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1 INTRODUCTION 

Any sampling of an analog signal carried out with the 
sampling rate called the Nyquist rate (Landau H. J. 
1967) is said to be critical (Korohoda P., Borgosz J. 
1999). Its reconstruction from its samples obtained as 
mentioned can lead to non-unique results as, for 
example, in the case of a cosinusoidal signal of any 
phase. In this paper, we consider in very great detail 
this particular case.  

The analysis of the case of critical sampling of the 
cosinusoidal signal of any phase and, then, its 
recovery from the samples so obtained is particularly 
challenging because of two ambiguities that meet 
each other. These are the following ones: Dirac delta 
impulses (Dirac P. A. M. 1947) occurring in the 
spectrum of a cosinusoidal signal and undefined, in 
principle (see, for example, (Hoskins R. F. 2009) for 
more details), values of the transfer function of an 
ideal rectangular reconstruction filter at the transition 
edges from its zero to non-zero values, and vice versa. 

Moreover, the critical sampling itself can be a source 
of ambiguities. So, altogether, the problem becomes 
extremely difficult and troublesome. However, we 
show in this paper that using even a relatively simple 
mathematics this problem can be successfully and 
transparently solved. 

We start our considerations in this paper with the 
same definition of a rectangular window function that 
was used in (Borys A., Korohoda P. 2017); it 
originates from (Marks II R. J. 1991). And, note further 
that this function was denoted there as ( )xΠ  and is 
given by 

( )
1  for  0

1 2   for  1 2   

0  for  1 2

x

x x

x

 <


Π = =
 >

 , (1) 

where x denotes a variable, which can stand for time t 
or frequency  f , or for any other variable. 
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Afterwards, we will also use a version of the 
function ( )xΠ , which is modified at the points 

1 2x = −  and 1 2x =  (see section 3). 

Further, observe in (1) that the “edge” points there 
assume the value which is a half of the “bottom” and 
“top” values. That is ( ) ( )1 2 1 2Π − = Π = . 
( )1 0 2 1 2= + = . And, this resembles the very well-

known Dirichlet condition (Brigola R. 2013) 
formulated for a Fourier series with discontinuities of 
the first type. So, we could interpret this observation 
as a strengthening just the above choice of 
( )1 2Π − =  ( )1 2 1 2= Π = . As we will see in section 

3, really, it contains an element of truth. We will show 
there that this is the best choice from the point of view 
of the signal reconstruction though this does not 
mean that it leads at the same time to a perfect signal 
reconstruction. 

By the way, note also that sometimes the term rect 
is used in the literature for denoting the function 
given by (1). Furthermore, the definition of this 
function is expressed in terms of the Heaviside step 
function 𝟙𝟙(t) (Brigola R. 2013) as 

( )xΠ =  𝟙𝟙(x + 1/2) −  𝟙𝟙(x − 1/2)  . (2) 

The sinc function used in this paper is defined in 
the following way: 

( )
( )sin

  for  0sinc
1   for  0

x
xx x

x


≠= 

 =

  . (3) 

A specific object ( )xδ , which we use in our 
analysis presented in the next two sections, is called, 
after P. A. M. Dirac, the Dirac function or Dirac delta 
impulse (Dirac P. A. M. 1947). As well-known, it is 
not an ordinary function. In a simplified way, to 
facilitate its understanding by engineers, it is very 
often expressed in papers and textbooks as an object 
satisfying the following three relations:  

( )

( )

( )

( )

1

=   for  0:  

=0  for  0   . 

x dx

x xx

x x

δ

δδ

δ

∞

−∞


=


 ∞ =⇒ 


 ≠

∫
   (4) 

The remainder of the paper is organized as 
follows. Section 2 introduces an example of a 
cosinusoidal signal of any phase being subject of 
considerations and analysis presented in this paper. 
Among others, the effects appearing during recovery 
of the cosinusoidal signal sampled critically are 
discussed here. In section 3, a lemma that regards the 
form of a reconstructed signal as well as the best form 
of the transfer function for a reconstruction filter to be 
applied is proven. Finally, section 4 concludes the 
paper. 

