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1 INTRODUCTION 

he Satellite Navigation System Galileo was launched 
in a joint project between the European Union's 
Satellite Navigation and the European Space Agency. 
It is part of the Trans-European Transport Network, 
which aims to solve navigational and geographic 
issues. The Galileo project is an ambitious European 
venture aimed at creating the most advanced global 
positioning satellite system in the world. Its objectives 
are to create an autonomous system that provides 
guaranteed global positioning services, as well as 
interoperable compatibility with other global 
positioning systems, such as GPS and GLONASS. In 
this work, we will focus on the signals transmitted by 
GNSS Galileo. We will briefly describe the individual 
signals. We will show and mathematically analyze 
signal models. For each signal, we will visualize and 
describe the structure of the signal. The signals of 
Galileo or other navigation systems have already been 
described in some literature. In the literature [3,4], 

models of measurement signals for some navigation 
systems are derived. The authors used these models 
to evaluate the accuracy of navigation systems. At the 
beginning of the system Galileo development, the 
system structure and signal models were described in 
the literature [9], where the author described the 
frequency plan and signal structure. The atmosphere 
of the Earth also has a great influence on the accuracy 
of signals. The author of the article [1,2] describes how 
signals behave when passing through the ionosphere. 
In the article [7,8], the author describes how it is 
possible to use more than three frequencies for 
decimeter positioning accuracy using Galileo and 
BeiDou signals. Models of measurement signals for 
selected communication systems are presented in the 
literature [5]. The mentioned models make it possible 
to simulate the signal processing of communication 
systems under interference conditions. Galileo's 
navigation signals are coherent and transmitted across 
three frequencies in the L band, namely E1, E5, and 
E6. The E6 signal is transmitted at a carrier frequency 
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of 1278.75 MHz and consists of three E6 components: 
E6-A, E6-B, and E6-C. On the other hand, the E5 
signal, which has a center frequency of 1191.795 MHz, 
includes two separate signals called E5a and E5b. 
These two signals share a carrier frequency of 1176.45 
MHz but are modulated independently. The E5a data 
and pilot components can be found below 15.345 
MHz on the E5 carrier frequency. Meanwhile, the E5b 
signals are modulated on two different carrier 
frequencies within the E5 band, allowing them to be 
monitored separately [6]. Long codes can be useful in 
monitoring weak signals, such as those found inside 
buildings, but they can be difficult to obtain because 
the receiver detects signals by looking for delays in 
the received code, and long codes have more options 
than short codes. Short codes are good for quick fixes, 
but they can lead to incorrect satellite positioning 
when the receiver is exchanging signals between two 
satellites. This is because the receiver's ability to 
distinguish between two different codes is inversely 
proportional to the length of the codes. Signal length 
may not be suitable for all types of users, with internal 
and static users preferring long codes while external 
and fast-moving users preferring shortcodes. To 
address this issue, alternative codes with different 
properties have been provided for different Galileo 
signals. This is one of the reasons why Galileo has so 
many signals. Another reason for the abundance of 
signals is that the receiver can estimate the 
ionospheric delay error, which is caused by the delay 
experienced by navigation signals passing through 
the ionosphere. This delay can cause the receiver-
measured distance from the satellite to the user to 
appear larger than it is, resulting in large position 
errors if not corrected. However, this delay is 
proportional to the frequency of the signal, with low-
frequency signals experiencing longer delays than 
high-frequency signals. As a result, by combining 
measurements from two different frequencies on the 
same satellite, a new measurement can be created that 
removes the ionospheric delay error. The greater the 
distance between the two frequencies, the more 
effective this cancellation will be. This is why Galileo 
services are typically implemented using signal pairs 
[11]. 

