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1 INTRODUCTION 

We are talking about a critical sampling of an analog 
signal when the sampling frequency used for 
performing this operation equals exactly twice the 
value of a maximal frequency occurring in the 
spectrum of this signal. Note that equivalently we can 
talk in this case about a critical sampling frequency 
(rate). 

It is well known (Marks II R. J. 1991), (Korohoda 
P., Borgosz J. 1999), (Osgood B. 2014), (Borys A., 
Korohoda P. 2017) that signal sampling performed at 
the critical sampling rate can provide some unwanted 
problems when carrying out the inverse operation. 
That is in reconstructing (restoring) the analog signal 
from its samples. 

In this paper, we illustrate the problems 
mentioned above on an example of a perfect 
recovering a cosinusoidal signal of any phase being 
sampled critically. We do this through performing 
very detailed analysis of that what really happens 

when the cosinusoidal signal is sampled with the 
Nyquist rate and afterwards reconstructed from its 
samples. 

We show in this paper that recovering both the 
original cosinusoidal signal amplitude and its phase 
is not possible. But, what is possible then? It is 
possible to recover one of these quantities under the 
assumption that the second one is known. However, 
carrying out some additional calculations is also then 
needed.  

In this paper, we show also that transfer functions 
of the recovering filters used in the cases of critical 
and non-critical sampling are not identical. Their form 
is derived here. 

The remainder of the paper is organized as 
follows. Section 2 introduces an example of a 
cosinusoidal signal of any phase, which is discussed 
throughout this paper. Also, in this section, a 
thorough analysis of the effects appearing during 
recovery of the cosinusoidal signal sampled critically 

Impossibility of Perfect Recovering Cosinusoidal Signal 
of Any Phase Sampled with Nyquist Rate 

A. Borys 
Gdynia Maritime University, Gdynia, Poland 

P. Korohoda 
AGH University of Science and Technology, Kraków, Poland 

ABSTRACT: In this paper, a problem of a perfect recovering cosinusoidal signal of any phase being sampled 
critically is considered. It is shown that there is no general solution to this problem. Its detailed analysis 
presented here shows that recovering both the original cosinusoidal signal amplitude and its phase is not 
possible at all. Only one of this quantities can be recovered under the assumption that the second one is known. 
And even then, performing some additional calculations is needed. As a byproduct, it is shown here that a 
transfer function of the recovering filter that must be used in the case of the critical sampling differs from the 
one which is used when a cosinusoidal signal is sampled with the use of a sampling frequency greater than the 
Nyquist rate. All the results achieved in this paper are soundly justified by thorough derivations. 

 
http://www.transnav.eu 

the International Journal  
on Marine Navigation  
and Safety of Sea Transportation 

Volume 14 
Number 3 

September 2020 

DOI: 10.12716/1001.14.03.28 



738 

is presented. In Section 3, we consider the 
reconstruction formula and the form of a transfer 
function occurring in it for the case of occurrence of 
Dirac deltas in the signal spectrum together with its 
critical sampling. In the next section, complementary 
results are presented for the case of non-critical 
sampling. Finally, Section 5 concludes the paper. 

2 A SIMPLE EXAMPLE ILLUSTRATING THE 
PROBLEM 

Let us start consideration of the problem we are 
discussing in this paper with an example. And, to this 
end, let us take into account the sampling of a co-
sinusoidal signal of the form 

( )( ) cos 2 mx t f tπ ϕ= + , (1) 

where mf  and ϕ  are its frequency and phase, 
respectively. For simplicity, the amplitude of this 
signal is assumed here to be equal to one, and  t  in 
(1) means a continuous time. 

So, sampling of (1) will be critical, when the 
sampling rate, sf , being the inverse of the distance 
between samples, T, is equal to 

1 2s mf T f= = . (2) 

Moreover, see that the Fourier transform of the 
cosinusoidal signal given by (1) has the following 
form: 

( ) ( ) ( ) ( )1 exp
2 m m mX f f f f f j f fδ δ ϕ = + + −  , (3) 

where ( )δ ⋅  means the so-called Dirac delta impulse 
(Dirac P. A. M. 1947), (Marks II R. J. 1991), (Osgood B. 
2014), which is also called the Dirac delta function 
(improperly) or the Dirac distribution (properly) in 
the literature. 

