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1 INTRODUCTION 

1.1 The Universal Learning Curve 
We have developed a general accident theory, so in 
this paper we emphasize and extract the relevant ap-
plication to marine shipping. For any technological 
system with human involvement, like ships and 
shipping, the basic and sole assumption that we 
make is the “Learning Hypothesis” as a physical 
model for human behavior when coupled to a tech-
nology (Duffey & Saull 2002, 2008). 

Simply and directly, we postulate that humans 
learn from their mistakes (outcomes) as experience 
is gained. 

Although we make errors all the time, as we 
move from being novices to acquiring expertise, we 
should expect to reduce our errors, or at least not 
make the same ones. Thus, hopefully, we should de-
scend a “Universal Learning Curve” (ULC) like that 
shown in Figure 1, where our rate of making mis-

takes decreases as we learn from experience and is 
exponential in form. 

 

 
Figure 1. The Learning Hypothesis – as we learn we descend 
the curve. 
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ABSTRACT: We wish to predict when an accident or tragedy will occur, and reduce the probability of its oc-
currence. Maritime accidents, just like all the other crashes and failures, are stochastic in their occurrence. 
They can seemingly occur as observed outcomes at any instant, without warning. They are due to a combina-
tion of human and technological system failures, working together in totally unexpected and/or undetected 
ways, occurring at some random moment. Massive show the cause is due to an unexpected combination or 
sequence of human, management, operational, design and training mistakes. Once we know what happened, 
we can fix the engineering or design failures, and try to obviate the human ones. We utilize reliability theory 
applied to humans, and show how the events rates and probability in shipping is related to other industries and 
events through the human involvement. We examine and apply the learning hypothesis to shipping losses and 
other events at sea, including example Case Studies stretching over some 200 years of: (a) merchant and fish-
ing vessels; (b) oil spills and injuries in off-shore facilities; and (c) insurance claims, inspection rules and 
premiums. These include major losses and sinkings as well as the more everyday events and injuries. By us-
ing good practices and achieving a true learning environment, we can effectively defer the chance of an acci-
dent, but not indefinitely. Moreover, by watching our experience and monitoring our rate, understand and 
predict when we are climbing up the curve. Comparisons of the theory to all available human error data show 
a reasonable level of accord with the learning hypothesis. The results clearly demonstrate that the loss (human 
error) probability is dynamic, and may be predicted using the learning hypothesis. The future probability es-
timate is derivable from its unchanged prior value, based on learning, and thus the past frequency predicts the 
future probability. The implications for maritime activities is discussed and related to the latest work on man-
aging risk, and the analysis of trends and safety indicators. 
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The past rate of learning determines our trajectory 
on the learning path and thus: 
− how fast we can descend the curve;  
− the rate at which errors occur determines where 

we are on the curve;  
− changes in rate are due to our actions and feed-

back from learning from our mistakes; 
− no reduction in error or outcome rate could mean 

we have reached the lowest we are able to or that 
we have not sustained a learning environment; 
and  

− an increase in rate signifies forgetting.  
In our book that established the existence of the 

learning curve (Duffey & Saull 2002), we examined 
many case studies.  

We highlight in this paper the data and infor-
mation for marine events and their learning trends. 
We have also found data for oil spills at sea. Since 
spills are just another accident in a homo-
technological system (HTS), namely a ship operated 
by people, it was interesting to show if the usual 
everyday marine accidents do exhibit learning. Ma-
rine accident outcomes include groundings, colli-
sions, fires and all manner of mishaps. The most re-
cent data we found were on the web in the Annual 
Report for 2004 of the UK Marine Accident Investi-
gation Board (MAIB, for short, at 
www.maib.gov.uk). The MAIB responsibility is to 
examine reported accidents and incidents in detail. 
The MAIB broke down the accidents by type of 
ship, being the two broad categories of merchant 
ships that carry cargo, or fishing vessels that ply 
their trade in the treacherous waters off the UK is-
lands,   

In both types of ship, the number of accidents 
were given as the usual uninformative list of tabula-
tions by year from 1994 to 2004, together with the 
total number of ships in that merchant or fishing 
vessel category, some 1000 and 10,000 vessels re-
spectively. Instinctively we think of fishing as a 
more dangerous occupation, with manual net han-
dling and deck-work sometimes in rough seas and 
storms, but surprisingly it turns out not to be the 
case. 