2 GALILEO SIGNAL E1 

The Galileo E1 signal uses BOC modulation, which 
employs carrier shift modulation to shift the energy 
away from the center of the band. This is significant 
because it enables multiple GPS systems to use the 
same band. BOC modulation utilizes two independent 
parameters, namely the carrier frequency of the 
auxiliary signal (fs) in MHz and the code rate of the 
code shift (fc) in mega chips per second. This gives the 
signal two parameters that can be adjusted to 
manipulate the signal's power in specific ways to 
reduce interference from other signals on the same 
band. Furthermore, the redundant upper and lower 
sidebands of BOC modulations offer advantages in 
signal processing for receiver acquisition, carrier 
tracking, code tracking, and data demodulation [12]. 

The entire transmitted Galileo E1 signal consists of 
the following components [13]: 

 
Figure 1. E1 Signal Modulation scheme [13]. 

Figure 1 shows the modulation scheme of signal 
E1. E1 open service data channel eE1-B(t) is generated 
from I/NAV navigation data stream DE1-B(t) and 
measurement code CE1-B(t), which are then modulated 
by subcarriers SCE1-B, a(t), and SCE1-B,b(t). The open 
service pilot channel E1 eE1-C(t) is generated from the 
range code CE1-C(t), including its secondary code, 
which is then modulated by subcarriers SCE1-C, a(t), and 
SCE1-C,b(t), in antiphase [13]. 

The Galileo E1 signal is modulated at a medium 
frequency such as [11] : 
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A is the amplitude of the input signal at the input of 
the correlator, 
cP a CD are extended sequences that carry pilot and 
data components, 
dD represents the navigation message symbol of the 
I/NAV modulated data component. 
Sc represents the secondary code present on the pilot 
component, 
τ is a sequenced delay, 
fIF is the center frequency, 
θ is the phase shift of the carrier frequency [12]. 

GPS C / A and Galileo BOC (1,1) share the L1 / E1 
spectrum, which is shown in Figure 1. The mean 
frequency of the E1 / L1 signal is 1575.42 MHz. It is 
important to remember that the current E1 band was 
given the name L1 band for a long time, analogous to 
GPS, until 2008, when the name of the L1 signal was 
changed to the current E1. 

Based on the formulas (1-4), the simulation of the 
E1 signal was performed in the Matlab programming 
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environment. The following parameters of the E1 
signal were used in the modeling: 

6 61.023 10 ; 6 1.023 10fsa fsb= ⋅ = ⋅ ⋅  

Define the subcarrier frequencies for BOC(1, 1) and 
BOC(6, 1). The value of fsa is set to 1.023 MHz and fsb 
is set to 6 · 1.023 MHz. 

F = row space (-20, 20, 40000); 

Generates a frequency vector for a PSD plot. The 
frequency vector ranges from -20 MHz to 20 MHz 
with 400000 points. 

3  0 : 1 / : 10t fsb −=  (5) 

Generates the time vector for the signal. The time 
vector ranges from 0 to 10 ms with a step size of 1/fsb. 

( )1 sin 2x fsa tπ= ⋅ ⋅  (6) 

( )6 sin 2x fsb tπ= ⋅ ⋅  (6) 

They generate signals for BOC(1, 1) and BOC(6, 1). 
Signals are generated by multiplying partial carrier 
frequencies by a time vector and evaluating a sine 
function. 

sca = character(x1) 

scb = char(x6) 

These lines generate secondary codes for BOC(1, 1) 
and BOC(6, 1). Secondary codes are generated by 
accepting the sign of the BOC signals. 

10 / 11alpha =  (8) 

1 / 11beta =  (9) 

scB alpha sca beta scb= ⋅ + ⋅  (10) 

scC alpha sca beta scb= ⋅ − ⋅  (11) 

These lines generate the primary codes for E1-B 
and E1-C. Primary codes are generated by mixing 
secondary codes with alpha and beta coefficients. 

