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1 INTRODUCTION 

The shipping industry has an essential role in global 
trade and commerce, as the majority of goods are 
transported by ship. Given the complexity of shipping 
operations, ensuring the safety and efficiency of ships 
and their crew is of paramount importance. Shipping 
operation is understood as a complex socio-technical 
system. It requires a complex interaction between 
social and technical components to achieve the 
intended goals. A complex socio-technical system has 
unique properties called emergence phenomena. This 
idea explained the situation where the system has 
ability beyond its individual component ability when 
it is working as a whole. Based on this perspective, 
safety in ship operation is acknowledged as an 
emergence phenomena arising from the complex 

socio-technical system rather than a property of the 
system [1]. 

Resilience engineering [2] is a core representative 
of this new safety idea. Along with this initiative, the 
Functional Resonance Analysis Method (FRAM) is a 
well-established framework that has been introduced 
to provide resilience engineering ideas in its 
application. This method analyses the interaction 
between different elements of a system and 
understands how their dependency contributes to 
system performance. The FRAM has been successfully 
applied in a variety of domains, including safety-
critical industries such as aviation[3], offshore oil and 
gas [4], and the maritime industry [5], [6]. 

The process of ship maneuvering is dynamic with 
continuous command and feedback between the 
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officer on watch (OOW) and the helmsman. It 
escalates in different traffic and environmental 
situation. Indeed, the system hardly relays on the 
OOW’s capacity to decide on appropriate action. This 
implies the necessity of proper performance 
adjustment to maintain the system works normally 
under dynamic working condition. In this case, 
human adaptability and flexibility are essential to 
achieve this kind of purpose. The definition of safety 
in this manner is introduced by a term called Safety-II 
[7]. Hence, under this consideration, it is important to 
understand deeper this adaptable performance more, 
in specific of how the fluctuation affects system 
output. 

The application of FRAM in this study is to 
identify the functional basis of ship maneuvering 
activity and provide a systematic expression of it 
through functions and potential couplings. Analysis 
in FRAM is qualitative in nature. It provides an 
explicit understanding of the system’s functionality in 
the form of FRAM model but lacks in function’s 
performance representation. One solution that can be 
applied is cooperating with the method of 
quantitative analysis. Some available studies have 
existed regarding this matter, such as the application 
of Monte Carlo evolution [3] and modified Fuzzy 
FRAM-CREAM with cellular automata simulation [8]. 

Therefore, in addition to the FRAM, this study 
employs a Dynamic Bayesian Network (DBN) for 
mathematical modeling. DBN is an extended version 
of the Bayesian Network (BN). It is a type of 
probabilistic graphical model that can be used to 
model complex, dynamic systems over time. BN has 
been widely applied in the maritime industry, 
especially to predict the probability of ship accidents 
[9]–[11]. One of the advantages of DBN is this method 
can handle temporal dependencies and allow for the 
modeling of time-varying influences on system 
behavior. The basic idea of this quantitative 
expression is to model the discrete probabilistic 
dependencies between functions at each point in time, 
and then to propagate these dependencies over time 
to express a dynamic change in the system. 

A case study from ship handling simulation has 
been chosen to perform the analysis. The FRAM-DBN 
integration in this study aimed to develop a 
comprehensive model of ship officer variability 
performance, providing insights into how changes in 
officer performance over time influence system 
output. The meaning of using this specific case is to 
provide actual-time segregation for every decision 
initiative and actual evidence of performance for DBN 
analysis. Furthermore, the FRAM model can also be 
built for a specific instantiation. This is a simple 
analysis that design to present what to expect from 
performance adjustment, and how can normal 
performance be disrupted and then produce 
undesired outcomes. In conclusion, the essence of 
human performance for establishing an adapted 
system can be addressed, and what strategy must be 
built to enhance it to possess a higher level of 
resilience. 

