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1 INTRODUCTION 

Multibeam data includes different error types. These 
errors can be classified as systematic errors, gross 
errors (outliers) and random errors [1]. The source of 
these errors can be humans (hydrographers), 
equipment (echosounders) or environment (sea state). 
The systematic errors can be corrected using the 
functional models utilizing misalignment errors (roll, 
pitch and yaw errors) and time delay calibrated by the 
patch test in addition to the sound velocity profile 
collected by the velocimeter. The random errors are 
corrected when the final base surface is produced. 
However, the outliers in multibeam data should be 
detected and rejected using cleaning methods to obtain 
accurate bathymetric surface [2]. Figure 1 shows an 
example of different types of multibeam errors. The 
main reasons for the outliers could be 

cavitation/bubble sweep, loss of bottom on outer 
beams, loss of bottom lock and false returns from the 
water column [3].  

 

Figure 1. Types of errors exists in multibeam sounding where 
five survey lines displayed in different colors and outliers 
found in the blue survey line only 
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The manual and automatic cleaning methods can be 
used to detect and reject the multibeam data outliers. 
The manual cleaning depends on the visual inspection 
by the hydrographer to reject any obvious sudden 
spikes (outliers) in multibeam data line by line. The 
manual cleaning method is certainly tedious, critical 
and subjective method. Also, given the huge amount of 
data collected by the new generation of current 
multibeam acquisition systems, the manual cleaning is 
considered as a time-consuming task for hydrographic 
offices where the time required for data processing is 
almost one-to-one when compared against data 
acquisition time [4]. The need for automation of data 
cleaning is critical to reduce the processing time for 
multibeam data processing. The traditional and simple 
automatic methods for data cleaning are the methods 
that use the depth limit (based on prior knowledge of 
depth range), the nadir angles limit and the beam-to-
beam angle limit [6]. However, these traditional 
methods can reject useful multibeam data soundings 
where these methods depend on the prior knowledge 
of depth limit which in most cases is not known or 
depend on the guessing of the nadir angles limit as well 
as the beam-to-beam slope angle limit. Therefore, 
advanced and more accurate automatic methods are 
developed such as AI-based supervised method and 
unsupervised methods [5] [7][8]. CARIS AI-based 
Sonar Noise Classifier is one of the promising 
supervised methods for automatic multibeam data 
cleaning and is evaluated in this project [7]. The Caris 
AI-based Sonar Noise Classifier uses the machine 
learning (ML) three-dimensional convolutional neural 
network technique ([3][9][10]. The Caris ML-based 
Sonar Noise Classifier method is based on the 
estimation of noise confidence level (0-100%) for all 
multibeam soundings and recommends the rejection of 
the soundings with noise confidence level value above 
50% [3][10]. After the correction for systematic errors 
and outliers in multibeam data processing, the 
remaining outliers and random errors are reduced in 
the digital terrain model or base surface production 
with different methods such as shoalest depth, swath, 
uncertainty, and CUBE methods where CUBE filter is 
the most effective method for bathymetric surface 
production and random error reduction. Hybrid 
Uncertainty and Bathymetry Estimation (CUBE) filter 
initially utilizes the soundings and uncertainty of 
soundings for high-density multibeam data to create 
the CUBE surface. CUBE filter takes the depth of the 
CUBE Surface at a location and compares the sounding 
depths against the CUBE depth plus a threshold value. 
The threshold value is defined by the parameters set in 
the filter. If the difference between the depth of the 
sounding and the depth of the CUBE Surface exceeds 
the threshold, then the sounding with residual outliers 
will be rejected (Calder and Mayer, 2003; Calder, 2003). 
The primary aim of the CUBE algorithm is to use as 
much information as possible to determine the true 
depth at any point in the survey from the noise. CUBE 
assumes that you are processing good data which 
requires ML-based method to be initially applied to 
remove the majority of outliers where only residual 
outliers and random errors exist. It is worth noting that 
the bathymetric surface can be generated using 
uniform grid model or variable gride model [11]. 

Developing accurate multibeam data cleaning 
methods are critical for all hydrographic offices to 
achieve bathymetric maps that meet the International 

Hydrographic Organization (IHO) standards [12]. The 
main objective of this research is to develop an optimal 
Hybrid ML-CUBE method for multibeam echosounder 
data cleaning where the outliers are rejected using ML-
based method and random errors are reduced using 
CUBE method. The proposed method is evaluated and 
tested using two multibeam datasets collected from 
Kongsberg EM712 and Reson SeaBat T50-P multibeam 
echosounders in shallow water case studies areas.  

