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ABSTRACT: In this paper the author compares the efficiency of two encoding schemes for artificial intelligence
methods used in the neuroevolutionary ship maneuvering system. This may be also be seen as the ship
handling system that simulates a learning process of a group of artificial helmsmen - autonomous control units,
created with an artificial neural network. The helmsman observes input signals derived form an enfironment
and calculates the values of required parameters of the vessel maneuvering in confined waters. In
neuroevolution such units are treated as individuals in population of artificial neural networks, which through
environmental sensing and evolutionary algorithms learn to perform given task efficiently. The main task of
this project is to evolve a population of helmsmen with indirect encoding and compare results of simulation
with direct encoding method.

1 INTRODUCTION Neuroevolutionary algorithms are successful

methods for optimizing neural networks topologies,

Neuroevolution is a combination of two different
methods: artificial neural networks (ANN) and
evolutionary algorithms (EA). Neuroevolutionary
methods are part of intelligent computational
methods (Kwasnicka, 2007) capable of finding
solutions to complex tasks by means of artificial
neural networks arising from evolution (Lehman and
Miikkulainen, 2013). This combination gives the
advantage of flexibility and adaptability, which
allows to adjust the computational structures to the
dynamically changing conditions encountered during
ship maneuvering and are intensively studied and
implemented in different fields of science, including:
— robotics (Haasdijk et al., 2010)(Lee et al., 2013);
— automation processes (Stanley et al., 2005);
— multi-agent systems (Nowak et al., 2008);
— designing and diagnostics (Larkin et al., 2006) and
many others.

especially in dynamic continuous reinforcement
learning tasks. Their significant advantage over
gradient-based algorithms is the capability to modify
network topologies along with connection weights.

The operation of ship maneuvering on confined
water is essential to the safety of people, equipment,
cargo and the environment. Increase of computational
power of electronic devices allows to implement
complex algorithms into advanced decision support
systems also in the field of marine navigation.

Such a system should include the following main

functions:

— ability to analyze the navigational situation in
continuous mode,

— warning before the dangerous situation may take
place, e.g. possible collision or exit from a
particular limited area in an undesirable direction,
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— providing transparent information that can be
used in co-operation with local authorities and
other auxiliary units of the area,

— ability to find regularities and patterns in complex
multi-stage navigational tasks.

All these requirements may be fulfilled with
neuroevolutionary methods.

The basic concept of a pattern-finding task is
presented in figure 1.
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Figure 1. Exploiting regularities on restricted water in a
pattern-finding task example.

Through continuous learning process, the system
shall predict the vessel position and state of the
environment after specified time interval as accurate
as possible in comparison to final real position of the
ship. It is possible to calculate a probable position
when there is a simulation model of the vessel
available. It is required that simulation model
includes the equations and coefficients for wind,
current and waves. But in most cases such advanced
non-linear simulation model is not available. And
again, a good solution for this problem is
neuroevolution.

2 NEUROEVOLUTION WITH DIRECT ENCODING

Neuroevolution is able to find a solution of a complex
and dynamically changing task with ANN created
and modified with EA.

In neuroevolution ANN is treated as an individual
in a population of multiple networks. With direct
encoding approach the basic topologies of the initial
population are randomly determined at the beginning
of learning process. Each individual begins the
process of finding a solution with the same starting
parameters. The action of each individual is usually
assessed with the reinforcement learning algorithms
(Stanley et al., 2005) and evolutionary stage of the
system shall select individuals best suited to the task
during selection stage, which determines the whole
population to improve its genetic material over time.

Evolutionary stage of the system consist three
main processes:
— selection of the best individuals,
— reproduction (with cross-over and mutation sub-
processes),
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- replacement (offspring replaces worst
individuals).
The neuroevolutionary method with direct

encoding of neural network topology has been
implemented in earlier works of the author, with the
modified NEAT algorithm (Figure 2).

NEAT  (NeuroEvolution of  Augmenting
Topologies) adjust the topology of ANN’s with EA
(Stanley and Risto, 2002) gradually to given task,
allows to obtain a set of ANN’s that are best fitted to
this task.

Each node represents a neuron that produces a
real value between 0 and 1 as a result of normalized
weighted sum of its inputs. Normalization of
weighted sum is performed with sigmoid function, as
in Equation 1.