2 METHOD 

This section explains a set of methods applied in this 
study. First is the qualitative analysis using FRAM 
and build the FRAM model. Second is integrating the 
FRAM analysis with quantitative analysis based on 
DBN. In addition to that method integration, the 
control model from Cognitive Reliability and Error 
Analysis Method (CREAM) has been brought to 
provide characteristic for FRAM function. This 
characteristic includes strategic, tactical, 
opportunistic, and scrambled. 

2.1 FRAM as a retrospective analysis 

The FRAM [12], [13] has been widely implemented to 
assess system safety in various fields. System 
resilience [2] terminology, as a core of FRAM, 
promotes new ideas for safety research by 
acknowledging safety as an emergent phenomenon 
instead of a property of the system. This implies the 
need on looking for what was done in the everyday 
operation of the system (Work-As-Done) and how 
safety is present in the system. The term function is 
used to express the need for something to be done by 
the system. The function is classified into three 
categories including human, technological, and 
organization. FRAM has four basic principles, 
including the equivalent of success and failure, 
approximate adjustment, the principle of emergence, 
and functional resonance. 

Function in FRAM is presented as a hexagon with 
six aspects to characterize the type of information in 
function’s dependency. Input represents the 
information or material to trigger the process in 
function. Precondition refers to the conditions that 
exist prior to the function starting its operation. In this 
sense, precondition is complementary information 
that explains the pre-event or preparation that has 
been done before a function is carried out. Time is the 
temporal dimension of the function, including the 
timing and sequencing of events. Control represents 
the mechanisms used to control the function, 
including procedures, rules, and policies. Resource is 
something that is used or consumed by the function, 
including energy, competence, people, tools, 
materials, etc. The output represents the results of the 
function’s work. Outputs can be seen as a signal that 
starts a downstream function. 

The relationship of function is described in two 
forms. First is temporal relationships, namely 
upstream and downstream functions. This expresses a 
function’s dependency on specific time observation. 
The downstream function is affecting the process that 
happened in the downstream function, and this role 
can change over time based on the potential coupling 
and time of function activation. Second, the general 
role of background and foreground functions. 
Background function presents a function that only has 
output or input as its aspect. It means the function is 
only affecting the other functions in the system. On 
the other hand, the foreground function is a function 
that has more than 1 aspect. This function receives 
information from background or foreground 
functions, and also produces an output for other 
foreground or background functions. In other words, 
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these roles refer to the relative importance of the 
function in the model. The foreground function 
denotes the matter being studied in the model, i.e., the 
focus of the investigation. 

The essence of ship maneuvering events is derived 
by conducting an experiment in ship handling 
simulators. Furthermore, one specific result of the 
simulation has been chosen as factual information to 
build the FRAM model. The selected case is a case 
where the participants experience a collision during 
the simulation. In this case, FRAM is used as a 
retrospective analysis. The identification is focused on 
how the system should have functioned for achieving 
its goal, which is to avoid the target ship safely. As a 
result, the change of situation from normal 
performance to disrupted performance can be 
recognized. 

2.2 Officer performance quantitative representation using 
DBN 

DBN is an extension of the Bayesian Network (BN) 
with the ability to handle temporal dependency 
among nodes that change over time. This advantage 
makes DBN suitable to be applied for establishing an 
explicit representation of the dynamic in performance 
of ship officers during encounter events. DBN 
presents a pair of time slices of BN (Xt-1 → Xt), where 
Xt-1 is the initial BN that defines the initial probability 
of P(X), and Xt is the BN in the next time slice that 
contains the conditional probability of two-time slice. 
This state transition probability can be expressed as: 

( )( )1 1
( | ) |tn i i

t t t tx
P X X P X Pa X− =

= ∏  (1) 

where P(X) is the set of variables; i
tX  is the i-th node 

of time slice t; ( )i
tPa X  is the parent node of i

tX ; nt is 
the number of nodes in the t-th time slice. In order to 
solve this mathematical equation, the SMILE modeler 
provided by BAYESFUSION has been applied in this 
work. In addition, the DBN modeling has also been 
done using the GeNIe software. 