2 HYBRID ML-CUBE METHOD 

An optimal method for bathymetric surface creation 
using the Hybrid ML-CUBE method is investigated in 
this paper to automatically clean multibeam data from 
the outliers and rigorously reduce the random errors. 
The ML method is developed based on the three-
dimensional convolutional neural network. The three-
dimensional convolutional neural network is the most 
popular deep learning model that can learn and extract 
the features based on a unique network structure [9] 
[13] [14]. The ML method is employed for multibeam 
data outliers detection and rejection. Then, the CUBE 
method is employed for bathymetric surface 
generation where the Kalman filtering is used within 
the CUBE algorithm to process high-density 
bathymetry data for random errors reductions [15][16]. 
Therefore, the proposed Hybrid ML-CUBE method is 
considered as a rigorous and automatic method for 
outliers and random errors reduction in post-
processing phase where systematic errors are corrected 
in the pre-processing calibration phase.  

The methodology for implementing the proposed 
Hybrid ML-CUBE method is shown in Figure 2. In step 
1, the high-density multibeam soundings are collected 
using two multibeam echosounders (Kongsberg 
EM712 and Reson SeaBat T50-P). In step 2, the attitude 
and navigation data are cleaned from errors, if 
required. In step 3, the multibeam soundings are 
georeferenced using the attitude and navigation data. 
In step 4, the noisy bathymetric surface is created using 
the shoalest depth true position method where the 
outliers and random errors are embedded in this 
surface. In step 5, the CARIS ML-based sonar noise 
classifier using three-dimensional convolutional 
neural network technique is employed to clean 
multibeam data from outliers. The CARIS ML-based 
sonar noise classifier technique includes: 1) the creation 
of voxels grids from the high-density multibeam 
soundings, 2) send the voxels grids to the Caris AI 
cloud computing server, 3) receive the classified voxels 
from the Caris AI cloud, 4) map the voxel back to the 
soundings and reject the soundings with noise 
confidence level values above 50% [3][10]. The ML-
based sonar noise classifier detects and rejects the 
outliers embedded in the noisy high-density 
multibeam soundings. In step 6, the CUBE bathymetry 
is created using the cleaned multibeam high-density 
multibeam soundings estimated from second step. 
CUBE is an algorithm that rigorously uses the 
uncertainty of every cleaned sounding and 
simultaneously comparing its depth to its neighbors to 
create the best estimate of the bathymetric surface. The 
CUBE algorithm reduces the random errors embedded 
in the cleaned high-density multibeam soundings 
[15][16]. In the last step, the accuracy of Hybrid ML-
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CUBE method is evaluated for the two EM712 and T50-
P multibeam echosounders using Root Mean Squares 
(RMS) errors estimated from the error differences 
between the noisy and cleaned bathymetric surfaces. 
Then, the RMS errors are compared against the IHO 
standards for different hydrographic surveying orders 
at 95% confidence level.  

 

Figure 2. Hybrid ML-CUBE method technique and 
evaluation 

3 DATASETS DESCRIPTIONS 

The KAU Hydrography 1 vessel and KAU 
Hydrography 2 vessel, owned by faculty of maritime 
studies, King Abdulaziz University, were employed to 
collect multibeam data. The KAU Hydrography 1 
vessel is equipped with Kongsberg EM712 multibeam 
echosounder and the KAU Hydrography 2 vessel is 
equipped with Reson SeaBat T50-P multibeam 
echosounder for multibeam data collection along with 
navigation solutions from POS-MV positioning and 
orientation system for the georeferencing of the 
collected multibeam datasets [17][18][19]. Figures 3 
and 4 show the KAU Hydrography 1 vessel along with 
the Kongsberg EM712 multibeam echosounder and 
KAU Hydrography 2 vessel along with the Reson 
SeaBat T50-P multibeam echosounder, respectively. 
Figures 5 and 6 show the survey lines in two different 
shallow waters case study areas for test 1 using KAU 
Hydrography 1 vessel and for test 2 using KAU 
Hydrography 2 vessel data, respectively.  

