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1 INTRODUCTION 

In operational activity of stevedoring companies, the 
many cases may occur related to the situations of 
risk. The main of them are listed below: 
− damage of a ship’s hull or equipment during the 

loading/unloading; 
− cargo package’s damage in result of violation of 

loading/unloading rules or rules of port’s mecha-
nisms exploitation; 

− damage of cargo in result of  violations of  rules 
of its storage at warehouse; 

− failures of port’s equipment; 
− exceeding of a ship’s  laytime. 

Appearance of above events leads to some addi-
tional expenditure for the stevedoring company, 
charterer or cargo owner. As shows the international 
commercial practice, many stevedoring companies 
which operate in big seaports insure their responsi-
bility for safe and qualitative transshipment of cargo 
(within the framework of contract responsibility) [1]. 

When the managers of stevedoring company 
make decision concerning an insurance of its re-
sponsibility for safe transshipment of cargo it is use-
ful and even necessary to apply the methods of 
probability theory and actuarial mathematics [2, 3]. 
At the same time the standard methods of quantita-
tive evaluation of risk proposed by mathematical 
risk theory are mainly aimed at insurance compa-
nies’ profit but not at protection of commercial in-

terests of insurants. Therefore, specifics of seaports 
operational activity and interrelations between ste-
vedoring company’s managers and its clients de-
mand the special methods for actuarial calculations. 

The purpose of our paper is working out a method 
of a risk evaluation of containers damage under their 
transshipment at a seaport terminal and substantia-
tion of insurance expediency of this risk by a steve-
doring company. 

2 MAIN RESULTS 

Our approach is based on representation of port’s 
container terminal as a queueing system of  GI/G/m  
type (m identical servers in parallel, infinite waiting 
room, service discipline is FIFO). 

We denote: 

)(tω  be a random number of served ships in time 
interval ),(0 t ; 

kγ  be a random number of containers transshipped 

on/from the kth ship served in time interval (0, t); 

kν  be a random number of damaged containers  

during loading/unloading of the kth ship; 

 

Method of Evaluation of Insurance Expediency 
of Stevedoring Company’s Responsibility for 
Cargo Safety 

M. Ya. Postan & O. O. Balobanov 
Odessa National Maritime University, Ukraine 

ABSTRACT: The method of insurance expediency of stevedoring company’s responsibility for safety of con-
tainers under their transshipment at port’s terminal is proposed. This method is based on representation of 
terminal as a queueing system of GI/G/m type and on comparison of the stevedoring company’s  insurance 
expenditures and random value of transshipped containers’ total damage (sum insured) for a given period of 
time. 



 

480 

kiΔ  be a random value of damage caused to the  ith 

container loaded on or unloaded from the kth ship 
(estimated in money). 

It is assumed that: 

1 the random variables .,..2,1 γγ  are independent 

and identically distributed (i.i.d.) with the discrete 
distribution 
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2 .,..2,1 νν  are the  i.i.d. random variables with the 

conditional binomial distribution 
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where  p is the probability that a damage is caused 
to arbitrary container through  a stevedoring compa-
ny’s fault ; 

3 
,...211211 ,...,Δ,ΔΔ

are the i.i.d. random varia-
bles with the distribution function (d.f.) 
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4 the sequences of random variables ...,2,1 νν   

and  .12,11 ,..ΔΔ  are mutually independent. 
If  τ  denotes the constant loading/unloading time 

of one container, than service time of  the kth served 
ship is the random variable  .τγ k  We shall consider 

the steady-state regime of our queueing system func-
tioning and assume that the following  stability con-
dition holds true 

),1E /( γτλ m<  (4) 

where 1−λ  is the mean interarrival time of the ships. 
Let us evaluate the total damage in time interval 

(0, t) caused to containers by stevedoring company 
.))(( t∆  Using the above designations we can write 
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The financial managers of a stevedoring company 
face the dilemma: to insure or not to insure the pos-
sible total damage (4) with the gross risk premium 
rate c (we assume that the sum insured is )(t∆ ). 
Note that t we consider as the period of insurance 
policy action. 

The simplest criterion of insurance expediency is: 
the average profit of a stevedoring company in result 
of the total damage insurance must be positive, i.e. 

 .0))(E( >−∆ ctt  (6) 

Taking into account relations (1)-(5) and applying 
to right-hand side of (5) theorem of total mathemati-
cal expectation, from (6) we have 
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where 
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For ergodic queue (see (4)) tt λω =)(E  [4]. 
Therefore, from (7) we obtain 

 .11E1E cΔ >νλ  (8) 

More precise criterion than (8) is 
,1})(Pr{ ε−≥>∆ ctt  (9) 

where ε  is a given small probability. For applica-
tion of criterion (9) we need to determine the d.f. of 
stochastic process .)(t∆  

For the sake of simplicity, we suppose that 
,.,..2,1, == kNkγ where N may be interpreted as 

hold capacity of a ship (in TEU). In other words, we 
assume that each ship arrives for loading/unloading 
of exactly N containers. Then by theorem of total 
probability, taking into account (5), mutual inde-
pendence of )(tω  and .,..2,1 νν  , we can write 
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D  is  n-multiple convolution of d.f. 