2 PRELIMINARY MATERIAL REGARDING 
CRITICAL SAMPLING AND RECONSTRUC-
TION OF COSINUSOIDAL SIGNAL 

As we know, the sampling rate, denoted here by sf , 
is the inverse of the distance between successive 
signal samples, t∆ . In what follows, we also use the 
capital letter T, in the sense of a period, for denoting 

t∆  equivalently. By using the letter T, we simply 
underline the fact that t∆  is a sampling period.  

Further, let mf  be a maximal frequency in the 
spectrum of an analog signal considered. Then, we 
will call 

1 1 2scr m
cr cr

f f
t T

= = =
∆

, (5) 

the critical sampling rate for a given signal. Note also 
that a critical distance between the successive signal 
samples (i.e. a critical sampling period), as defined in 
(5), is equal to ( )1 1 2cr cr scr mt T f f∆ = = = . 

Consider now the following cosinusoidal signal 

( )( ) cos 2 mx t f tπ ϕ= −  , (6) 

where mf  and ϕ  are its frequency and phase, 
respectively. For simplicity, we assumed here that the 
amplitude of this signal is equal to one, and  t  
means a continuous time. Furthermore, note that mf  
in (6) is, at the same time, the maximal frequency in 
the spectrum of this signal. 

Sometimes, it is convenient to rewrite (6) in a way 
that expresses this signal as a delayed  ( )cos 2 mf tπ  
signal. That is in the following form:  

( )( )( ) cos 2 m dx t f t tπ= −  , (7) 

where the delay is given by  

2d
m

t
f

ϕ
π

=  . (8) 

So, we see from (8) how the signal phase is related 
with a delay “embedded” in the signal given by (6). 

Further, we will call sampling of (6) as a critical 
one, when the sampling rate, sf , equals 2 mf , as (5) 
requires. Note that equivalently the signal given by 
(6) was called a critical one in (Borys A., Korohoda P. 
2017), when its sampling was performed with the rate 

2s mf f= . Note also that the latter quantity is called 
the Nyquist rate in some papers and textbooks 
(Landau H. J. 1967), (Vetterli M., Kovacevic J., Goyal 
V. K. 2014). 

See now that the Fourier transform of the 
cosinusoidal signal given by (5) has the following 
form: 

( ) ( ) ( ) ( )1 exp
2 m m mX f f f f f j f fδ δ ϕ = + + − −  , (9) 
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where ( )δ ⋅  means the Dirac delta impulse defined 
in (4). 

Next, by applying the sifting property of the Dirac 
delta impulse in (9), we obtain 

( ) ( ) ( )

( ) ( )

1 exp
2

        exp   .

m

m

X f f f j

f f j

δ ϕ

δ ϕ

= + +

+ − − 

 (10) 

Further, using the Euler formula to ( )exp jϕ  
and ( )exp jϕ−  occurring on the right-hand side of 
equality (10),  we get an equivalent form of the latter, 
i.e. 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 cos
2

1 sin
2

m m

m m

X f f f f f

j f f f f

ϕ δ δ

ϕ δ δ

 = + + − − 

 + + − − 

. (11) 

The so-called Dirac comb Ш ( )T t  is defined as 

( )Ш ( )T
n

t t nTδ
∞

=−∞

= −∑ ,  (12) 

see, for example, (Marks II R. J. 1991), (Osgood B. 
2014). It is a useful object in signal processing and 
telecommunications theories. Among others, it is used 
to express the operation of signal sampling as a Dirac 
comb modulation by a given analog signal to be 
sampled. In other words, the operation of sampling 
can be modeled as a multiplication of the Dirac comb 
by this signal. That is in the following way: 

