that the 
averaging operation does not also provide a 
description of the sampled signal in the time 
domain in an idealized case, in which 0τ → , as a 
train of sample values multiplied by Dirac deltas 
(as a highly celebrated and commonly used model 
(Marks II R. J. 1991), (Vetterli M., Kovacevic J., 
Goyal V. K. 2014), (Oppenheim A. V., Schafer R. 
W., Buck J. R. 1998), (Bracewell R. N. 2000), 
(McClellan J. H., Schafer R., Yoder M. 2015), 
(Brigola R. 2013), (So H. C. 2019), (Wang R. 2010), 
(Ingle V. K., Proakis J. G. 2012) foresees). To see 
this, consider (4) with 0τ →  in it. And, using 
arguments presented, for example, in (Strichartz R. 
1994) for this case, we can write, then, 
( ) ( )a t tδ→ , where ( )tδ  means a Dirac delta. 

So, applying this result in (5) allows us to express 
the latter as 

 

( ) ( ) ( ) ( ) ( )x kT x kT x kT d x kTλ δ λ λ
∞ ∞

−∞ −∞

→ = − = ⋅∫ ∫
( )kT dδ λ λ⋅ −

.  
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1 But, it does not mean that an object 
( ) ( )x kT δ ⋅  occurring under the symbol of 

integration in the latter equation represents the 
sample value ( )x kT . As seen, it is a result of 
performing the above operation of integration. In 
other words, simply, ( ) ( ) ( )x kT x kTδ ⋅ ≠ . 

4. Also, we draw the reader’s attention here to the fact 
that the averaging procedure in the time domain 
(applied in this paper to the smeared sample 
impulses and connected then with the spectrum 
definition SPECT1) provides a different result 
compared to the normalization of the spectrum 

( ),S TX f  with respect to the parameter τ  (Borys 
A. 2020a) (to avoid its vanishing with 0τ → ). 
The resulting expressions that describe the spectra 
of the sampled signal in both cases are similar in 
form but not identical. However, because of a lack 
of space we do not discuss here this interesting 
observation in more detail. 

5. Note once again that the scheme of the Shannon’s 
proof applied in this paper to the signal sampled 
not in an ideal way differs from the one discussed 
in (Borys A. 2020e) only in one aspect, namely 
( )Y f  (in this paper) is not a Fourier transform of 

the signal to be sampled. It is a “deformed” 
spectrum of this signal. And, it follows from (6) 
that a level of its deformation can be expressed by, 
say, a “deformation” factor ( )fβ  defined as 

( ) ( )
( )

( ) ( )sin
expdX f f

f j f
X f f

π τ
β π τ

π τ
= =  ,  (10) 

1 where ( ) ( )dX f Y f=  stands for the spectrum 
( )X f  that is deformed by the local averaging 

operator av. Moreover, note that because of the 
band-limitedness of ( )X f  (and  also of ( )Y f ) 
it has only sense in the frequency interval 

,m mf f< − >  (outside this range, it should be 
assumed to be equal to zero). Further, see from (10) 
that both the magnitude and phase of the spectrum 

( )X f  get deformed. Here, for illustration, let us 
consider only a deformation in the magnitude. 
And, we make a few observations: 
1. See first that ( ) 1fβ ≤  for all possible values 

of frequency and parameter τ . 
2. For 0τ = ,  ( ) 1fβ = . That is there occurs no 

sampled signal deformation in this case (as it 
should be for 0τ = ). 

3. For illustration, let us assume that we wish to 
have the deformation of the sampled signal 
spectrum magnitude less than 10% in the worst 
case. To determine a condition for the 
parameter τ  that satisfies the above 
requirement, we consider the magnitude of ( )fβ  given by (10) for positive frequencies f. 
And, note that the most critical here is the 
frequency mf . Further, assume that the 
sampling rate is so chosen that 

( )2 1 2s m mf f f T= → =  holds. So, for this 
value of mf f= , we have 

( ) ( )( )sinc 2mf Tβ πτ= . And, we require to 
satisfy the following: ( ) 0,9mfβ ≥ ; while the 
latter is satisfied approximately for 1 2Tτ < . 
Obviously, at the same time, this is a condition 
we looked for.  

4 CONCLUSIONS 

The problem of modelling the sample “smearing” 
behavior of real A/D converters used in signal 
sampling has not received much attention in the 
literature. It seems to have been assumed that this 
effect is irrelevant – compared to, for example, 
(amplitude) quantization errors produced by A/D 
converters. As we show in this paper and in a 
previous one (Borys A. 2020a), such reasoning is 
rather not correct. This is so because the 
aforementioned effect has a significant influence on 
the sampled signal spectrum – and, this has been 
already proven. What remains to be done yet should 
concentrate, in our opinion, on finding a detailed 
model and adjusting it to the sample “smearing” 
behavior of real A/D converters. 

Two relevant models has been already proposed, a 
one in this paper and the second in (Borys A. 2020a) 
(perhaps, there will be also others). 

Note that a modelling principle of the first one is 
based on performing periodically a local averaging of 
impulses of short duration, starting at sampling 
instants, and delivering its averages at the ends of the 
aforementioned impulses (which, however, are 
“glued” to their beginning instants). So, in this case, 
the outcomes of the “sample smearing” operations are 
numbers. In contrast to this, in the model presented in 
(Borys A. 2020a) the impulses mentioned above are 
taken to constitute the “smeared” samples (that is 
electric “spikes” of duration  ). 

There is a variety of design principles, techniques, 
and circuit schemes for A/D converters. Therefore, 
probably, more than only one model for describing 
correctly their “sample smearing” behavior will be 
needed. And, for checking practical usefulness of 
these models many investigations will be also needed. 
Moreover, note that there are still open questions of 
more general nature as, for example, the one 
considered in (Borys A. 2020d). So, we are still far 
from a satisfactory solution to the problem of the 
sampled signal spectrum. 
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