Next, using the sifting property of the Dirac delta 
impulse in (3), we get 

( ) ( ) ( )

( ) ( )

1 exp
2

        exp   .

m

m

X f f f j

f f j

δ ϕ

δ ϕ

= + − +

+ − 

 (4) 

Note further that by applying the Euler formula to 
( )exp jϕ−  and ( )exp jϕ  in (4) we arrive at an 

equivalent form of the latter, i.e. 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 cos
2

1 sin
2

m m

m m

X f f f f f

j f f f f

ϕ δ δ

ϕ δ δ

 = + + − − 

 − + − − 

. (5) 

In the literature, the operation of signal sampling 
is modeled as a modulation of the so-called Dirac 
comb (Marks II R. J. 1991), (Osgood B. 2014), i.e. 

( )comb ( )T
n

t t nTδ
∞

=−∞

= −∑ , (6) 

by a given analog signal to be sampled. In other 
words, the above operation can be expressed as a 
multiplication of the Dirac comb by this signal. That is 
by 

( ) ( ) ( )( ) ( ) combs T
n

x t x t t x nT t nTδ
∞

=−∞

= ⋅ = −∑ , (7) 

where ( )sx t  means a continuous-time sampled 
version of the signal ( )x t . So, we get from (7) 

( ) ( )( ) cos 2s m
n

x t f nT t nTπ ϕ δ
∞

=−∞

= + −∑ . (8) 

in the case of (1). 

The equivalent of (7) in the frequency domain is 
given by 

( ) { } { } ( ){ }

( )

( ) ( ) comb

 ,

s s T

s s
n

X f x t x t t

f X f nf
∞

=−∞

= = ⊗ =

= −∑

  
 (9) 

where {}⋅  stands for performing the Fourier 
transformation of a signal occurring in braces of this 
symbol. Moreover, the symbols ⊗  and sf  denote 
the convolution operation and sampling rate, 
respectively. 

Looking at the result (9), we see that the Fourier 
transform of a sampled signal consists of an infinite 
sum of periodically shifted Fourier transforms of its 
un-sampled version multiplied by the sampling 
frequency 1sf T= . For details regarding derivation 
of (9), see, for example, (Marks II R. J. 1991), (Osgood 
B. 2014). 

Further, applying (5) in (9) leads to 

( ) ( ){ ( )

( ) ( ) ( )
( ) }

1 cos
2

sin

  .

s s s m
n

s m s m

s m

X f f f nf f

f nf f j f nf f

f nf f

ϕ δ

δ ϕ δ

δ

∞

=−∞

= − + +

 + − − − − + − 

− − − 

∑

 (10) 

In the next step, note that the general expression 
(10) can be highly simplified in the case of the critical 
sampling of the signal (1). That is with the use of 

2s mf f= , as given by (2). Then, the following: 
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( )

( )( )

( )

( )

1

2

2 1 2

2 2

2

m m
n

m m m
n

m m m
n n

m m
n n

f nf f

f n f f f

f n f f f

f nf f

δ

δ

δ

δ

∞

=−∞

∞

=−∞

∞

′= − =−∞

∞

′→ =−∞

− + =

= − − − + =

′= − − + =

= − −

∑

∑

∑

∑

 (11) 

holds. Further, application of (11) in (10) gives 

( ) ( ) ( )( )

( ) ( )( )

2 cos 2 1

2 cos 2 1   .

s m m
n

m m
n

X f f f n f

f f n f

ϕ δ

ϕ δ

∞

=−∞

∞

=−∞

= − − =

= − +

∑

∑


 (12) 

What does it mean the operation of recovering a 
signal in the frequency domain? See that it can be 
simply formulated as finding a filter possessing the 
transfer function, say ( )H f , which fulfills the 
following:  

( ) ( ) ( )sH f X f X f=  . (13) 

So, applying (9) in (13) gives 

( ) ( )
( )

( )

( )s
s s

n

X f X f
H f

X f f X f nf
∞

=−∞

= =
−∑

 . (14) 

Further, in the next step, one can check that the 
function 

( ) 1 rect
s s

fH f
f f

 
=  

 
 , (15) 

with an auxiliary function ( )rect ⋅  defined by 

( ) 1 1rect 1  for   and   0  for 
2 2

x x x= ≤ >  ,  (16) 

is a solution in (14), when the function ( )X f  is 
well-defined (that is it is a function, not a 
distribution). Note also that such a filter as that one 
given by (15) is called an interpolation filter (Marks II 
R. J. 1991). 