 
Figure 2. The learning curve for shipping accidents. 

We analyzed these accidents by simply replotting 
the data as the accident rate per vessel versus the 
thousands of accumulated shipping–years of experi-
ence, kSy. By adopting this measure for experience, 
not only can we plot the data for the two types on 
the same graph, we also see if we have a clear learn-
ing trend emerging. The result is shown by Figure 2, 
where the line or curve drawn shown is our usual 
theoretical MERE learning form. 

We see immediately that, at least in the UK, the 
(outcome) accident rate is higher for merchant ves-
sels than fishing boats, but also that learning is evi-
dent in the data that fit together on this one plot only 
if using experience afloat as a basis. The other ob-
servation is that the fishing vessels are at the mini-
mum rate per vessel that the merchant vessels are 
just approaching. Perhaps the past few centuries of 
fishing experience has lead to that low rate so that, 
in fact, fishermen and fisherwomen are highly 
skilled at their craft. The lowest attained rate of ~ 
0.05 accidents per vessel corresponds to an hourly 
rate if afloat all day and working all the time, of:  
~ 0.05/(365 x 24) ~ 5.10-6 per hour (1) 

That is one accident per vessel every 175,000 
hours, which is about the least achieved by any HTS 
or industry anywhere in the world, including the 
very safe ones like aircraft, nuclear and chemical in-
dustries of 100,000 to 200,000 hours. Even allowing 
for a duty factor afloat for the vessel or crew of 50% 
or so, or working at sea half the time, it is still of the 
same order. That last result is by itself simply amaz-
ing, and reflects the common factor of the human 
involvement in HTS. We now examine the learning 
hypothesis analysis again, but in some more detail. 

2 THE RISK OF LOSING A SHIP 

We can use data from shipping, as it is a technologi-
cal system with human involvement that is observed 
and includes both outcomes and a measure of expe-
rience. Shipping losses are an historic data source, as 
insurers and mariners tracked sinkings; and the hu-
man element is the main cause of ship loss, rather 
than structural defects in the ships themselves.  

A large dataset exists for ship losses in the USA, 
(Berman 1972). We analysed these extraordinary da-
ta files, which cover some 10,000 losses (outcomes) 
over an Observation Range of nearly 200 years from 
1800 to 1971. We excluded Acts of War so as to 
avoid uncontrolled external influences and non–
human errors. It is not known how many ships were 
afloat in total, only which ones sank, and thus be-
came recorded outcomes. 

A ship is built in a given year, sails for a while 
accumulating experience in ship-years afloat, Sy, 
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and may or may not sink. From some 10,000 ships 
that were lost, we took a sample of the data only for 
ships over 500 tons, chosen so that we can compare 
with modern large commercial losses. In our sample 
of the data there were a total (N) of 510 losses of the 
ships.  

From the entire set, we show one sample Obser-
vation Range in Table 1 for 1850 to 1860, selected 
arbitrarily from the entire data set.  For these loss 
(outcome) data for 1850 to 1860, 17 ships were lost 

which had accumulated 265 shipping-years (accSy) 
of depth of experience before being lost. The losses, 
Ni = 17, are sparsely distributed and apparently ran-
dom, as we might expect. The entire observation set 
of 1800 to 1971 can be formed by stacking these in-
cremental observations ranges together for all the 
observed range and number of outcomes. But this 
again is only one subset of an array that could 
stretch over all recorded history, and all human ex-
perience - we just happen to not have all that data. 