 
Figure 1. Relationship between control mode and common 
performance condition  

In this study, DBN is used to provide a 
quantitative expression of the qualitative analysis that 
has been provided by FRAM. To integrate the FRAM 
with DBN, it is necessary to define a characteristic for 
each function to generate a conditional probability 

table (CPT). In this study, we decided to use the 
control mode expressed in CREAM [14] to generally 
characterize the FRAM function. It consists of 
strategic, tactical, opportunistic, and scrambled. 
Strategic control mode involves considering the global 
context, using a wider time horizon and higher-level 
goals, leading to more efficient and robust 
performance, and planning based on the functional 
dependencies between task steps. Tactical control 
mode involves performance based on limited 
planning, ad hoc needs, and frequently used 
procedures that may seem rule-based due to context 
or performance conditions. Opportunistic control 
mode entails determining the next action based on 
salient features of the current context, frequently 
resulting in functional fixation, driven by perceptually 
dominant features of the interface or frequently used, 
familiar heuristics. Scrambled control mode involves 
unpredictable decision-making without much 
thought, often occurring during high task demands or 
in unfamiliar, rapidly changing situations that lead to 
a loss of situational awareness, potentially 
culminating in momentary panic. Hence, the temporal 
relationship of the function’s mode in which the 
explicit representation of changes in performance over 
time is presented through Bayesian thinking.  

(a)  

(b)  

Figure 2. Discrete probability distribution of control mode 
based on (a) CPC’s output variability [15] and (b) 
probabilistic approach [16]. 

The determination of control mode in CREAM can 
be derived by evaluating a defined criterion of a task. 
However, in this study, we approach the 
determination of the control mode in the form of a 
discrete probability distribution. Figure 2 shows one 
example of the discrete probability of the control 
model in a given context of a common performance 
condition. Based on this basis, it is possible to use this 
idea to determine the CPT for the initial condition of 
DBN. Therefore, the estimation of CPT for FRAM 
function in maneuvering event is generated by 
coopering discrete probability of CREAM control 
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mode with an adjustment based on the common 
knowledge of officer performance in ship navigation.  

3 CASE STUDY  

A result from a ship handling simulation experiment 
has been chosen to provide a factual story of ship 
maneuvering events. The chosen simulation contains 
an accident event in which the action taken by the 
participant in each time slice is recognized. A deeper 
understanding of participant’s decisions has also been 
elaborated through structured interviews. The 
participant is a licensed Officer with one experience 
on board a ship as a Cadet. This is partial information 
provided for the purpose of providing contextual 
evidence for FRAM-DBN analysis. This simulation is 
designed with a high level of maneuvering ability 
such that the full potency of the participant to cope 
with the situation can be observed. 

 
Figure 3. Ship trajectory of the simulation result. 

The event is last about six minutes. In this 
situation, the target ship is moving from the northeast 
and heading southwest. On the other hand, the 
participant’s ship is initially heading southwest and 
the final destination is in the southwest. The difficulty 
is rising because the target’s speed is faster than the 
participant’s speed. Therefore, he needs to maneuver 
his ship to the destination and avoid the target ship 
safely. The clarification of the participant’s decision to 
overcome the situation is presented in Table 2. Five 
questions were asked of the participant for further 
understanding of his decision, including: 
− When actually do you start to think to make this 

decision? 
− What information do you need before making this 

decision? 
− What makes you decide to take this action? Why 

did you do it at that time? 
− What was your strategy to avoid this target ship at 

this moment? Do you have thought about that? 
Please explain. 

− What factors do you consider the most to decide 
this action? 
 