0i=———— (1)
1+e

where:

o0j— output value of an neuron,

Sj— weighted sum of input values x» with weights wn,
B — slope coefficient,

& — bias.

Adding the bias signal of constant value 1, allows
to shift the output value of the activation function.
Influence of bias may be adjusted through changing
weight of this signal, when the mutation stage is
performed in evolutionary process during creation of
an offspring in the reproduction stage.

il i2 i3 i4
N
Inputs 4
Nodes 2
Outputs 1
From i1 i2 i1 i3 1 2
To ol 1 1 2 2 ol
Weight -04 | 002 |-0.11| 0.9 | -1.0 | 0.52

Innov. No. 1 2 4 5 9 12

Disabled? - - Yes - - -

Figure 2. An example of direct encoding of an artificial
neural network topology (phenotype) from a connection
genome (genotype) in NEAT method



In this stage two best neural networks are chosen
and its genetic material is crossed-over to create two
new individuals. Cross-over of disparate topologies is
processed in a meaningful way by pairing up genes
with the same historical markings, called innovation
numbers. With this approach the offspring may be
formed in one of three ways:

— In wuniform crossover, matching genes are
randomly chosen for the offspring genome, with
higher probability for better fitted parent.

— In blended crossover, the connection weights of
matching genes are averaged.

— In elite crossover disjoints and excesses are taken
from more fit parent only, all redundant genes
from less fit parent are discarded. All matching
genes are averaged.

Genes that do not match with the range of the
other parent’s innovation numbers are called disjoints
(when they occur within the genome) or excesses
(when they occur outside of the genome).

These three types of crossover were found to be
most effective in neuroevolutionary algorithms in
comparison to other crossover methods (Stanley and
Risto, 2002).

Genes that have been disabled in previous
generations have a small chance of being re-enabled
during new offspring creation, allowing ANNs to
make use of older solutions once again (Lacki, 2012).

Evolutionary neural network can keep historic
trails of the origin of every gene in the population,
allowing matching genes to be found and identified
even in different genome structures. Old behaviors
encoded in the pre-existing network structure have a
chance to not to be destroyed and pass their
properties through evolution to the new structures,
thus provide an opportunity to elaborate on these
original behaviors.

The number of inputs and outputs is fixed. During
evolution, in mutation stage, the number of internal
neurons and connections may change. In classic
NEAT method the number of nodes and connections
may only increase over time, with possibility to
temporary disable the connection. This guaranties to
transfer learning experience from ancestors to new
offspring and fast learning of new tasks for new
population but it may be disadvantageous in such
dynamic environments as ship maneuvering in
restricted waters. In this case an experience of old
population may be insufficient and its learning ability
to slow, due to size of experienced ANN’s. Through
mutation, the genomes in modified NEAT will
gradually get larger for complex tasks and lower their
size in simpler ones. Genomes of varying sizes will
result, sometimes with different connections at the
same positions.

Historical markings represented by innovation
numbers allow neuroevolutionary algorithm to
perform crossover operation without analyzing
topologies. Genomes of different organizations and
sizes stay compatible throughout evolution, thus
allowing them to interchange genes in a meaningful
way. This procedure allows for used method to
increase complexity of the structure while different
networks still remain compatible.

During elite selection process the system
eliminates the lowest performing members of every
specialized group of individuals from the population.
In the next step the offspring replaces eliminated
worst individuals. Thus the quantity of the
population remains the same while its quality shall
improve according to assumed goals and restrictions
of the task.

3 NEUROEVOLUTION WITH INDIRECT
ENCODING

First effective indirect encoding of artificial neural
networks, called Cellular Encoding, was proposed
by Gruau in his PhD thesis (Gruau, 1994). In this
method each neuron was represented by a cell
connected to other cells. Each cell was able to
duplicate in parallel or serial connection of its two
offspring. In that approach the neural networks can
be generated and developed with modularity.
Modular structure is made of several subnetworks,
arranged in a hierarchical way. In some cases the
same subnetwork can be repeated.

Generally in indirect encoding a genome specifies
how to build a topology. It allows to create more
compact representation of genes in comparison to
direct encoding genomes.

The general set of instruction include commands
that allow to create a topology in a meaningful way,
ie.

— Split connection,

— Add connection,

— Add node,

— Copy connection,

— Remove connection.

The weights of evolved neural networks
architectures are trained using backpropagation
method.