 
Table 1. Actual Ship Loss Data matrix: A sample outcome observation interval 

 
  

Year 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 Sy accSy #Losses
1 0 0 0
2 1 1 4 4 2
3 1 3 7 1
4 1 4 11 1
5 0 11 0
6 1 1 12 23 2
7 0 23 0
8 0 23 0
9 0 23 0

10 1 10 33 1
11 0 33 0
12 0 33 0
13 1 13 46 1
14 0 46 0
15 0 46 0
16 0 46 0
17 0 46 0
18 0 46 0
19 1 2 57 103 3
20 1 1 40 143 2
21 0 143 0
22 0 143 0
23 0 143 0
24 0 143 0
25 0 143 0
26 0 143 0
27 1 27 170 1
28 0 170 0
29 0 170 0
30 1 30 200 1
31 1 31 231 1
32 0 231 0
33 0 231 0
34 1 34 265 1
35 0 265 0
36 0 265 0
37 0 265 0
38 0 265 0
39 0 265 0
40 0 265 0

Totals 1 2 2 3 2 2 0 1 3 1 0 265 265 17  
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The usual time history is given by the sum of the 
losses for any given year. Thus, for any year, y, 
there is a loss rate given by summing over all the 
experience range of losses for that particular obser-
vation, jth range year: 

Ny = ∑ε ni (ε) (2) 
Meanwhile, for a given experience, ε, the total 

number of losses, N, is given by summing all the 
losses over the range at a particular experience, as: 

ni = ∑y ni (ε) (3) 
The sum of the number of Sy at any experience 

interval is simply given by adding up outcomes: 

Sy (ε) = ∑y (Sy ni (ε)) (4) 
Hence, the accumulated experience in accSy’s is 

as shown from adding the Sy’s for all losses: 

accSy = ∑ε (Sy ni (ε)) (5) 
Now we can calculate the outcomes for all the en-

tire Observation Range for 1800-1971. We find the 
total losses of >500 tonnes are now of course as 
summed as all outcomes: 

Nj = ∑i ni (ε) = 510 (6) 
and the accumulated experience is summed over the 
depth of experience: 

accE = ε = ∑j (ni(ε) Sy) = 11,706 accSy (7) 
So we have confirmed the postulate that we may 

represent outcomes by a distribution of errors as a 
function of experience, and where all outcomes are 
equally likely. 

On average, therefore, ships spent an average of 
11,706/510 = 23 years afloat before sinking. 

3 SHIPPING LOSS DISTRIBUTION 
FUNCTIONS 

If the losses were truly random in time, then on av-
erage the chance is equal that a ship would be lost 
either side of the middle of the Observation Range, 
or centered on the date:  
1800 + (1971 - 1800)/2 = 1885,  (8) 
and the loss rate distribution should follow a bino-
mial (normal) distribution. The actual distribution of 
the loss rate data does just that, and data for the en-
tire Observation Range is shown in Figure 3, includ-
ing the 95% confidence bounds. 

 

 
Figure 3. Loss rate fitted with a normal distribution. 

 
The fitted loss rate distribution actually centers on 

1900, and is given by: 
IR(per kSy)=0.0095+0.86 exp 0.5((Y–1900)/19)2 (9)  

where 1 kSy = 1000 Sy. 
Since the data have a normal distribution, the out-

comes are indeed randomly distributed throughout 
the entire 1800-1971 Range. The standard deviation 
of 19 Sy and the 95% confidence limits do actually 
encompass the predicted date of 1885, within the er-
rors of the data sampling and fitting. The most prob-
able loss (outcome) rate is ~ 0.86 per 1000 Sy, 
which is close to that observed today (~1per kSy) by 
major loss insurers. The most probable rate has not 
changed for over 200 years, and the range at 95% 
confidence is 0.7 – 1 per kSy. 

As to the systematic effects of ship-age, it has 
been characteristic practice to have higher insurance 
for older ships, implying there risk of loss is greater, 
and that the outcomes (vessel sinkings, groundings, 
collisions, etc.) are not random. Older vessels are 
then classified as higher or greater risk. The actual 
data are shown in Figure 4 for losses in excess of 
500 tonnes for two outcome sets spread over two 
centuries. Clearly, there is little difference between 
them; and the outcomes are almost normally distrib-
uted over the life of the ships with about 40-50 years 
maximum. The maximum loss fraction peak is at 
about 15-20 years of ship-life. 