( )61 cos 2 1575.42 10eE B tπ= ⋅ ⋅ ⋅  (12) 

( )61 sin 2 1575.42 10eE C tπ= ⋅ ⋅ ⋅  (13) 

These lines generate the E1-B and E1-C signals. 
Signals are generated by multiplying the carrier 

frequency by the time vector and evaluating the 
cosine and sine functions. 
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These lines calculate the FFT of the Galileo E1 
signal and convert it to the PSD. The PSD is calculated 
as above, where X is the FFT of the signal and f is the 
frequency vector. 

The results of the E1 signal simulation are shown 
in Figure 2. 

 
Figure 2. Structure of signal Galileo E1. 

Figure 2 shows the power spectral density (PSD) 
for the E1 signal, which is part of the Galileo 
navigation system. On the x-axis is the frequency 
range from -20 MHz to 20 MHz, while on the y-axis is 
the calculated PSD in dBm. Frequency 0 on the x-axis 
represents the center frequency of the signal. 

The source signal E1 is created by modulating the 
carrier wave using PRN (Pseudo Random Noise) 
coding. Therefore, the PSD for the E1 signal shows a 
characteristic frequency structure that consists of 
several layers. The highest layer represents the signal 
power in the area of the main carrier frequency of 
1575.42 MHz, which occurs at frequency 0 on the x-
axis. This peak has a calculated value of about -162 
dBm/Hz. 

Additional bands of power are visible around the 
main carrier frequency, 1.023 MHz apart, known as 
"sidebands" and "adjacent bands". These bands are 
part of the Galileo signal modulation and are 
responsible for the design of the PRN coding and 
other signal parameters. 

The overall PSD waveform for the E1 signal shows 
how the signal power is distributed over the entire 
frequency axis. Since this signal occurs close to other 
satellites and transmission channels, it is important to 
know its power spectral density and its characteristic 
structure to avoid interference and guarantee the 
reliable use of Galileo. 
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3 SIMULATION OF INTERFERING SIGNALS 

Research has confirmed that the measurement signals 
of the Galileo system are degraded by interfering 
signals. These signals can significantly affect the 
results of navigational measurements by the Galileo 
system. Therefore, we performed the simulation of 
interfering signals such as white noise, chaotic 
impulse interference, and narrowband interference. 
White noise, chaotic impulse interference, and 
narrowband interference models were created in the 
Matlab programming environment. We proceeded in 
the following way when creating interference models. 
First, we created an interference model, and then an 
additive mixture of the E1 signal and interference. The 
simulation results are shown in images no. 2 - 11. 

3.1 White noise 

We created a white noise model and then simulated 
this noise in the Matlab program environment. The 
following algorithm was used to generate white noise: 

( )1,  _Noise randn N noise level= ⋅  (14) 

This line generates a Gaussian noise signal with a 
mean of 0, and a standard deviation is given by the 
noise level vector. 

Where: 

fs = 40,000 

This line sets the sample rate of the signal to 40000 
MHz. 

T = 10-3; %  

This line sets the signal duration time to 10ms. 

N = 400 

This line sets the number of samples in the signal 
to 400. 

f = row space(-20·106, 20·106, N); 

This line creates a vector of N evenly spaced 
frequencies ranging from -20 MHz to 20 MHz. 

x = rowspace(-T/2, T/2, N); 

This line creates a vector of N evenly spaced time 
values ranging from -T/2 to T/2. 

noise_level = linspace(-1, 6, N);  

This line creates a vector of N evenly spaced noise 
levels ranging from -1 to 6. 

( )( )2
fftshift fft noise

PSD
fs N

=
⋅

 (15) 

This line calculates the PSD of the noise signal 
using the FFT, taking the absolute value and squaring 
it, and dividing it by the product of the sample rate 
and the number of samples. 

( )3
1010 log 10 11dBmPSD PSD= ⋅ ⋅ −  (16) 

This line converts the PSD from V2/Hz to dBm 
units using a reference power of 1 milliwatt and 
subtracts 11 to adjust for noise level. 

The results of the white noise simulation are 
shown in Figure 3. 

 
Figure 3. Structure of White noise. 