( ) ( )( ) ( ) Ш ( )s T
n

x t x t t x nT t nTδ
∞

=−∞

= ⋅ = −∑ , (13) 

where ( )sx t  denotes a continuous-time sampled 
version of the signal ( )x t . So, applying (6) in (13), 
we arrive at  

( ) ( )

( )( ) ( )

( ) cos 2

cos 2   .

s m
n

m d
n

x t f nT t nT

f nT t t nT

π ϕ δ

π δ

∞

=−∞

∞

=−∞

= − − =

= − −

∑

∑
. (14) 

The signal given by (14) can be converted into the 
frequency domain. For doing this, note at the first step 
that applying the Fourier transform definition to (13) 
gives 

( ) ( )s s s
n

X f f X f nf
∞

=−∞

= −∑  , (15) 

where ( )sX f  means the Fourier transform of 
( )sx t .  

In the next step, introducing (11) into (15) results 
in 

( ) ( ){ ( )

( ) ( ) ( )
( ) }

1 cos
2

sin

  .

s s s m
n

s m s m

s m

X f f f nf f

f nf f j f nf f

f nf f

ϕ δ

δ ϕ δ

δ

∞

=−∞

= − + +

 + − − + − + − 

− − − 

∑

 (16) 

It has been shown, see (Borys A., Korohoda P. 
2017) and (Borys A., Korohoda P. 2020), that (16) can 
be simplified when the signal given by (6) is sampled 
critically. That is in the case of applying 

2s scr mf f f= = , as given by (5). Then, we get 

( ) ( ) ( )( )

( ) ( )( )

2 cos 2 1

2 cos 2 1   .

s m m
n

m m
n

X f f f n f

f f n f

ϕ δ

ϕ δ

∞

=−∞

∞

=−∞

= − − =

= − +

∑

∑


 (17) 

The signal reconstruction or its recovering 
performed in the frequency domain means 
multiplication of the Fourier transform of the sampled 
signal, denoted here by ( )sX f , by the transfer 
function of the so-called interpolation filter, say 

( )H f , to get a Fourier transform of an original un-
sampled signal (Marks II R. J. 1991), (Osgood B. 2014). 
In other words, the above means carrying out the 
following operation:  

( ) ( ) ( )sH f X f X f=  . (18) 

Further, it has been shown in (Marks II R. J. 1991) 
that the transfer function ( )H f  of the interpolation 
filter has the form 

( ) 1

s s

fH f
f f

 
= Π 

 
 , (19) 

where the function ( )Π ⋅  is defined in (1). Note that 
another form of ( )H f  is also used in the literature 
for the interpolation filter. It differs, however, only 
slightly from the one given by (19) and (1), and is 
used, for example, in (Osgood B. 2014). The difference 
between these transfer functions mentioned above 
regards only two points 2sf f= −  and 2sf f= , 
where the transfer function of Marks equals ( )1 2 sf , 
but the one of Osgood is equal to 0. So, a legitimate 
question arises at this point whether the above 
difference can have any influence on the result of 
multiplication ( ) ( )sH f X f  on the left-hand side 
of (18) at 2sf f= −  and at 2sf f= . 

In what follows, we will consider only the latter 
point because the situation at the former one is exactly 
a mirror image of that at 2sf f= . 

Obviously, the difference mentioned above has no 
influence when ( )2 0s sX f = . Because then for 

2sf f=  we obtain ( )1 2 0 0⋅ =  and 0 0 0⋅ = , 
respectively, in the cases mentioned above. That is we 
get then the same value. However, note that the 
situation changes completely when ( )2 0s sX f ≠ . In 
this case, we arrive at ( ) ( )1 2 2 0s sX f⋅ ≠  and 

( )0 2 0s sX f⋅ = , accordingly. That is we obtain then 
two different values. And, obviously, this can lead to 
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getting two different solutions of the recovery 
problem. 