 
Figure 4. Comparison of shop losses as a function of age. 

 

USA Shipwreck History 1800-1971 (extract): Normal Distribution centered on 1900
Loss Rate (per 1000) = 0.0095 + 0.86exp(-0.5(x-1900)/19)^2)

r 2̂=0.43192861  

1800 1850 1900 1950
Year of Loss

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Lo
ss

 R
at

e 
(IR

 p
er

 1
00

0 
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Lo
ss

 R
at

e 
(IR

 p
er

 1
00

0 
)

  

  

Comparative Age Distribution of Shipping Losses  

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55

Age Range (years)

Pe
rc

en
t o

f L
os

se
s 

(%
) UK P&I Club Profile1997

US Berman Data 1850-1971



 

185 

Now in terms of the influence of accumulated ex-
perience, we may plot the loss rate per ship-year 
versus the accumulated experience in accSy as 
shown in Figure 5. 

 
Figure 5. The learning curve for shipping. 

The loss rate as a function of the accumulated ex-
perience in accSy is then given by a best-fit line of 
the exponential form derived for the distribution of 
the total number of microstates: 

A ≈ Am + Ao e –ε/k (10)  
or 
A (losses per Sy) = 0.08+0.84 exp–(accSy/213) (11)  

This result implies an initial loss rate many times 
higher than the equilibrium value, and a minimum 
rate of  ~ 0.08 per Sy for those that sank. This is of 
course telling us that on average the ships that sank 
lasted for a depth of experience afloat of about 
(1/0.08) or ~13 Sy, starting off lasting some 10 times 
less (~1 Sy). It does not tell us how long the average 
ship lasted, including those that were not lost, and 
indeed this is irrelevant for the moment. We just 
want to predict the relation between sinking rates 
and ship lifetimes. On an accumulated rate basis the 
predicted loss rate is now ~1 per 1000 Sy, illustrat-
ing the importance of the data sample size Observa-
tion Range for apparently random events. 

Thus we have confirmed the postulates that: 
− a systematic learning curve exists superimposed 

on the apparently random losses which we ob-
serve as outcomes; 

− a relevant measure for accumulated experience 
and depth of experience can be found (in this case 
years-afloat); and 

− a minimum asymptotic rate does exist, and is de-
rivable from the learning curve. 

4 OIL SPILLS AT SEA: TRACKING LEARNING 
TRENDS 

We have provided an initial analysis of importance 
to the safety and environmental impact of the oil 

storage and transportation industry, using publically 
available USA data on oil spills, shipping losses and 
pipeline accidents, not having access to the oil and 
gas industry’s privately held spill database (Duffey 
et al 2004).  

Spills and accidents can arise in many ways e.g.: 
− while filling;   
− in storage; 
− during transport; 
− at process and transfer facilities; plus  
− failure of vessels and pipelines.  

We would expect significant human involvement 
in the design, management and operation of all these 
technological activities, in the piping, pumping, 
tanks, valves and operations. For handling and stor-
age of (petro) chemicals, the risk of a spill or a loss 
is also dependent on the human error rate in the 
transport or storage mode and the accumulated expe-
rience with the transport or storage system. 