4 INPUTS AND OUTPUTS OF THE NETWORKS

Input and output signals of ANN’s must be
determined at the beginning of designing phase of the
system. Proper set of signals considered in the model
is crucial for efficient performance of the method and
for its fidelity and accuracy in comparison to the real
navigational situation.

Input signals in the system, with three degrees of
freedom of the vessel movement, are as follows:
— Ships’ course over ground,
— Ships’ angular velocity,
— Ships’ speed over ground,
— Ships’ position,
— Angle and velocity of a current,
— Angle and velocity of a wind.
— Main propeller revolutions (current and preset),
— Rudders’ deflection (current and preset).

In future research other signals from environment
may be taken into account, i.e. waves, cargo, trim and
roll.
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Output signals of ANNs generates the values for
steering the vessel:
— rpm of main propeller,
— rudders’ deflection.

All of the input and output signals are normalized
and encoded as real values between 0 and 1.

Computational flexibility and ability to adapt a
network topology to a given task allows to design
complex sets of inputs and outputs of ANN’s.

This is a very sophisticated neuroevolutionary
method that can deal with premature convergence
that preserves diversity and gradual complexity of
explored solutions.

Each group has separate ranking list and
individuals compete only within their own group.
This approach requires much more memory
allocation for higher amount of genetic material but
eliminates unnecessary influence of unwanted input
signals to output values.

Performance of each individual is measured in
defined time interval and its fitness value is
calculated as a sum of collected rewards (positive of
negative values) using Reinforcement Learning (RL)
algorithms. The rewards in RL are determined
arbitrarily by system designer or user and their values
may depend on actual overall performance of the
population.

In the evolution process, the system selects the
individuals best suited to the task during the selection
stage and inserts their genetic material in place of the
worst performing individuals.

In this case the individuals with the least cost
criteria fitness values are more likely to reproduce
their genetic material in next generation.

The input signals have been divided into two
groups — environmental signals and steering signals.
Group of environmental signals consist all data
incoming from vessels surroundings (i.e. winds and
currents speed and direction) which creates an input
state vector for the system.

Implementation of mathematical model of wind to
the motion control in neuroevolutionary ship
handling system increases its performance and
robustness in simulated environment.

The smaller the speed and draft of the ship, the
greater the influence of wind. Of course, the size of
the side surface exposed to wind is essential to the
ships movement. Under pressure of wind force,
depending of the ships’ design (location of the
superstructure, the deployment of on-board
equipment and cargo, etc.) she tends to deviate from
the course, with the wind or into the wind.

When the ship moves forward the center of effort
of the wind (wind point, WP) is generally close to
amidships, away from pivot point (PP). This
difference creates a substantial turning lever between
PP and WP, thus making the ship, with the
superstructure deployment at stern, to swing the bow
into the wind.

For ship moving forward there are defined terms
of relative wind speed Vw and angle of attack pw
(Isherwood, 1973). Wind forces acting on symmetrical
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ship are in general calculated from data as ship’s
overall length, surfaces affected by the wind, air
density and coefficients calculated from available
characteristics of ships model, i.e. from wind loads
data of Oil Companies International Marine Forum
(OCIMF, 1977). This organization identifies safety and
environmental issues facing oil tankers, barges,
terminals and offshore marine operations, and
develops and publishes recommended standards that
serve as technical benchmarks for regional and
worldwide exploitation.

Additional forces that affect ships movement are
water flows from water current. In this case the water
moves in relation to the bottom of a river, sea or an
ocean.

Under the pressure of a current a ship is drifting
together with the water, relative to the ground and
any fixed objects. When the ship is moving in current
the speed over ground is a resultant velocity of speed
of the vessel and the velocity of the sea current.

Steering signals consist data that may be changed
by a user of the system (i.e. a navigator or a
commander on the bridge). Steering signals include
propellers revolutions (or thrust) and rudders angles.

All these input signals affect ship’s movement
which creates a new state of the environment with the
moving vessel in it.

At the same time the similar new state parameters
are being calculated in the neuroevolutionary system,
regarding the same input signals. The result of
calculations provides substantial information for the
system that allows to elaborate the quality of created
ANN'’s and overall performance of whole population.
During evaluation the ranking of ANNSs it created
and the best networks are stored for future
exploitation.