)(xD  with itself,  .1)(
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≡xD  

Due to the formula (10) the criterion (9) takes the 
form 
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In practice, N may be considered as large and p 

as small quantities. Therefore, the binomial terms in 
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(11) may approximately be substituted for the Pois-
son distribution. From (11), it follows 
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The Laplace-Stieltjes transform of d.f. (10) on 
variable  x is given by 

(13)                          ,
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the generating function of  stochastic process’ )(tω

distribution, .1≤y  

In particular, from (13) we find 
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One more simplification of criterion (9) may be 
done by application of the Chebyshev’s inequality. 
Applying this inequality, taken in modified form [5], 
we obtain (under condition (6)) 
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Hence, the criterion (9) may be reduced to the 
simple inequality 
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For application of the criteria (11),(12),(14) it is 
necessary to find the probabilistic distribution of 
process .)(tω  It may be found  by  the methods of 

queueing theory [6]. Below, will be considered  two 
particular cases of queue GI/G/m  for which this dis-
tribution is known. 
1 Queue of M/D/∞ type, i.e. with infinite number of 
servers, the Poisson input with the rate ,λ  and con-
stant service time. Such queueing system is good 
approximation to multi-server queue if  .mN <<λτ  
As it was shown in [7], for such system (in equilib-
rium) 
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and, consequently, .)(E)(Var ttt λωω ==  In this 
case the condition (11) takes the following form 

                                                                               (16)  
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From (15), it follows also that 
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For inversion of this expression the known nu-
merical methods of the Laplace transform inversion 
may be used [8]. 

The criterion (16) is too complex for calculations. 
Note that in this case ctt −∆ )(  is the compound 
Poisson process with the drift c [9]. Therefore if 

∞→t , we can apply the central limit theorem for 
such kind of stochastic processes [9]. Hence, instead 
of (9), we have as ∞→t  

(17) ,)(N}0)(Pr{                    ε≤≈≤−∆ tRctt  

where 
 

R  = ×− )11E/( NpΔc λ  

];2)11E()1(2
11E[ ΔpNΔNp −+× λ    

N(x) is the standard normal distribution with zero 
mean and  variance equals to unity. 
2 One-server queue of M/D/1 type, i.e. with the 
Poisson input and constant service time. For such 
system the following result is valid [6]:   
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in the domain  ., 0Re1 >≤ θy  
With the help of relation (18) we can determine 

)(Var tω  and then use the criterion (14). 

3 NUMERICAL RESULTS 

Let us demonstrate the application of criterion (17) 
for real initial data. Put 5=λ ships per month, t = 
25 months, p = 10-3, and assume that 

.2)11E(22
11E ΔΔ = The results of calculations of 

probability in the formula (17) for different values of 
Np and ratio 11E/ Δc  are given in the Table. 

Table  
 

From these results, it follows the expedience of 
insurance, for example, if Np = 0,1,  2,011E/ ≤Δc  

or Np >  0,1, 3,011E/ ≤Δc  because  probability in 
(17) is sufficiently small in these cases. 

4 CONCLUSIONS 

The real problems of risk-management concerning 
the port operator’s (or stevedoring company’s) activ-
ity may be formulated and solved with application of 
mathematical risk theory. The main feature of above 
problems is: first of all they must be aimed at the 
protection of financial state of stevedoring company 
but not an insurance firm.  In most cases these prob-
lems may not be solved by standard theoretical 
methods and require the use of combination of dif-
ferent fields of applied probability, for example, ruin 
theory, queueing and reliability theories, theory of 
storage processes, etc. This is necessary for model-
ing the port’s operational activity side by side with 
the corresponding financial processes [10]. 

For practical applications of results obtained it is 
necessary to use the corresponding statistical data 
concerning the cases of containers damage and val-
ues of damage, moments of ships’ arrival, etc. for a 
previous period. Such information must be accumu-
lated in the data base of a stevedoring company. 
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c/EΔ11 
 
 
 
Np 
 

 
 
0,15 

 
 
0,20 

 
 
0,25 

 
 
0,30 

 
 
0,35 

0,10 0,0436 0,0721 0,1112 0,1635 0,2327 
0,15 0,0092 0,0150 0,0244 0,0384 0,0582 
0,20 0,0021 0,0035 0,0058 0,0092 0,0140 
0,25 0,0006 0,0009 0,0015 0,0024 0,0037 