In what follows, we will show that the problem 
considered in this paper of sampling critically and 
recovering afterwards a cosinusoidal signal belongs 
just to such a category of problems, where 

( )2 0s s mX f f= ≠ . Further, we will also judge 
whether the Marks’s filter description or the Osgood’s 
one is appropriate in this case. 

Let us now return to the problem of recovering the 
cosinusoidal signal spectrum ( )X f  from the 
spectrum of its critically sampled version ( )sX f  
given by (17). And, for solving this problem, we will 
use the left-hand side expression in (18), hoping that it 
will yield a correct result. That is indicating ( )X f , 
as (18) suggests, to be correct, but we are not sure of 
this. Therefore, we denote below the result of 
multiplication indicated in (18) by ( )rX f . 

So, applying (19) with 2s mf f=  and (17) on the 
left-hand side of (18), we get 

( ) ( )

( )( )

( ) ( ) ( )

1 2 cos
2 2

2 1

1cos   .
2

r m
m m

m
n

m m

fX f f
f f

f n f

f f f f

ϕ

δ

ϕ δ δ

∞

=−∞

 
= Π ⋅ 

 

⋅ − + =

 = + + − 

∑



 (20) 

Observe that we obtained this simple result in the 
last line of (20) due to the fact that all the “peaks” of 
Dirac deltas occurring under the summation symbol 
in (20), except two, are multiplied by zeros coming 
from the function ( )( )2 mf fΠ . Only “peaks” of 
( )mf fδ +  and ( )mf fδ −  meet nonzero values, 

( )( )2 1 2m mf fΠ − =  and ( )( )2 1 2m mf fΠ = , 
respectively. 

The final result in (20) seems to be a reasonable 
outcome though it does not give the expected result 
(11). In the next section, we will show that it has a 
physical justification - despite not resulting in (11). It 
has a strong practical confirmation contrary to the 
solution we would have received using the 
description of the interpolation filter transfer function 

( )H f  as in (Osgood B. 2014) with the “edge” points 
( ) 0Osg mH f− =  and ( ) 0Osg mH f = . 

Note that then the equivalent of (20) would have 
the following form: ( ) 0rOsgX f ≡ , where ( )rOsgX f  
denotes just the version of (20) with the Osgood’s 
(Osgood B. 2014) function ( )Osg sf fΠ  there. The 
latter function differs from ( )sf fΠ  given by (1) 
only in two points, ( )1 2 sf f= −  and ( )1 2 sf f= . 
Consequently, this leads to ( ) 0Osg mH f− =  and 

( ) 0Osg mH f =  when 2s mf f= , as used above. 

Obviously, ( ) 0rOsgX f ≡ , after applying the 
inverse Fourier transform to it, provides an identically 
zero signal - as the following: 

( ) ( ) exp( 2 )

0

rOsg rOsgx t X f j ft df

C C C

π
∞

−∞

∞

−∞

= =

= = − ≡

∫  
 (21) 

shows. And, it is difficult to accept that the signal  
( ) 0rOsgx t ≡  describes an un-sampled cosinusoidal 

signal in a reasonable fashion. 

Let us come back to consideration of (20) and 
transform it to the time domain. The inverse Fourier 
transform of ( )rX f  gives  

( ) ( ) ( )cos cos 2r mx t f tϕ π=  . (22) 

Comparison of (22) with (6) shows how the 
reconstructed signal ( )rx t  differs from the original 
analog one, ( )x t . In the next section, we will look for 
the cause of this. 