Figure 3 shows the PSD graph of the Gaussian 
noise signal with the specified noise level. PSD is 
calculated using the Fast Fourier Transform (FFT) and 
converted from V2/Hz units to dBm units. The 
resulting PSD is then plotted as a function of 
frequency in MHz. The plot shows a symmetrical bell-
shaped curve centered at zero frequency, which 
represents the PSD of the Gaussian noise signal. The 
curve has a maximum value at zero frequency, 
indicating that the noise signal has the highest power 
at low frequencies. The curve drops off rapidly with 
increasing frequency, indicating that the power of the 
noise signal decreases at higher frequencies. The x-
axis of the graph represents frequency in MHz, while 
the y-axis represents PSD in dBm. The graph is 
labeled with the appropriate axis labels and the title 
"White Noise Suppression Structure", which describes 
the nature of the analyzed signal. The plot provides a 
visual representation of the frequency content of a 
Gaussian noise signal, which is useful in a variety of 
signal processing and communications applications. 

3.1.1 The additive mixture of E1 signal and white noise 

If in the previous steps, we generated the Galielo 
E1 signal and subsequently white noise, the next step 
is to generate the noisy E1 signal. E1 signal with the 
addition of white noise is possible using the following 
relationship: 

( ) ( )( )11 1 1
2

sE eE B alpha scB beta scB eE C alpha scC beta scC noise= ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅ − ⋅ +
 (17) 

Add white Gaussian noise to the signal:  

sE1 = sE1 + noise  (18) 

X = fft(sE1, length(f))  (19) 

Calculates the FFT of the sE1 signal with a length 
of (f) points 
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( )

2

10
10 log
3

X
PSD

length f

 
 =
 
 

 (20) 

Calculates the power spectral density of the signal. 

The results of the simulation of the additive 
mixture of the useful signal E1 and white noise are 
shown in Figure 4. 

 
Figure 4. Signal E1 with added White noise. 

The white Gaussian noise added to the sE1 signal 
can be seen in Figure no. 4. The effect of adding noise 
to a signal is that it increases the power spectral 
density (PSD) of the signal at all frequencies, 
including those of the original signal and the noise 
itself. The PSD is calculated using the fast Fourier 
transform (FFT) of the noise signal sE1, which is 
represented by the variable X. The PSD is then plotted 
against the frequency f in the image. The noise level is 
specified using the noise_level variable, which 
controls the standard deviation of the white Gaussian 
noise added to the signal. A higher level of noise 
results in a higher PSD of the noisy signal, which 
means that the signal is harder to detect and more 
accurately decoded, especially if the signal-to-noise 
ratio is low. Adding noise to the signal also introduces 
errors in the decoding of the spreading codes and the 
original signals, which can affect the overall 
performance of the communication system. In 
particular, the accuracy of timing and frequency 
synchronization can be affected, which can lead to 
further degradation of signal quality. 

3.2 Chaotic impulse interference 

We created a model of chaotic impulse interference 
and then simulated this interference in the Matlab 
environment. Chaotic impulse interference is created 
by combining a Lorentzian chaotic signal with an 
impulse response. In relation (23), the impulse 
response is defined as a vector of zeros with one 1 at 
index 100: 

pulse = zero (size (t)) (21) 

impulse(100) = 1 (22) 

The conv() function is then used to convolve this 
impulse response with the first component of the 
Lorenz signal (x(:,1)): 

interference = conv(x(:,1), impulse ) (23) 

The resulting interference signal is a version of the 
Lorenz signal with an added pulse at index 100. 

This relationship was used to generate the 
structure of impulsive chaotic interference, the 
spectrum of which is shown in Figure 5. 