Let us now introduce (12) and (15) with 2s mf f=  
into (13). This leads to 

( ) ( )

( )( )

( ) ( ) ( )

1 rect 2 cos
2 2

2 1

cos   .

r m
m m

m
n

m m

fX f f
f f

f n f

f f f f

ϕ

δ

ϕ δ δ

∞

=−∞

 
= ⋅ 

 

⋅ − + =

 = + + − 

∑



 (17) 

Looking at (17), we see that the result obtained 
( )rX f  differs from the expected one, that is from 
( )X f  given by (3) or equivalently by (4). And, for 

this reason, it is denoted differently, by ( )rX f . 
Further, note also that the inverse Fourier transform 
of ( )rX f  is given by  

( ) ( ){ } ( ) ( )1 2cos cos 2r r mx t X f f tϕ π−= =   , (18) 

where { }1− ⋅  stands for performing the inverse 
Fourier transformation of a Fourier transform in 
braces of this symbol. 

Comparison of (18) with (1) shows that the 
reconstructed signal ( )rx t  evidently differs from the 
original analog one, ( )x t . In what follows, we will 
look for the cause of this. So, to this end, let us first 
check whether the transfer function given by (15), 
which was derived from (13) and (14), is a correct one 
in our case. 

3 TRANSFER FUNCTION IN RECONSTRUCTION 
FORMULA IN CASE OF OCCURRENCE OF 
DIRAC DELTAS IN SIGNAL SPECTRUM AND 
CRITICAL SAMPLING 

Consider now in more detail (13), which is the 
reconstruction formula expressed in the frequency 
domain, when both the signals ( )sX f 

 and ( )X f 
 

in it contain Dirac deltas.  

Further, we continue in this section analysis of the 
example introduced in the previous section about a 
critical sampling of an analog cosinusoidal signal. 
And, note now that because of a critical character of 
the latter operation it is highly advisable to check 
correctness of calculations at edges of the 
characteristics of ( )H f . That is for the left-hand 
side edge occurring at  2s mf f f= − = −  and for 
its right-hand side counterpart at 2s mf f f= = . For 
this purpose, we modify slightly ( )H f  given by 
(15) by introducing there a coefficient c, which we 
assume to be unknown at first instance. So, we 
rewrite then (15) as 

( ) rectc
s s

c fH f
f f

 
=  

 
 , (19) 

where c means a real number and ( )cH f  stands for 
a modified ( )H f . 

Substituting ( )sX f  given by (12), ( )cH f  
given by (19), and ( )X f  given by (5) into (13), with 

2s mf f= , leads to 
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( )

( )( )

( ) ( ) ( )

( ) ( ) ( )

rect 2 cos
2 2

2 1

1 cos
2
1 sin   .
2

m
m m

m
n

m m

m m

c f f
f f

f n f

f f f f

j f f f f

ϕ

δ

ϕ δ δ

ϕ δ δ

∞

=−∞

 
⋅ 

 

⋅ − + =

 = + + − − 

 − + − − 

∑
 (20) 

In the next step, note that performing the 
operations indicated in the expression on the right-
hand side of (20) results in 

( )

( )( )

( ) ( ) ( )

rect 2 cos
2 2

2 1

cos  .

m
m m

m
n

m m

c f f
f f

f n f

c f f f f

ϕ

δ

ϕ δ δ

∞

=−∞

 
⋅ 

 

⋅ − + =

 = ⋅ + + + 

∑  (21) 

Next, introducing (21) into (20), we get finally 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

cos

1 cos
2
1 sin   .
2

m m

m m

m m

c f f f f

f f f f

j f f f f

ϕ δ δ

ϕ δ δ

ϕ δ δ

 ⋅ + + + = 

 = + + − − 

 − + − − 

 (22) 

Observe now that there is no real number c that 
fulfills equation (22), in general, for all phases ϕ  of 
the cosinusoidal signal given by (1). However, for a 
particular value of 0ϕ =  radians, equation (22) 
simplifies to 

( ) ( )

( ) ( )1  ,
2

m m

m m

c f f f f

f f f f

δ δ

δ δ

 ⋅ + + + = 

 = + + − 
 (23) 

and the resulting equation (23) is identically satisfied 
for 1 2c = . 

Observe also that our previous results (17) and (18) 
will be slightly modified if we take into account the 
coefficient 1 2c =  in (19) instead of 1c = ; the latter 
follows from (14) and (15). Then, we will have 

( ) ( ) ( ) ( )1cos
2rc m mX f f f f fϕ δ δ = + + −   (24) 

and 

( ) ( ){ } ( ) ( )
( )

1 cos cos 2

cos 2
rc rc m

m

x t X f f t

A f tϕ

ϕ π

π

−= = =

=

 
 , (25) 

respectively, where ( )rcX f  means a modified 
version of ( )rX f  and ( )rcx t  is the inverse 
Fourier transform of the former one. Moreover, Aϕ  
means an amplitude of the cosinusoidal signal in (25). 