 
Figure 6. The oil spill learning curve 

The US Coast Guard database for oil spills was 
the most comprehensive we found, but is given in 
the usual annual format of tables. For shipping 
spills, in the oil spill database for the observation in-
terval from 1973 to 2000, we found information for 
231,000 spill events for the USA, while transporting 
a total of oil of nearly 68 Btoe, of which 8,700 
events were spills of more than 1000 gallons. As-
suming there is pressure from the EPA, industry, 
owners and others to reduce spills rates, then there is 
a nominally large HTS learning opportunity. We can 
easily extract the number of spills from such tables 
and transform it to an experience basis (Duffey & 
Saull 2008), replacing the list of numbers of out-
comes on a purely calendar year reporting basis. The 
measure for the accumulated experience we took 
was the total amount of oil being shipped in and out 
of the USA, which  is not given in or by the USGS 
raw datatables.  The US DOE track the oil consump-
tion information and where it comes from for purely 

USA Ship Loss Data 1800-1971 (extract)
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energy analysis purposes. The datatables for crude 
oil and petroleum products were given in the DOE 
Petroleum Overview, for 1949-2001, and the details 
of the calculations we have given elsewhere (Duffey 
& Saull 2008 in Chapter 8). 

The summary result is shown in Figure 6, and fol-
low a clear learning curve, which is also shown fit-
ted to the data. 

5 INSURING MODERN LOSSES: THE MOST 
PROBABLE AND MINIMUM ERROR RATE 

Now having established the learning curves and loss 
rates from historical data, we have also confirmed 
the results by testing the analysis against other data 
for modern fleets, where losses for all ships over 500 
tonnes were tracked. These include data for modern 
vessels (Institute of London Underwriters 1988) for 
losses greater than 500 tonnes for 1972-1998, and 
for the latest (UK Protection and Indemnity Mutual 
Insurance Club 2000) Major Claims data from 1976-
1999. 

In these modern datasets, we also know how 
many ships were afloat, but the years afloat for each 
ship were not known (the converse to the Berman 
dataset). The Observation Ranges were smaller (~ 25 
years), but covered the world-wide total losses 
which are comparable in number.  

The data is shown in Figure 7, where we have the 
loss rate for the ILU dataset for 1972-1998 world-
wide is given by, for some 30,000 ships afloat in any 
Sy, accumulating nearly a million Sy in total, and 
some 3,000 outcomes (losses) over the 26 year 
Range: 

A ≈ Am + Ao e –ε/k (12) 
or,  
A (losses per kSy) = 0.95 + 7 exp -(acckSy/600) (13) 

 
Figure 7. Modern Ship Losses 

 

This result shows an asymptotic or minimum loss 
rate of  ~ 0.95 per kS/y for losses > 500 tonnes in 
1972-1998  (despite observing nearly 2 /kSy now). 
We have a similar estimate for the Major Loss data, 
that is greatest in terms of financial cost, which 
shows a loss rate of ~1 /kSy (Pomeroy 2001), which 
is a value consistent with the above analyses. 

This lowest predicted minimum rate of ~ 0.95 
/kSy is consistent with the most probable rate inde-
pendently derived from the data for losses only (i.e., 
0.86 ± 0.1 per kSy) for 1800-1971. Since the two da-
tasets do not overlap, meeting in 1970, and one is for 
losses only in the USA and one is for all ships afloat 
world-wide, we have shown that: 
− the minimum error rate predicted for modern 

ships is close or equivalent to the most probable 
loss rate for the last 200 years, which if correct 
also confirms the postulate of the most probable 
distribution used in deriving the microstates dis-
tribution formula; 

− the distribution of microstates (manifested as an 
outcome rate) is apparently independent of tech-
nology or date, and is due to the dominant contri-
bution of the human element; and 

− the learning curve approach is consistent with the 
statistical distribution of error states. 

6 LEARNING RATES AND EXPERIENCE 
INTERVALS: THE UNIVERSAL LEARNING 
CURVE 

The two datasets we have studied are at first sight 
quite distinct, even though both are observed and 
recorded only for losses greater than 500 tonnes. The 
observational intervals, the accumulated experience 
and the number of outcomes are drastically different.  

One set (set A) is from 1800 to 1971, and gives a 
distribution of microstates for only losses for the 
USA with an experience base of about 10 kSy. The 
other (set B) extends that set A from 1971 to 1996, 
but is for the distribution of microstates for losses of 
all ships world-wide with an experience base of 
nearly 1000 kSy. Therefore, the depth of experience 
is quite different. The accumulated experience, Σni 
εi, is then quite different for each set, by the same 
factor of 100. Above, we have shown the learning 
curve rate constants are also different, being  
~ 200 Sy for set A, and ~ 600 kSy for set B, which is 
a factor of ~ 3000. 