5 THE EXPERIMENTAL RESULTS

For the purpose of a ship movement simulation an
application has been created by the author (Figure 6).

Figure 6. An application for testing behavior of simulation
models of different vessels in water current and windy
environment



The designed application allows to choose specific
model of the vessel, to set a starting parameters of
navigational situation in restricted waters, including
placement of obstacles, setting speed and direction of
a wind and a water current, and run a simulation
with observable environmental data and ships
parameters and characteristics that can be saved to a
file and analyzed offline after the simulation.

Two simulation models of ships with three-
degrees-of-freedom had been used in the system for
the purpose of systems performance test. Main
parameters of ships has been compared in table 1.

Table 1. Main parameters of simulation ship models.

Name Blue Lady Cape Norman
Type VLCC Container ship
Scale 1:24 1:1

Length 13,78 [m] 175 [m]

Beam 2,38 [m] 26,5 [m]

Draft 0,86 [m] 14,2 [m]
Capacity/Tonnage 22,83 [T] 1504 [TEU]
Max. speed 3,1 [kn] 20,4 [kn]

The sets of output data of ANN’s has been
calculated and recorded during task evaluation in
every generation as the results of simulation. The
population consists 100 ANNs. The initial content of
each genome is determined randomly from available
set of instructions with a specific set of rules.

= Direct encoding
* |Indirect encoding
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Figure 7. The comparison of two encoding methods in
simulation of the container ship maneuvering in restricted
area

The simulation example presents the results for
400 generations (Figure 7). The routes of the best
helmsmen of two different encoding methods are
shown. These simulation results prove a good
performance of learning process of a single output
neural network for both methods.

Table 2. The time of reaching a goal for two different
encodings.

Encoding Avg. time Std dev. of avg. time
Direct 00:28:13 00:09:25 33,4%
Indirect 00:21:01 00:02:09 10,2%

The average time of reaching a goal for two
different encoding methods is presented in table 2.

Standard deviation of goal reaching time is
significantly greater for direct encoding, regarding its
greater range of possible predicted speed values.

These two routes illustrates that learning speed in
neuroevolutionary algorithms strictly depends on the
encoding method. Furthermore the directly encoded
population in modified NEAT method adopts faster
to new sudden changes due to greater changes in an
offspring genomes. But on the other hand, the
indirectly encoded population has ability to learn
every individual during its lifetime and is able to
react to new states relying on learned patterns.

6 REMARKS

Neuroevolutionary ship handling system with

indirect encoding has properties that distinguishes it

from direct encoding system:

— small genotype may create large phenotype,

— itis capable of finding patterns and regularities,

— additional learning process is required for
connections weights,

— an individual can learn during its lifetime,

— is capable of implementing scalability and
modularity,

— an additional time consuming computation is
needed for creating a phenotype.

Intelligent maneuvering pattern-finding system for
maritime transport that uses indirect encoding has
some valuable benefits:

— increase of the safety of navigation in a restricted
water area by improving the data analysis for
decision-maker during maneuvers,
improvement of the operation of ships in port, due
to the increased bandwidth,

— reduction of operating costs of vessels,

— minimization of the occurrence of human errors,

— reduction of the harmful impact of transport on
the environment.

It is important to notice that all these benefits in
direct encoding strictly depend on proper adjustment
of evolutionary parameters, the size of ANNs
population and the encoding methods of signals
considered in serviced environment.

Neuroevolutionary approach to ship handling in
confined waters improves a quality of maneuvers and
safety of navigation effectively. For the simulation
study, mathematical model of three-degrees-of-
freedom maneuvering container ship and VLCC
vessel with the single-propeller and single-rudder
were applied to test the pattern-finding performance
of the system. Artificial neural networks based on
modified NEAT method increase complexity and

performance of considered model of ship
maneuvering in confined waters.
Implementation of input signals related to

influence of wind and current allows to simulate
complex behavior of the vessel in the environment
with much larger state space than it was possible in a
classic state machine learning algorithms (kLacki,
2007). Simulation results of maneuvers in variable
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current and windy conditions for different ship
models encourage to further research of the
neuroevolutionary  methods which may be
successfully implemented into advanced navigational
systems to increase the safety of navigation.

It is also necessary to introduce and examine
additional disturbances from the influence of sea
waves on the movement of the vessel in the further
research of the neuroevolutionary ship handling
system.
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