 

Figure 3. KAU Hydrography 1 vessel (3.a) along with 
Kongsberg EM712 multibeam echosounder (3.b) and POS-
MV positioning and orientation system (3.c) [17][19] 

 

Figure 4. KAU Hydrography 2 vessel (4.a) along with Reson 
SeaBat T50-P multibeam echosounder (4.b) and POS-MV 
positioning and orientation system (4.c) [18][19]. 

 

Figure 5. KAU Hydrography 1 vessel test 1 survey lines 
(Sharm Obhur) 

 

Figure 6. KAU Hydrography 2 vessel test 2 survey lines 
(Alrayes) 

4 RESULTS AND DISCUSSIONS 

The high-density multibeam soundings collected from 
test 1 (EM712 multibeam echosounder) and test 2 (T50-
P multibeam echosounder) were about 1,134,026 
soundings and 3,493,434 soundings, respectively. The 
multibeam soundings from test 1 and test 2 were 
georeferenced using the Caris HIPS and SIPS software 
and the base surfaces for test 1 and test 2 data were 
produced using the shoalest depth true position 
method without applying any cleaning method. 
Figures 7 and 8 show the produced base surfaces for 
test 1 and test 2 which include the outliers and we call 
these surface noisy bathymetries for test 1 and test 2.  
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The ML-based cleaning method was implemented 
using the CARIS Sonar Noise Classifier processor for 
test 1 and test 2 high-density multibeam soundings. 
The ML-based CARIS Sonar Noise Classifier processor 
works using the Caris AI Mira authentication service 
and the selected options for Sonar Noise Classifier 
processor to clean the soundings confidence noise level 
value was above 50%. Figure 9 and 10 show examples 
of the ML-based CARIS Sonar Noise Classifier results 
in swath editor and subset editor windows, 
respectively, for selected number of soundings which 
lists the values of the noise confidence level value (0-
100%) for each sounding and the rejected soundings 
with the noise confidence level values above 50%. The 
Hybrid ML-CUBE method was implemented and 
Figures 11 and 12 show the cleaned bathymetries for 
test 1 and test 2, respectively, where the ML-based 
Sonar Noise Classifier method was implemented for 
outliers rejection and CUBE method was implemented 
for random errors reduction. To test the performance 
of Hybrid ML-CUBE method, the error differences 
between the noisy and Hybrid ML-CUBE based 
cleaned bathymetries for tests 1 and 2 were estimated 
and shown in Figures 13 and 14. Also, the bathymetric 
error differences from test 1 and test 2 were used to 
generate the histograms distributions and cumulative 
distributions plots as shown in Figures 15, 16, 17 and 
18, respectively. The error differences from test 1 
ranges from -10.61 m to 6.77 m with mean value around 
-0.12 m and error differences from test 2 ranges from -
15.74 m to 8.31 m with mean value around -0.09. 

Then, the bathymetric error differences from test 1 
and test 2 were used to estimate the summery statistics 
as listed in Tables 1. The RMS errors at 95% confidence 
level listed in Table 1 are estimated using the absolute 
means and the RMS errors at 68% confidence level 
using the following formula [20]: 

95% 68%  1.96*= +RMS mean RMS  (1) 

where the mean and RMS68% are estimated from the 
error differences the error differences between the 
noisy and Hybrid ML-CUBE based cleaned 
bathymetric surfaces for tests 1 and 2.  

The estimated RMS errors at 95% confidence level 
caused by the outliers and random errors are 0.61 m 
and 0.58 m for test 1 and test 2, respectively, which 
exceed IHO special order requirement of maximum 
allowed total vertical uncertainty that equal 0.34 m but 
meets IHO order 1a requirement of maximum allowed 
total vertical uncertainty that equal 0.63 m both were 
estimated using the average depth of the area (30 m in 
the tests 1 and 2) at 95% confidence level.  

Therefore, the rejection of the outliers and reduction 
of random errors using the proposed Hybrid ML-
CUBE method are essential and critical to produce 
bathymetric maps with accuracy within the IHO 
special order level when multibeam data is processed. 
The results show that the Hybrid ML-CUBE method 
can significantly improve the overall accuracy of the 
produced final bathymetric maps. The advantage of 
the Hybrid ML-CUBE method that is based on the use 
of the AI-based sonar noise classifier subscription is 
that it is a very efficient and accurate automatic 
cleaning method in detecting and rejecting the outliers.  