Parameters for the Lorenz chaotic system: sigma to 
10, beta to 8/3, rho to 28, and the initial state vector x0 
to [1;1;1]. The ode45 function is then used to solve the 
Lorenz system for the given time range t and initial 
conditions x0. 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )2 1 ; 1 3 2 ; 1 2 3  sigma x x x rhod x x x x betax t xd ⋅ − ⋅ − − ⋅ ⋅= −  (24) 

A function called "Lorenz" defines the differential 
equations for the Lorenz chaotic system. It takes in the 
input arguments "~" and "x", which are not used in the 
function. It also takes in the parameters "sigma", 
"beta", and "rho", which are used to define the Lorenz 
system equations. 

The output "dxdt" is a vector of the same size as 
"x", which defines the rate of change of each state 
variable in the Lorenz system at a given time. The first 
element of "dxdt" is the rate of change of x(1), the 
second element is the rate of change of x(2), and the 
third element is the rate of change of x(3). The 
equations used in this function are the classic Lorenz 
equations, which are commonly used in chaos theory 
to study the behavior of nonlinear dynamical systems. 

Parameters for the Lorenz chaotic system: sigma to 
10, beta to 8/3, rho to 28, and the initial state vector x0 
to [1;1;1]. The ode45 function is then used to solve the 
Lorenz system for the given time range t and initial 
conditions x0. 

The results of the chaotic impulse interference 
simulation are shown in Figure 5. 

 
Figure 5. Structure of Chaotic Impulse Interference. 

Figure 5 shows the power spectral density (PSD) of 
chaotic impulse interference as a function of 
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frequency. The horizontal axis shows the frequency in 
MHz, while the vertical axis shows the PSD in dBm. 

On the graph, there is a suitable peak near the 
frequency of 0 MHz, which represents the DC 
component, i.e., alternating current with zero 
frequency. Next, we will see peaks that occur in 
different frequency bands, which are the frequency 
chaotic behavior of the system. Chaotic impulse 
interference contains many different frequency 
components that are propagated into the environment 
and affect other neighboring systems. 

3.2.1 The additive mixture of E1 signal and chaotic 
impulsive noise 

We created a model of chaotic impulse interference 
and then simulated this interference in the Matlab 
environment. We then created an additive mixture of 
the useful signal E1 and the chaotic impulse 
interference using the following algorithms: 

sE1 = sE1 + interference  (25) 

The disturbance is generated by the convolution of 
the first variable (x(:,1)) of the output of the 
Lorentzian impulse response system. The resulting 
interference signal is then added to the sE1 signal. The 
simulation results of the additive mixture of useful 
signal E1 and chaotic impulse interference are shown 
in Figure 6. 

 
Figure 6. Structure of Galielo signal E1 with added Chaotic 
impulse Interference. 

Figure 6 shows the PSD of the Galileo E1 signal, 
which is subsequently affected by chaotic interference. 
This process can have a major impact on signal 
quality and cause interference and communication 
disruptions. A Lorenz chaotic system is a differential 
equation that describes chaotic behavior. In this case, 
the system consists of three equations that describe 
the evolution of three variables over time. These 
variables represent the state of the system and change 
depending on time and other parameters. The chaotic 
disturbance in this case is generated by the 
convolution of the signal from the Lorentz system 
with the impulse response. The result of this 
convolution is a time-shifted signal that can cause 
interference and communication breakdowns. The 

effect of interference on the Galileo E1 signal can be 
observed using the power spectral density (PSD), 
which is calculated using the Fourier transform. PSD 
shows the distribution of signal power as a function of 
frequency. In this case, we can see that chaotic 
interference causes interference in a wide frequency 
band, which can cause disturbances in receiving 
navigation information. The result of this process is a 
signal that is affected by chaotic interference, which 
manifests itself as interference in the entire frequency 
band. The resulting signal may be of lower quality 
and cause communication problems. Therefore, it is 
important to ensure a sufficient level of protection 
against interference and to minimize the effect of 
chaotic interference on the signal. 