Now, see finally that for 0ϕ =  radians the 
original signal ( )x t  given by (1) and its recovered 
version ( )rcx t  given by (25) are identical. That is in 
this particular case we have to do with a perfect 
reconstruction. And, this is a very strong argument 
for the use of the transfer function (19) with 1 2c =  
instead of the one given by (15) in our further 
considerations. 

By the way, note that using another method it has 
been shown in (Borys A., Korohoda P. 2017) that 
reasonable results of analysis of the example 
discussed in this paper are achieved only when the 
value of the coefficient 1 2c =  in (19). 

Let us now come back to consideration of (22) for 
phases 0ϕ ≠  radians. It can be easily shown that 
there  is no such real or complex-valued coefficient c 
that satisfies equation (22). Here, we propose to 
overcome this problem in a way presented below. 
And, afterwards, we check whether results achieved 
are reasonable. 

We start with ignoring the imaginary component 
in (22). That is we ignore the existence of  

( ) ( ) ( )1 sin
2 m mj f f f fϕ δ δ − + − −   (26) 

in (22). Or, equivalently, we ignore the fact that the 
imaginary components on both side of (22) do not 
compensate each other. That is we ignore that the 
following: 

( ) ( ) ( )1 sin
2

0 m mj f f f fϕ δ δ − + − −≠   (27) 

holds. And, what remains then? It remains consider-
ation of the real parts on both sides of (22) exclusively. 
That is consideration of the following 

( ) ( ) ( )

( ) ( ) ( )

cos

1 cos  ,
2

m m

m m

c f f f f

f f f f

ϕ δ δ

ϕ δ δ

 ⋅ + + + = 

 = + + − 
 (28) 

where it is assumed that the coefficient c is real-
valued. 

Observe now that for ( )cos 0ϕ ≠  equation (28) 
simplifies to (23). Therefore, its solution 1 2c =  is 
identical with the previous one as well as are the 
related solutions (24) and (25) describing the form of 
the reconstructed signal. 

Let us now take a closer look at the recovered 
signal given by (25). Obviously, it is not identical with 
the original one given by (1). So, the signal recovery 
process in the case of 0ϕ ≠  and ( )cos 0ϕ ≠  at the 
same time, as described above, is not perfect. 
However, not all is lost here. Namely, proceeding 
heuristically as shown below allows us to arrive at the 
original form of the signal (1) when we have the result 
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(25). Simply, considering the amplitude of the 
cosinusoidal signal given by (25), we can write 

( )arccos Aϕϕ =  . (29) 

With this in mind, we can modify the previous 
recovery algorithm for the case of 0ϕ ≠  and  

( )cos 0ϕ ≠  at the same time - as follows. 
1 Perform all the operations to get ( )rcx t  as given 

by (25). Observe that frequency of the original 
signal is correctly recognized in ( )rcx t . However, 
signal amplitude there is equal to ( )cos ϕ  
instead of 1.  

2 Calculate the phase ϕ  from (29). 
3 In (25), replace the amplitude ( )cos ϕ  with 1 and 

add also there the calculated (in point II above) 
value of ϕ  to the cosine function argument 
2 mf tπ . It results finally in getting (1). 

The algorithm sketched in points I, II, and III 
above can be viewed as an improved signal recovery 
algorithm for the case of recovery of cosinusoidal 
signals of any phase. As seen, its application leads 
then to a perfect signal reconstruction. 

Note however that all this presented above works 
correctly only under the assumption of knowing the 
amplitude of a cosinusoidal signal before sampling. 
And, in this context, we recall that we assumed for 
simplicity in our example the signal given by (1) that 
amplitude is 1. Obviously, without this knowledge, 
the quantity Aϕ  in (25) cannot be fully attributed to 

( )cos ϕ . Then, the recovered quantity Aϕ  is a 
product of an unknown amplitude of the un-sampled 
cosinusoidal signal and of a value of the cosine 
function of its phase. That is it is a product of two 
unknowns. Hence, in this case, nothing can be said 
about the amplitude and phase of the original 
cosinusoidal signal. 

Furthermore, it follows from the detailed analysis 
performed in this section that there is no such a 
“recovery” transfer function ( )H f  in sense of 
equation (13), which allows a perfect recovery of a 
cosinusoidal signal of any phase sampled with 
Nyquist rate. As shown, this fact follows from the 
impossibility to satisfy equation (22).  