So, for these Ranges, the predicted “learning rate 
ratio” between experience intervals for the losses on-
ly in the USA and for the whole world fleet afloat is: 

βA εA, /βB εB ~ 30 (14) 
Recall again that dataset A was for all ships afloat 

world-wide, while dataset B was just for those that 
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sank in the USA. The ratio above suggests that the 
experience interval ratio of the USA losses to the 
world fleet afloat is (εA/εB) ~ 1/30 (i.e., 3%), particu-
larly if βA ~ βB. 

To test that ratio prediction, recall also that for 
the ILU data in ~ 25 years we had 3000 losses of 
~ 30,000 ships afloat at any time. That is a loss rate 
percentage for the whole fleet of order (3000/25) X 
(100/30000) = 0.4% world-wide. But only a fraction 
of the world fleet actually sailed and sank near the 
USA. To determine that fraction, we sought another 
random sample Observation Range of losses and 
found an excellent one in the “Atlas of Ship Wrecks 
and Treasure” (Pickford 1994). Now the Atlas lists 
about 184 ships sunk off the East, West and Carib-
bean coasts of the USA between 1540 and 1956 out 
of a listed sample world-wide of 1400 losses. That is 
only a fraction of (184/1400) x 100 = 13% of the 
world’s ship losses were in the waters off the USA. 
We assume that fraction holds for the much later 
ILU dataset, which was for all ships > 500 tons. 

So if just 13% of the ships world-wide sank off 
the coasts of USA, and only 0.4% of the fleet sank in 
total around the world, we would have 0.4%/0.13 ~ 
3% as the experience interval ratio of only the USA 
losses to the total world total fleet afloat. Therefore, 
we have near perfect agreement versus the predicted 
ratio from the theory of 3% (or a factor of 30).  

Given the uncertainties in the calculations, and 
the vast differences in the datasets, this degree of 
agreement with the prediction seems almost seems 
fortuitous and better than might be expected. But the 
comparison does confirm the general approach and 
indicate how to compare datasets that possess very 
different experience bases. 

Let us try to test another prediction: if the theory, 
postulates and analogies are correct the two datasets 
should both follow the trend predicted by the ULC. 
We can directly compare the two learning rates for 
set (A) and set (B) with their very different experi-
ence bases by using the non-dimensional formula-
tion of the ULC for correlating data, i.e., 
E* = exp-KN* (15) 

We correct the learning rate constant for the USA 
losses only for the ratio of  ~ 30 derived above. The 
actual learning curves give all the needed estimates 
from the data for A0 and Am, which is sufficient to 
calculate E* for each microstate. We also have the 
total experience, ε, necessary to derive the non-
dimensional value of N*. Strictly speaking N* 
should be taken as the ratio of experience, ε, to the 
experience, εM, needed or observed to reach the min-
imum error rate, λm, or at least the maximum experi-
ence already achieved with the system. 

The comparisons of the ULCs suggested by the 
theory are shown in Figure 8. We have also shown 
the best-fit correlation to world data, i.e., with K ~ 3,  
E* = exp-3N* (16) 

 
Figure 8. Comparison of trends with the ULC 

 
The value of K ~ 3 was derived from analyzing 

vast datasets covering millions of error states that 
included amongst other things (Duffey & Saull 
2002, see Figure 1.7 in Chapter 1): USA data for 
deaths in recreational boating 1960-1998; automo-
bile crashes 1966-1998; railway accidents 1975-
1999; coal mining for 1938-1998; plus South Afri-
can gold and coal mining injuries 1969-1999; UK 
cardiac surgeries 1984-1999; US oil spills 1969-
2001; French latent error data 1998-1999; US com-
mercial aircraft near misses 1987-1997; and also 
world pulmonary deaths for 1840-1970.  