3.3 Narrowband interference 

Narrowband interference is a type of interference that 
occurs when there is a strong signal at a frequency 
equal to the frequency of the E1 signal. This 
interference signal causes errors in the navigation 
measurements of the Galileo system. We generated 
the narrowband interference according to the 
following algorithms: 

( )( )1 10 2 0 f phix cos f delta t deltaπ= ⋅ ⋅ + ⋅ +  (26) 

That relationship generates narrowband 
interference by the sum of N sine waves with random 
frequency and phase variations around the center 
frequency f0. 

Where: 

deltaf = (rand(1, N) - 0.5) · 2 · 106 (27) 

Generates N random values between -1 MHz and 1 
MHz. These values represent frequency variations. 

deltaphi = rand(1, N) · 2 π (28) 

Generates N random values between 0 and 2π. 
These values represent phase variations. 

f0 = 1575.42 · 106 

Sets the center frequency to 1575.42 MHz. 

The results of the narrowband interference 
simulation are shown in Figure 7. 

 
Figure 7. Narrowband interference structure. 
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The power spectral density (PSD) of a narrowband 
interference signal with a random frequency and 
phase variations is shown in Figure 7. The x-axis 
represents frequency in MHz and the y-axis 
represents the PSD in dBm. The center frequency of 
the signal is 1575.42 MHz, and the frequency 
variations around this center frequency are randomly 
generated with a range of +/- 2 MHz. The phase of the 
signal also varies randomly. The resulting PSD plot 
shows a main lobe centered at the center frequency 
and several smaller lobes on either side due to the 
random frequency variations. The height and width of 
the lobes depend on the amplitude and duration of 
the interference signal. The plot can be used to 
identify the frequency and strength of the interference 
signal, which is important for mitigating its effects on 
the system. 

3.3.1 The additive mixture of E1 signal and narrowband 
interference 

We used the programming environment of the 
Matlab program to create an additive mixture of the 
E1 signal and narrowband noise. Interference is added 
to the original signal (Figure 2) using the relation: 

sE1_with_interference = sE1 +x1 (29) 

The result of adding narrowband interference to 
the E1 signal can be seen in Figure 8. 

 
Figure 8. Structure of Signal E1 with added Narrowband 
interference. 

Figure 8 shows the resulting power spectral 
density (PSD) of the E1 signal and narrowband 
interference with random frequency and phase 
deviations. PSD indicates the distribution of signal 
power concerning the frequency and is expressed in 
units of dBm/MHz. The E1 signal is a blue curve and 
corresponds to the global navigation satellite system 
Galileo, which transmits at a frequency of 1575.42 
MHz. The blue curve has a maximum value in the 
middle of the spectrum, which is chosen as a reference 
value for the entire spectrum and is therefore placed 
at zero. The red curve shows narrowband 
interference, which is characterized by random 
frequencies and phase deviations. This type of 
interference can arise, for example, from sources with 
an unstable frequency, such as generators with short-

term deviations, or the influence of external 
interference. Thus, the figure shows that narrowband 
interference has a significant effect on signal quality if 
the transmitted signal and the interference are on the 
same frequency. Therefore, it is important to protect 
the transmitted signals from interference and avoid 
overlapping frequency bands of different signals and 
interference. 

4 USING KALLMAN FILTRE  

White noise has a pronounced effect on the original 
structure of the E1 signal. It is therefore important to 
remove this noise from the signal. In this chapter, we 
will describe the effect of using a Kallman filter to 
filter out white noise from a noisy signal (Figure 4.) 

Defining the system matrices for the Kalman filter: 
A = 1; state transition matrix 
H = 1; observation matrix 
Q = 0.01; process noise covariance 
R = 0.1; covariance of measurement noise 
PO = 1; initial covariance state 

In this block of code, the matrices that define the 
Kalman filter are defined. A is the state transition 
matrix, H is the observation matrix, Q is the process 
noise covariance, R is the measurement noise 
covariance, and P0 is the initial state covariance. 

The simulation results are shown in Figure 9. 

 
Figure 9. Filtered signal E1 using the Kallman filter. 