 

Figure 7. Noisy bathymetry for test 1 (EM712 multibeam 
echosounder) referenced to the WGS84 ellipsoid (units in 
meters) 

 

Figure 8. Noisy bathymetry for test 2 (T50-P multibeam 
echosounder) referenced to the WGS84 ellipsoid (units in 
meters) 

 

Figure 9. ML-based CARIS Sonar Noise Classifier Results for 
selected soundings located inside the yellow box using 
CARIS swath editor 

 

Figure 10. ML-based CARIS Sonar Noise Classifier noise 
confidence values for soundings using subset editor where 
the grey color shows the rejected soundings and the red-to-
blue color soundings shows the accepted soundings 
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Figure 11. Hybrid ML-CUBE based cleaned bathymetry for 
test 1 (EM712 multibeam echosounder) referenced to the 
WGS84 ellipsoid (units in meters) 

 

Figure 12. Hybrid ML-CUBE based cleaned bathymetry for 
test 2 (T50-P multibeam echosounder) referenced to the 
WGS84 ellipsoid (units in meters) 

 

Figure 13. Error differences between the noisy and Hybrid 
ML-CUBE based cleaned bathymetries for test 1 (EM712 
multibeam echosounder) 

 

Figure 14. Error differences between the noisy and Hybrid 
ML-CUBE based cleaned bathymetries for test 2 (T50-P 
multibeam echosounder) 

 

Figure 15. Histogram distribution for test 1 (EM712 
multibeam echosounder) bathymetric error differences 

 

Figure 16. Cumulative distribution for test 1 (EM712 
multibeam echosounder) bathymetric error differences 

 

Figure 17. Histogram distribution for test 2 (T50-P multibeam 
echosounder) bathymetric error differences 

 

Figure 18. Cumulative distribution for test 2 (T50-P 
multibeam echosounder) bathymetric error differences 

Table 1. Summary of statistical results of the error difference 
between noisy and the Hybrid ML-CUBE cleaned 
bathymetries produced from test 1 and test 2  
Parameter\solution Test 1 

(EM712 multibeam 
echosounder) 

Test 2 
(T50-P multibeam 
echosounder) 

   
   
Maximum  6.77 m 8.307 m 
Minimum  -10.61 m -15.743 m 
Soundings total count 1,134,026 3,493,434 
Mean  -0.12 m -0.09 m 
RMS (68% confidence level) 0.25 m 0.25 m 
RMS (95% confidence level) 0.12+1.96*0.25 = 

0.61 m 
0.09+1.96*0.25 = 
0.58 m 
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5 CONCLUSION AND RECOMMENDATIONS 

The objective of this paper is to evaluate the proposed 
Hybrid ML-CUBE method for outliers rejections and 
random error reduction using high-density multibeam 
soundings collected by Kongsberg EM712 and Reson 
SeaBat T50-P multibeam echosounders. The noisy 
bathymetries were produced using the shoalest depth 
method from the noisy Kongsberg EM712 and Reson 
SeaBat T50-P multibeam datasets. Afterwards, the 
Hybrid ML-CUBE method was employed to reject 
outliers and reduce random errors in the Kongsberg 
EM712 and Reson SeaBat T50-P multibeam datasets 
and produce the cleaned bathymetries. The difference 
surfaces between the noisy and cleaned bathymetries 
showed that outliers in Kongsberg EM712 and Reson 
SeaBat T50-P datasets can successfully be detected and 
rejected using the ML-based CARIS Sonar Noise 
Classifier automatic cleaning method and the random 
errors can successfully be reduced using the CUBE 
method. It was found that if the outliers were not 
successfully rejected and random errors were not 
successfully reduced by Hybrid ML-CUBE method, the 
accuracy of the produced bathymetries are degraded 
by 0.61 m and 0.58 m in the tests conducted by EM712 
and T50-P, respectively, which exceed the IHO special 
order but meet order 1a requirements. Therefore, it is 
recommended to use Hybrid ML-CUBE method for the 
bathymetric mapping with multibeam echosounders. 
The significance of the Hybrid ML-CUBE method is 
that it is an automatic outlier rejection method for 
multibeam data cleaning and a rigorous bathymetric 
surface generation method for random errors 
reduction. 
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