 
 
 
 
 
 
 
 

Table 1. Time step and participant’s explanation for each 
decision. ________________________________________________ 
Step Recorded Description 
  time ________________________________________________ 
0  ±00:00  Start to perform an action. Monitoring the  
      target ship’s situation and building a  
      strategy to reach the destination. 
1  ±00:40  An initial decision has been made by  
      ordering “Port 20.” After seeing the radar  
      and understanding the target situation, he  
      made a sharp turn to the portside to avoid  
      the target. The participant says, “I did not  
      think much because the target ship was an  
      overtaking ship and my ship was a  
      maintenance ship. I admit that I have had a  
      feeling of colliding at this moment.” 
2  Up to   Continue to monitor the situation. 
  ±03:00 
3  ±03:17  Realize that the first decision was bad. He  
      tried to overcome the situation by ordering  
      “starboard 10” but did not work well. The  
      participant says, ”At about 3:00, I was very  
      embarrassed as the target ship approached.  
      I could not think of anything at that  
      moment. In fact, before making this  
      decision, I should have asked the target  
      about her intention.” 
4  ±05:41  The collision accident happened ________________________________________________ 

4 RESULTS 

4.1 FRAM model and analysis 

The implementation of FRAM in ship navigation to 
assess the potency of system resilience has been done 
by Adhita et al. [5]. For simplification, the dynamic 
FRAM model for ship maneuvering during the 
simulation experiment has been introduced as shown 
in Figure 4. The model consists of five background 
functions, which present the focus function for being 
studied, including <To monitor (by OOW>, <To do 
direct lookout>, <To watch electronic devices>, <To 
decide action (make judgment)>, and <To control the 
rudder/engine>. The temporal changes in the 
function’s dependency and function’s updated role 
over time have also been presented in the model. 

 
Figure 4. Simplified dynamic FRAM model for ship 
maneuvering in a simulation experiment. 

This simple FRAM model of ship maneuvering 
activity (to avoid the target ship) in Figure 4 shows 
the intended functional process of system 
performance. <To monitor (By OOW)>, <To do direct 
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lookout>, and <To watch electronic devices> plays an 
important role for monitoring and learning processes. 
<To monitor (By OOW)> produces initial information 
such as strategy and expectation about the current 
vicinity situation to activate <To do direct lookout> 
and <To watch electronic devices>. Once the 
information is collected, the system starts to decide 
what kind of response should be done to cope with 
the situation through <To decide action (make 
judgment)>. Soon after that, the anticipation strategy 
is start to produce through the connection of <To 
decide action (make judgment)> and <To follow-up 
monitor (by OOW>. Finally, the process of function 
activation is repeated over time until the target ship 
can be avoided. 

This model shows the potency of functional 
resonance can be triggered in any connection that 
exists between functions. Furthermore, the continuous 
process of function activation can increase the 
emergence of functional resonance. The longest the 
repetition, the higher the tendency for emerging 
resonance. The case of collision accident explained in 
Section 3 shows an example of how this resonance 
phenomenon affects function performance. An early 
signal of high variability performance from 
monitoring and lookout functions was felt at around 
00:40. This is probably the primary cause of the 
amplifying effect that emerges in function <To decide 
action (make a judgment)> then produces an 
unwanted outcome, in this case, the order of 
“starboard 20.” The last adjustment has also 
performed “too late” in terms of timing, which 
resulting the effort to maintain the system to work 
normally cannot be achieved. 

4.2 DBN for modeling dynamic performance in ship 
maneuvering 

To perform the DBN calculation, first, we convert the 
FRAM model to be Dynamic Bayesian Network 
model as presented in Figure 5. The continuous 
expression is marked by the edge with a number [1] 
on it. This edge expresses that the information in <To 
monitor (by OOW> at t=1 is updated by itself at t=0 
and <To decide action (make judgment)> at t=0. Then, 
the process is looped exactly as how it expresses in the 
FRAM model. The specific time step (t=0 to t=4) to 
iterate the calculation is stated based on the case study 
in Chapter 3. 

 
Figure 5. DBN model using GeNIe Software. 