3 THE LEMMA AND ITS PROOF 

For strengthening the validity of the results presented 
in (20) and (22) as well as for giving a physical 
justification to them, another way of their obtaining 
seems to be meaningful. In particular, showing 
another way of achieving the result (22) in the time 
domain would be advisable and helpful. So, to start 
with the latter, let us rewrite the signal given by (6) in 
the following form: 

( ) ( ) ( ) ( )( ) cos 2 cos sin 2 sinm mx t f t f tπ ϕ π ϕ= +  (23) 

Note now that using (23) allows us to express the 
values of samples of the signal (6) sampled critically 
as 

( ) ( ) ( ) ( )( ) cos cos sin sin  ,
,  .... ,  2,  1, 0, 1, 2, ....,  .

x nT n n
n

π ϕ π ϕ= +

= −∞ − − ∞
  (24) 

In (24) as well as in what follows, the subscript cr 
at crT  is dropped for simplicity of notation. 
However, if a need appears to use the variable T in its 
original meaning defined in the beginning of section 
2, this will be indicated. 

Further, observe that we have the following: 

( )

( )

sin 0  for any
   ,  .... ,  2,  1, 0, 1, 2, ....,  

1  for even values of 
and  cos

1  for odd values of   . 

n
n

n
n

n

π

π

=

= −∞ − − ∞


= −

  (25) 

in (24). So, applying this in the latter, we get 

( )
( )
( )

cos   for even values of 

cos  for odd values of  . 

n
x nT

n

ϕ

ϕ

= 
−

  (26) 
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Description of the series of signal samples in the 
form given by (26) has been used in the analyses 
presented in (Korohoda P., Borgosz J. 1999) and 
(Borys A., Korohoda P. 2017). 

In what follows, let us use the interpolation 
formula in the time domain (Marks II R. J. 1991), 
(Vetterli M., Kovacevic J., Goyal V. K. 2014)  

( ) ( ) ( ) sincr
n

x t x nT t nT
T
π∞

=−∞

 = − 
 

∑  . (27) 

to recover (reconstruct) a signal ( )x t  from its 
samples ( ) ,  ,.., 1,0,1,.., ,x nT n = −∞ − ∞  where T 
means a sampling period (which, in particular, can 
assume the value following from the condition of 
critical sampling). 

Substituting (26) into (27) leads to the following 
form:  

( ) ( ) ( ) ( )cos 1  sincn
r

n
x t t nT

T
πϕ

∞

=−∞

 = − − 
 

∑  . (28) 

of the reconstructed cosinusoidal signal that was 
sampled critically, with T in (28) meaning now the 
critical sampling period. 

In the next step, observe that with the substitution 
of 2 1,  ,.., 1,0,1,.., ,n k k= + = −∞ − ∞  (28) can be 
rewritten as 

( ) ( ) ( )

( ) ( )

( ) ( )

cos sinc 2

sinc 2 cos

sinc 2 sinc 2  .

r
k

n

x t t kT
T

t kT T
T

t nT t nT T
T T

πϕ

π ϕ

π π

∞

=−∞

∞

=−∞

  = − −   
 − − − = ⋅  

    ⋅ − − − −        

∑

∑

  (29) 

So, now, if we expect (22) and (29) to give the same 
result we must postulate the following:   

( )

( ) ( )

sinc 2

sinc 2 cos 2

n

m

t nT
T

t nT T f t
T

π

π π

∞

=−∞

  − −   
 − − − =  

∑
  (30) 

to hold, where 2 1mf T= . In what follows, we will 
show that the equality (30) is really satisfied. We will 
do this by formulating a formal lemma regarding this 
issue, and proving it afterwards. 

Lemma. The expression on the left-hand side of 
(30) can be reduced to ( )cos t Tπ . 

Proof. Note that we can treat the expression on the 
left-hand side of (30) as a function of a variable t. 
And, for simplicity of notation, let us denote it a 
function ( )v t . For further simplification of our 
considerations, it will be convenient to introduce a 
normalized time variable ( )2t Tτ =  in ( )v t . As a 
result, we get then a function, say ( )h τ , of a 

normalized variable τ . Precisely, we get the 
following: 

( ) ( ) ( )( )

( )( )

2 sinc 2

sinc 2 1 2   .
n

h v T n

n

τ τ π τ

π τ

∞

=−∞

= = − −

− − − 

∑
  (31) 

Looking at (31), it is easy to recognize that the 
function ( )h τ  is a periodic function with a period 
equal to 1. 