In this case, white noise was suppressed using a 
Kalman filter (Figure 9.) A Kalman filter is a 
mathematical algorithm that uses a series of 
measurements observed over time to estimate the 
state of a linear system. In this case, the state is the 
actual power spectral density of the signal, and the 
measurements are the power spectral density values 
obtained from the noisy signal. The Kalman filter 
works by predicting the state of the system at each 
time step based on a previous estimate of the system's 
state and dynamics, and then updating the state 
estimate based on the current measurement. The filter 
also estimates the uncertainty in the state estimate, 
which is used to weigh the importance of the 
prediction and measurement in the overall estimate. 
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In this implementation, the state transition matrix A 
was set to 1, indicating that the system does not 
change over time. The observation matrix H was also 
set to 1, indicating that the measurement is a direct 
observation of the state. The covariance Q of the 
process noise and the covariance R of the 
measurement noise was set to 0.01 and 0.1, 
respectively, which are assumptions about the noise 
variance in the system. A filter was applied to each 
frequency bin of the power spectral density using a 
loop. At each cycle iteration, the state and covariance 
estimates were predicted using the state transition 
model. Then, the state estimate was updated using the 
current measurement and the Kalman gain, which is a 
weighting factor that balances the contribution of 
prediction and measurement to the overall estimate. 
Finally, the filtered value of the power spectral 
density was stored in the array. The filtered power 
spectral density values were then plotted against the 
original power spectral density values to show the 
effectiveness of the filter in suppressing white noise. 

 
Figure 10. Detailed Figure 4. 

Figure 10 shows a more detailed spectrum of the 
additive mixture of the useful signal E1 and white 
noise. 

 
Figure 11. Detailed Figure 9. 

Figure 11 shows the spectrum of the additive 
mixture of signal E1 and white noise after passing the 
signal through the Kallman filter. The Kalman filter 
suppressed the white Gaussian noise in the additive 
mixture of the E1 signal and white noise. It is clear 

from the picture that the (orange color) filter 
suppressed the effect of noise on the useful E1 signal 
from the Galileo system. 

5 CONCLUSIONS 

In this paper, mathematical models of the 
measurement signal E1 of the Galileo system were 
created to simulate intentional interference and the 
influence of atmospheric conditions on signal 
propagation. The study also presents the 
determination of the Galileo satellite navigation 
system, including the frequency and structure of the 
E1 signal and its block diagram for signal generation. 
The modeling results can be used to evaluate the 
immunity of the Galileo system to interference. The 
results of the simulations of the measurement signal 
E1 with white noise, chaotic impulsive interference, 
and narrowband interference allow a spectral analysis 
of the structure of this signal. Through simulation, we 
found that the frequency spectrum of the additive 
mixture of the E1 signal and interference is 
significantly different from the frequency spectrum of 
the E1 signal itself. This fact indicates that signal 
measurements that are degraded by interference can 
cause errors in navigation measurements by the 
Galileo system. The simulation results confirmed that 
chaotic impulse interference is the most dangerous 
type of interference. We can explain it by the fact that 
chaotic impulse interference has a wide frequency 
spectrum. Its influence on the original signal has 
destructive effects, and when processing the 
measurement signal E1, it is necessary to eliminate 
this interference as much as possible. A Kallman filter 
was designed to filter E1 signal interference. This filter 
was used to filter out white noise from the additive 
mixture of the E1 signal and white noise. The 
simulation results confirmed that such a filter is 
effective for suppressing white noise and can be used 
at the receiver input for E1 signal processing. The 
simulation results confirmed that when synthesizing 
algorithms for processing the E1 measurement signal 
from the Galileo system, it is necessary to pay 
attention to the influence of white noise, chaotic 
impulse interference, and narrowband interference on 
the measurement results. Dual frequency is used to 
improve the measurement results of the Galileo 
system. Galileo's use of dual frequency positioning 
provides an advantage over other satellite systems, 
particularly in dense urban areas or forested 
environments. The use of dual frequency allows for 
more accurate positioning.  
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