The number of CPTs in the initial node set 
depends on the number of nodes’ characteristics and 
the number of edges pointing to the node. In total, 176 
combinations of conditional probability of function 
have been created. As explained in Chapter 2, the 
generated CPTs are determined using the adjusted 

description of control mode with common knowledge 
of ship navigation. For example, <To do direct 
lookout> and <To watch electronic devices> are 
treated equally, in which the function is 
complementing each other. In the case of one function 
performing “strategic”, and the other performing 
“scrambled”, it will affect <To decide action (make 
judgement)> output more likely to be “tactical” or 
“opportunistic” as presented in Table 2. The logical 
way of thinking is the same as using “if-then rules” in 
an intuitive way. 
Table 2. Example of discrete CPT for <To decide action>. ________________________________________________ 
   To do    Strategic 
   direct 
   lookout ________________________________________________ 
   To watch  St   Ta   Op  Sc 
   electronic  
   devices ________________________________________________ 
To   Strategic  0.9558 0.45  0.0511 0.003 
decide Tactical   0.0442 0.545  0.6333 0.4226 
action Opportunistic 0   0.005  0.3138 0.4854 
   Scrambled  0   0   0.0018 0.089 ________________________________________________ 
St – Strategic 
Ta – Tactical 
Op – Opportunistic 
Sc – Scrambled 
 

The adjusted value of CPT is also considering the 
situation being assessed. It includes the familiarity 
with the situation in the simulation, the difficulty 
level of the encounter event given the participant’s 
personal experience, etc. This considers important to 
produce reasonable results. The proposed DBN is 
intentionally exclusive for the case study. 
Table 3. Example of discrete CPT for <To do direct lookout>. ________________________________________________ 
    To monitor (by OOW) ________________________________________________ 
To do   Strategic Tactical Opportunistic  Scrambled 
direct   
lookout ________________________________________________ 
Strategic  0.75  0.05   0     0 
Tactical   0.25  0.8   0.1     0 
Opportunistic 0   0.15   0.85    0.2 
Scrambled  0   0    0.05    0.8 ________________________________________________ 
 

As a result, Figure 6 shows the expected 
performance of the officer to maneuver the ship in the 
encounter event. The probability of the performance 
to be strategic is around 10% to 16%, tactical is around 
32% to 48%, opportunistic is around 30% to 39%, and 
scrambled is around 8% to 13%. The up and down in 
each time slice shows the updated belief of 
performance due to the function’s dependency, which 
is quite stable and reasonable. This implies the 
suitability of the given CPT and the model proposed 
for the analysis has been achieved. 
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Figure 6. The evolution of expected normal performance of 
ship officer in each time step. 

FRAM analysis has provided qualitative analysis 
for the case study. The fact that the emergence of a 
scrambled mode of <To decide action (make 
judgment)> at t=3 (±03:17) and speculation of the 
potency of functional resonance as well as the 
possibility of impact from the initial decision 
possesses important information for the DBN 
evaluation. Therefore, we proposed three 
assumptions to present the situation in a more explicit 
way.  

 
Figure 7. The evolution of performance in each function 
given the evidence of scrambled mode of <To decide action 
(make judgment)> at t=3. 

The first assumption: the fact that the scrambled 
mode of <To decide action (make judgment)> has 
emerged at t=3 (±03:17). Figure 7 present what is the 
possible situation that happened before t=3 and how 
the accident happened at t=4. In this case, the 
evidence of <To decide action (make judgment)> is set 
to be 100% scrambled. It can be seen, the probability 
of scrambled and opportunistic modes before t=3 is 
increasing in all functions. Specifically, <To monitor 
(by OOW)> shows the worst situation among others. 
In addition, the probability of <To control rudder> to 
be in a scrambled mode is increasing up to more than 
50% presents how bad the decision at t=3 was so that 
the accident happened at t=4. 

(a)  

(b)  

Figure 8. The evolution of performance in each function 
given the evidence of scrambled mode of <To decide action 
(make judgment)> at (a) t=1 and (B) t=3. 

(a)  

(b)  

Figure 9. The evolution of performance in each function 
given the evidence of scrambled and opportunistic modes of 
<To decide action (make judgment)> at (a) t=1 and (B) t=3. 