In what follows, it will be also helpful to define 
another auxiliary function ( )g τ  as follows 

( ) ( ) ( )( )sinc 2 sinc 2 1 2g τ πτ π τ= − −  . (32) 

So, using (32), we can rewrite (31) as 

( ) ( )
n

h g nτ τ
∞

=−∞

= −∑  . (33) 

Observe now that as the function ( )h τ  is a 
periodic one with a period equal to 1 it can be 
expressed in the form of a Fourier series 

 ( ) ( )exp 2k
k

h c j kτ π τ
∞

=−∞

= ∑  , (34) 

where the Fourier series coefficients kc , ,..,k = −∞  
1,0,1,.., ,− ∞  are given by 

 ( ) ( )
1

0

exp 2kc h j k dτ π τ τ= −∫  . (35) 

Next, substituting (33) into (35) gives 

 ( ) ( )
1

0

exp 2k
n

c g n j k dτ π τ τ
∞

=−∞

= − −∑∫  . (36) 

Further, let us introduce a new auxiliary variable 
p nτ= −  in (36) and swap the symbols of integration 

and summation there. This leads to 

 
( ) ( )( )

( ) ( ) ( )

1

1

exp 2

exp 2 exp 2

n

k
nn

n

n n

c g p j k p n dp

j kn g p j kp dp

π

π π

− ∞

=−∞−

−∞

=−∞ −

= − + =

= − −

∑∫

∑ ∫
 . (37) 

Note now that 

( )exp 2 1j knπ− =  (38) 

holds for any combination of integers k and n. Taking 
this into account in (37) as well as the following:  
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 ( ) ( ) ( ) ( )
1 1 1n n n

n n nn n n

dp dp dp dp
′− − + ∞∞ −∞ ∞

′=−∞ =∞ =−∞ ′− − −∞

⋅ = ⋅ = ⋅ = ⋅∑ ∑ ∑∫ ∫ ∫ ∫  , (39) 

we can rewrite (37) finally as 

( ) ( )exp 2kc g p j kp dpπ
∞

−∞

= −∫  . (40) 

Looking at (40), we see that kc  is at the same time 
the Fourier transform ( )G f  of the function ( )g p  
- calculated at the integer-valued frequency k. That is 
for f k= . So, in other words, we can write 

( )kc G k=  . (41) 

In the next step, let us find a Fourier transform of 
the signal ( )g p  given by (32) with the variable τ  
therein called now p . And, to this end, we use the 
following transform pair (Marks II R. J. 1991), 
(Osgood B. 2014): 

( ) ( )sinc c fπτ ↔Π  , (42) 

where the function ( )c fΠ means a slightly modified 
function ( )fΠ  that was defined in (1) with the 
variable f used in place of the variable x. Namely, 
here, we define ( )c fΠ  as 

( )
1  for  0

  for  1 2   

0  for  1 2
c

f

f c f

f

 <


Π = =
 >

 , (43) 

where the constant c means any real number different 
from infinity. Note that in the literature many 
different values of c are used and, furthermore, it is 
argued that its specific value is not relevant. The most 
popular are the following ones: 1 2c = , as in (1) - 
and used - for example, in (Marks II R. J. 1991); 0c =  
as, for instance, in (Osgood B. 2014); as well as 1c =  
used, for example, in (Borys A., Korohoda P. 2020). 

In the course of this proof, we show that (30) is not 
absolutely true. An intermediate result, we arrive at, 
will depend upon the value of c. To get the 
equivalence of the left- and right-hand sides as 
postulated in (30), we will need to make use of some 
additional arguments of a physical nature. They will 
indicate the choice of 1 2c = . 