The two other lines, for the US (Berman) losses 
only and ILU world shipping datasets, are given by 
the MERE predictions calculated from:  
E* = exp-KN* = exp - ((1 - A/Am)/(1-A0/Am)) (17) 
whence  

A = Am + (Ao - Am)e – ε/k (18) 

and the values for k, Am and A0 are derived directly 
from those given by the theory and the data. The 213 
Sy in the exponent is adjusted for the observational 
experience interval ratio and becomes k = 213 x 30 
= 6390 Sy = 6.4 kSy. 

Hence, the only adjustment we have made or 
needed was to correct the learning rate constant for 
the differing depths of experience. We justify the 
factor of ~ 30 simply to bring the experience interval 
for the losses in the US only data consistently into 
line with the world experience interval. The remain-
ing differences between the predictions are well 
within the overall data scatter. 

This method thus allows apparently quite dispar-
ate datasets to be renormalized and intercompared. 
The universal learning trends are essentially the 
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same, and we have validated the overall theoretically 
predicted trend.  

Thus, we have succeeded in not only getting the 
two very different datasets on the same plot, but in 
obtaining agreement with the world trend derived 
from a wide range of totally independent data. Using 
the non-dimensional variables derived from theory, 
we have shown that the trends are correct. This 
agreement is despite the numerical changes being 
very large, by a factor of  ~ 100 in the learning rate 
ratio and a factor of 1000 in the accumulated experi-
ence, as we have discussed above.  

7 PRACTICAL APPLICATION: PREDICTING 
LOSSES AND MANAGING RISK 

Data are essential to measuring performance. Note 
that the shipping error/loss rate is not affected by the 
massive technology changes in shipping  (from sail 
to steam, from wood to steel) occurring over the last 
two hundred years. Losses are dominated by human 
(crew) performance. The overall loss rate (~ one per 
thousand ship years afloat) enables the prediction of 
loss probability, which affects both insurance costs 
and classification. In addition, the learning curve 
provides the probability of operational error, which 
is a function of the shipping maneuver or course 
transient. In principle, the analysis then provides the 
likelihood of collision, grounding or near misses. 

As for other industries and technologies, it would 
be useful and necessary to have further data mari-
time continuously collected on actual events, and to 
develop nautical performance indicators, that can be 
updated continually for loss and risk assessment 
purposes. Such an activity is underway for offshore 
oil and gas fields in the North Sea for both mobile 
and fixed facilities (Duffey & Skjerve 2008). Such 
objective measures and indicators enable the pres-
ence or absence of learning trends to be discerned, 
enhancing the management of risk exposure and 
prediction of losses, and hence would help guide 
improvements in maritime training, safety and loss 
control. 

8 CONCLUSIONS 

We have described a general and consistent theoreti-
cal model, however simplified it may be, which de-
scribes the rate of outcomes (losses) based on the 
classic concept of learning from experience. The ap-
proach is quantifiable and testable versus the exist-
ing data and potentially able to make predictions. 

We reconcile the apparently random occurrence of 
outcomes (accidents and errors) with the observed 
systematic trend from having a learning environ-
ment. We can now explain and predict outcomes, 
like ship losses, collisions and sinkings, and their 
apparently random occurrences because the human 
element component is persistent and large. 

We infer that risk reduction (learning) is propor-
tional to the rate of errors being made, which is de-
rived from the total number of distributions of er-
rors. We have validated the new theory, and in this 
paper summarize the use of marine loss and oil spill 
data as a working example. We analyzed shipping 
losses over the last two hundred years, which are an 
example of one such system and a rich data source 
because insurers and mariners tracked sinkings. 
Human error is and was the pervasive and main 
cause of ship loss, rather than structural defects in 
the ships themselves. The validation results support 
the basic postulates, and confirm the macroscopic 
ULC behavior observed for technological systems. 

Our new theory offers the prediction and the 
promise of determining and quantifying the influ-
ence of management, regulatory, liability, insurance, 
legal and other decisions. 
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