The second assumption: the first assumption 
shows that the extreme changes in <To decide action 
(make judgment)> at t=4 has a strong tendency to 
indicate huge changes happened in the previous time 
step. It is strengthened by the participant's argument 
about his first action which is not carefully 
considering the target situation. Therefore, Figure 8 
shows the situation if at t=1 <To decide action (make 
judgment)> is in the scrambled mode and at t=3 the 
same mode appeared for the second time. This 
situation shows that all functions are turned into an 
extremely bad situation.  
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The third assumption: the best scenario that was 
expected to occur. Given the second assumption, if the 
scrambled mode occurred at t=3, there is about 20% to 
30% chance for the opportunistic mode to happen in 
the next sequence of function activation. Let set <To 
decide action (make judgment)> to be opportunistic at 
t=3. The result in Figure 9 shows the system 
drastically change to the opportunistic mode as 
expected. This expresses how the situation could be if 
the participant tries to communicate with the target 
ship as he mentioned. In addition, this could also 
express the possible adjustment if the action to 
overcome the bad decision at t=1 was taken before 
3:00. 

5 DISCUSSION 

This study presents the solution for assessing safety 
based on the Safety-II perspective using FRAM-DBN 
analysis. A case study of a ship collision accident has 
been chosen to provide system degraded performance 
from normal to disrupted. This collaboration has been 
found excellent, especially to assess the dynamic 
changes in function performance over time. The 
proposed method is able to provide a further 
understanding of the function's temporal dependency. 
The DBN analysis complements the FRAM analysis 
and provides a more in-depth understanding of the 
function’s performance in the encounter event. 
Moreover, the proposed DBN can be used as a 
decision support tool for officers in similar situations, 
providing insights into the expected performance and 
potential consequences of different actions. 

The analysis shows the essence of performance 
adjustment for establishing safety in ship 
maneuvering. The accident was found to happen due 
to the inability of the system to produce a proper 
adjustment. This is strengthened by the fact that the 
target ship hits the stern side of the participant’s ship. 
It indicates that a slightly better adjustment in the 
decision at t=3 to overcome the unwanted 
performance at t=1 could prevent the collision 
accident to happen. Furthermore, the assumptions in 
the DBN analysis proposed helped to illustrate these 
potential consequences of different decisions made by 
the officer, highlighting the importance of decision-
making skills in ship navigation. 

The concept of Safety-II strongly encourages 
approaching safety from how it is present in everyday 
operations. Although the case being studied is the 
accident event, the mean is to provide the point of 
view of normal and disrupted performance, such that 
both situations can be explicitly presented. The 
importance of local adjustment in the ship 
maneuvering process has been highlighted. From 
different instance in different time slice, the officer 
performs different strategy to continuously follows 
the working dynamic. In this current example, the 
unwanted adjustment is presented. However, the 
understanding of what is expected could be can also 
be provided. It indicates the need for enhancing 
human performance flexibility for a better level of 
ship resilience. Obviously, there is a boundary for 
system flexibility to cope with a certain level of 
dynamic situations. Finding a balance of it can be 

another problem to solve. Given today’s phenomena 
of AI and autonomy, a higher level of ship resilience 
can also be achieved by incorporating humans and 
technology through human-autonomous interaction. 

For a more comprehensive analysis, future studies 
must consider a modification in the input data to 
determine CPT. Expanding the network can also be 
considered for more understanding of specific factors 
that influence the change in performance. The FRAM 
also facilitates expandability, especially for the 
“loose” couplings in function. 

6 CONCLUSION 

The use of FRAM-DBN analysis in this study provides 
a valuable tool for analysing the performance of ship 
officers during the maneuvering process. Continuous 
expression of changes in officer performance over 
time can be greatly presented using the dynamic 
FRAM model and discrete probability distribution of 
the function’s performance mode in DBN. This 
elaborated FRAM analysis shows what is to be 
expected in the normal performance of ship 
navigation and how the performance degradation 
happened based on the case study being assessed. The 
application of this proposed method is limited to the 
case being analysed in this research. However, the 
usability for a more complex implementation has been 
recognized. In order to enhance the resilience of ship 
navigation, a thorough understanding of human 
flexibility and adaptability in response to unexpected 
situations is essential. 
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