Observe now that to calculate the Fourier 
transform of ( )g τ  given by (32), or ( )g p  
identically equal to ( )g τ  with p τ= , we need also, 
besides (42), to use the shifting in time and scaling 
properties of the Fourier transform. So, applying this 
along with the linearity of the Fourier transformation 
to (32), we obtain 

( ) ( ) ( )2 1 exp1
2 cG f f j fπΠ − −=     . (44) 

Next, for the integer-valued frequency k, that is for 
f k= , we get 

( ) ( ) ( )

( ) ( )

2 1 exp

2 1 cos   .

1
2

1
2

c

c

k j

k

G k

k

k π

π

Π − − =  

= Π −  

=
  (45) 

And, in the next step by introducing (41) and (45) 
into (34), we arrive at 

( ) ( ) ( ) ( )2 1 cos e1 xp
2

2c
k

h k k j kτ π π τ
∞

=−∞

 = Π − ∑ . (46) 

Observe now that potentially only three 
components on the right-hand side of (46) can be 
nonzero. These are the ones which involve indices 

1k = − , 0k = , and 1k = .  

Note that for all the remaining indices values of 
the function ( )2c kΠ  are identically equal to zero 
according to (43). So, because of this fact, all the 
remaining components in the sum on the right-hand 
side of (46), except of these three mentioned above, 
equal identically zero. 

Taking all the above into account, we can rewrite 
(46) as 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 2 1 cos exp 2

0 1 cos 0

1 2 1 cos exp 2  .

1
2

1
2

1
2

c

c

c

h j

j

τ π πτ

π πτ

 = Π − − + 

 Π − + 

 + Π − − 

. (47) 

Observe that (47) can be further simplified because 
( )cos 0 1= , but ( )cos 1π = − . Introducing this into 

(47) leads to 

 
( ) ( ) ( )

( ) ( )
1 2 exp 2

1 2 exp 2  .
c

c

h j

j

τ πτ

πτ

= Π − +

+Π −
 (48) 

Substituting next ( ) ( )1 2 1 2c c cΠ − = Π = , which 
follows from (43), into (48) gives 

 
( ) ( ) ( )

( )
exp 2 exp 2

2 cos 2  .

h c j j

c

τ πτ πτ

πτ

 = + − = 
= ⋅

 (49) 

Finally, taking into account in (49) that 
( )2t Tτ = =  mf t= , we arrive at 

 

( )( ) ( )
( ) ( )
( ) ( )

2

exp 2 exp 2

2 cos 2 =2 cos  .
m m

m

h t T t

c j f t j f t

c f t c t T

τ ν

π π

π π

= = =

 = + − = 
= ⋅ ⋅

 (50) 

Note now that (50) does not provide an 
unambiguous result. This is so because of the fact that 
the coefficient c in (50) can be chosen arbitrarily. That 
is c can be any real number, as mentioned before. 
However, it cannot be ∞  (because the latter does not 
belong to the set of real numbers). Also, in other 
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words, (50) shows that the function ( )tν , denoting 
the left-hand side of (30), and the function 

( )cos t Tπ  are “equivalent to each other” in the 
sense that only a proportionality constant factor stays 
between them; this factor is equal to 2c . Obviously, 
if we choose 1 2c =  in (50), we obtain a perfect 
equivalence between these functions. That is we get 
then the equality in (30) as postulated therein. But, a 
question still remains how to justify, in the context of 
our problem, the choice of 1 2c = . To do this, we 
have to recourse to the arguments of a physical 
nature. And, let start with the following observation: 
the period 2 1m mT T f= =  of the un-sampled 
periodic function ( )x t  given by (6) is preserved in 
its recovered version ( )rx t , see (29), (30), and (50). 
Therefore, it is natural also to postulate preservation 
of the amplitude of the above periodic function in its 
recovered version. In what follows, we will do this. 