4 TRANSFER FUNCTION IN RECONSTRUCTION 
FORMULA IN CASE OF OCCURRENCE OF 
DIRAC DELTAS IN SIGNAL SPECTRUM AND 
NON-CRITICAL SAMPLING 

It is worthy to complete our derivations presented in 
the previous section by considering also the case of a 
non-critical sampling of the cosinusoidal signal given 
by (1). That is we will sample now the signal given by 
(1) with a sampling frequency fulfilling the following 
inequality: 

1 2s mf T f= > . (30) 

So, using the general formula (9) and (4), we arrive 
at 

( ) ( )

( ) ( )

( ) ( )

=

exp
2

 exp

s s s
n

s
s m

n

s m

X f f X f nf

f f nf f j

f nf f j

δ ϕ

δ ϕ

∞

=−∞

∞

=−∞

= −

= − + − +

+ − − 

∑

∑



 (31) 

with, do not forget now, 2s mf f> . 

Next, let us come to the operation of recovery of 
( )X f  given by (4) from ( )sX f  expressed by 

(31). To this end, we will take into account, as before, 
the reconstruction formula in the frequency domain 
presented in (13). Further, observe that a good 
candidate to play a role of ( )H f  in (13) is ( )cH f  
given by (19) because it filters out all the spectral 
components outside the range of frequencies 

: sf f f≤ , as wanted. So, applying ( )cH f  to (31) 
gives 

( ) ( ) ( ) ( )

( ) ( )

exp
2

exp  .

c s m

m

cH f X f f f j

f f j

δ ϕ

δ ϕ

= + − +

+ − 


 (32) 

And, substituting (32) into (13) with ( )X f  
given by (3) results in 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

exp exp
2

1= exp exp  .
2

m m

m m

c f f j f f j

f f j f f j

δ ϕ δ ϕ

δ ϕ δ ϕ

 + − + − = 

 + − + − 

 (33) 

In the next step, grouping Dirac deltas with the 
same arguments in (33), we get 

( ) ( ) ( )
( ) ( ) ( )

1 exp

1 exp 0 .
m

m

c j f f

c j f f

ϕ δ

ϕ δ

− − + +

+ − − =
 (34) 

Observe now that (34) will be satisfied if and only 
if the coefficients multiplying the Dirac deltas in (34) 
are equal zero. This follows from the theory of 
distributions (Hoskins R. F. 2009). That is from the 
fact that ( ) 0a δ⋅ ⋅ =  if and only if 0a = . So, 
applying this in (34) leads to the following conclusion: 
c must be equal to 1 in the case considered in this 
section. Further, substituting 1c =  in (19) results in 

( ) ( )1
1 rectc

s s

fH f H f
f f=

 
= = 

 
 . (35) 

So, we can conclude finally that in the case of 
occurrence of Dirac deltas in signal spectrum and 
non-critical sampling the transfer function of a 
reconstruction filter is equal to ( )H f  given by (15). 

At the end of this section, it is also worthy to draw 
attention to the fact that some algebraic operations on 
distributions are forbidden (Hoskins R. F. 2009). For 
example, the following notation: 
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( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 exp exp
2

exp exp
2

exp exp1 1 11
exp exp

s

m m

s
s m s m

n

m m

s m m s s

X f
H f

X f

f f j f f j

f f nf f j f nf f j

f f j f f j
f f f j f f j f f

δ ϕ δ ϕ

δ ϕ δ ϕ

δ ϕ δ ϕ
δ ϕ δ ϕ

∞

=−∞

= =

 + − + − 
= =

 − + − + − − 

+ − + −
= = ⋅ =

+ − + −

∑

  (36) 

is highly incorrect, mainly because of the occurrence 
of divisions of Dirac deltas. They are forbidden (or 
undefined) in the theory of distributions.  

5 CONCLUSIONS 

The reasons of impossibility to recover both the 
original cosinusoidal signal amplitude and its phase 
from samples of this signal sampled critically have 
been recognized in this paper. They follow from the 
very detailed analyses presented. 

Furthermore, it has been shown that only when 
one of the aforementioned quantities is known in the 
process of signal reconstruction, the value of the 
second one can be recovered. 

Finally, it has been also shown that a transfer 
function of the reconstruction filter that must be used 
in the case of a critical sampling differs from the one 
which is used when a cosinusoidal signal is not 
sampled critically. 
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