First, see that ( )x t  given by (6) can be rewritten 
as 

( )
( )

( ) cos 2

expression , ,
m

m

x t A f t

A f t

π ϕ

ϕ

= ⋅ − =

= ⋅
   , (51) 

where A means an amplitude assumed to be equal to 
1, for simplicity; it is associated with the expression 
named ( ) ( )expression , , cos 2m mf t f tϕ π ϕ= − . 
And, similarly, taking into account (29), (30), and (51), 
we can write 

( ) ( ) ( )
( ) ( )

( ) cos 2 cos

cos 2 expression , ,
r r

m r r m

x t A t c

f t A f t

ϕ ν ϕ

π ϕ

= ⋅ = ⋅ ⋅

⋅ = ⋅
 , (52) 

where 2rA c=  denotes an amplitude associated 
with another expression called 

( )expression , ,r mf t ϕ =  ( ) ( )cos cos 2 mf tϕ π= . 
Obviously, the expressions ( )expression , ,mf t ϕ  
and ( )expression , ,r mf t ϕ  differ from each other. 
Thereby, ( )x t  and ( )rx t  differ from each other, 
too. However, we want to have 

1 2rA A c= = =  . (53) 

From (53), we get 1 2c = , what applied in (50) 
gives the expected result. Finally, this ends the proof 
of the lemma.   ♣ 

To complete the topic of this section, let us show 
also that both the choices 0c =  and 1c =  
mentioned before lead to results which are worse than 
the one achieved for 1 2c = . So, consider first 0c = . 
Substituting this value in (50) gives ( ) 0tν ≡ , which 
applied finally in (29) leads to ( ) 0rx t ≡ . 

Let us now interpret the above reconstructed 
signal ( )rx t  using the terminology of approximation 
theory. In this convention, ( )rx t  will be simply 
viewed as an approximation of the original signal 
( )x t . But, note that the dc component being 

identically zero is rather a very poor approximation of 
any possible function of a continuous time variable t 
that can be inscribed into the series of the signal 
samples given by (26). 

Consider next the case of 1c = . Substituting this 
value in (50), similarly as before, gives 
( ) ( )2 cost t Tν π= ⋅ . And, the latter applied in (29) 

leads to ( ) ( ) ( )2cos cosrx t t Tϕ π= . 

The latter result seems to be a better 
approximation of ( )x t  than the previous one. Now, 
the approximation consists of two components of the 
Fourier series of the periodic function ( )x t  given by 
(23). The dc component is perfectly determined 
because it equals identically zero in (23) as well as in 

( ) ( ) ( )2cos cosrx t t Tϕ π= . The Fourier series 
coefficient multiplying ( )cos t Tπ  in (23) is equal to 

( )cos ϕ , but here ( )2cos ϕ . So, in terms of the 
approximation theory, it is overestimated. Further, 
the Fourier series coefficient multiplying ( )sin t Tπ  
in (23) equals ( )sin ϕ , but in our approximation 

( ) ( ) ( )2cos cosrx t t Tϕ π=  is identically equal to 
zero. Thus, we can say that it is evidently 
underestimated. 

Comparison of the three cases regarding possible 
choice of the coefficient c, which were discussed 
above, shows that the best of them is the first one with 

1 2c = . Why? Because this choice assures a correct 
calculation (reconstruction) of two from a total 
number of three Fourier series coefficients of the 
periodic signal given by (6).  

4 CONCLUSIONS 

It is well known that a critical sampling of an analog 
signal can lead to ambiguous results in the sense that 
the reconstructed signal is not unique. Such is the case 
of sampling of a cosinusoidal signal of any phase 
considered in very detail in this paper.  

The non-unique results obtained for this case as 
well as the reasons of a lack of uniqueness are 
thoroughly explained here and in an accompanying 
paper (Borys A., Korohoda P. 2020). Furthermore, it is 
also shown that manipulating values of the transfer 
function of an ideal rectangular reconstruction filter at 
the transition edges does not eliminate the ambiguity 
incorporated in the result of signal reconstruction 
achieved. 
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