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1 INTRODUCTION 

In positive systems inputs, state variables and outputs 
take only nonnegative values. Examples of positive 
systems are industrial processes involving chemical 
reactors, heat exchangers and distillation columns, 
storage systems, compartmental systems, water and 
atmospheric pollutions models. A variety of models 
having positive behavior can be found in engineering, 
management science, economics, social sciences, 
biology and medicine, etc. Positive linear systems are 
defined on cones and not on linear spaces. Therefore, 
the theory of positive systems is more complicated and 
less advanced. An overview of state of the art in 
positive systems theory is given in the monographs [1, 
4, 8]. 

Positive linear systems with different fractional 
orders have been addressed in [9, 10]. Stability of 
standard and positive systems has been investigated in 
[5, 15, 17, 20] and of fractional systems in [3, 6, 13, 14]. 
Descriptor positive systems have been analyzed in [11, 
12]. Linear positive electrical circuits with state 
feedbacks have been addressed in [2, 15].The global 
stability of the nonlinear systems with positive linear 
parts has been analyzed in [7 ]. 

In this paper the main results of [7] will be extended 
to fractional nonlinear systems and the global stability 
of fractional nonlinear systems with negative 
feedbacks and positive not necessary asymptotically 
stable linear parts will be addressed. 

The paper is organized as follows. In section 2 some 
preliminaries concerning positive linear systems are 
given and  it is shown that the coefficients of the 
transfer matrices of positive asymptotically stable 
linear systems are positive. The main result of the 
paper is given in section 3 where the sufficient 
conditions for the global stability of the fractional 
nonlinear feedback systems with positive linear parts 
are established. Concluding remarks are given in 
section 4. 

The following notation will be used:   - the set of 
real numbers, n m  - the set of nm real matrices, 

mn

+  - the set of nm real matrices with nonnegative 
entries and 1n n

+ + =  , Mn - the set of nm Metzler 
matrices (real matrices with nonnegative off-diagonal 
entries), In - the nm identity matrix. 
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2 PRELIMINARIES 

Consider the continuous-time linear system 

( )
( ) ( ), 0 1

d x t
Ax t Bu t

dt




= +    (1a) 

( ) ( ) ( )y t Cx t Du t= +  (1b) 

where ( ) nx t  , ( ) mu t  , ( ) py t   are the state, 
input and output vectors and n nA  , n mB  , 

p nC  , p mD  ,  

0

( ) 1 ( ) ( )
, ( )

(1 ) ( )

t
d x t x dx

d x
ddt t



 

 
 

 
= =
 − −  (1c) 

is the Caputo fractional derivative and 

1

0

( ) , Re( ) 0z tz t e dt z



− − =   (1d) 

is the gamma function [13]. 

Definition 1. [7] The fractional system (1) is called 
(internally) positive if ( ) nx t +  and ( ) py t + , 0t   
for any initial conditions (0) nx +  and all inputs 

( ) mu t + , 0t  . 

Theorem 1. [7] The fractional system (1) is positive 
if and only if 

, , ,n m p n p m
nA M B C D  

+ + +     (2) 

Definition 2. [6, 12] The positive fractional system 
(1) (for u(t)=0) is called asymptotically stable if 

lim ( ) 0
t

x t
→

=  for any (0) nx + . (3) 

Theorem 2. [6, 12] The positive linear system (1) (for 
u(t)=0) is asymptotically stable if and only if one of the 
following equivalent conditions is satisfied: 
1. All coefficient of the characteristic polynomial 

1
1 1 0( ) det[ ] ...n n

n n np s I s A s a s a s a−
−= − = + + + +  (4) 

 are positive, i.e. 0ia   for 0,1,..., 1i n= − . 

2. There exists strictly positive vector 

1[ ]T T
n  = , 0k  , 1,...,k n=  such that 

0A   or 0T A  . (5) 

The transfer matrix of the system (1) is given by 

1( ) [ ] , .nT s C I A B D s −= − + =  (6) 

Theorem 3. If the matrix nA M  is Hurwitz and 
n mB 
+ , p nC 

+ , p mD 
+  of the linear positive 

system (1), then all coefficients of the transfer matrix (3) 
are positive. 

Proof is similar to the proof given in [7] for the 
standard positive linear systems.. 

Example 1. Consider the fractional positive linear 
system (1) with the matrices 

   
2 1 1

, , 1 1 , 2 ,
2 3 2

A B C D
−   

= = = =   
−   

 (7) 

Note that the matrix A given by (7) is Hurwitz since 
its characteristic polynomial 

2
2

2 1
det 5 4

2 3
I A


  



+ −
 − = = + +  − +

 (8) 

has positive coefficients (Theorem 2). 

Using (7) and (6) we obtain 

   

1

1 2

2

( )

12 1 2 13 19
1 1 2

22 3 5 4

nT C I A B D 

  

  

−

−

 = − + = 

 + −   + +
+ =   

− + + +  

 (9) 

The transfer function (9) has positive coefficients. 

3 MAIN RESULT 

Consider the nonlinear feedback system shown in 
Figure 1 consisting of the fractional linear part 
described by the equations 

( )d x t
Ax bu

dt




= + , (10a) 

y cx= , (10b) 

where ( ) nx x t=  , ( )u u t=  , ( )y y t=  , n nA  , 
nb , 1 nc   and of the nonlinear element with the 

characteristic u=f(e) shown in Figure 2. 

 

Figure 1. Nonlinear feedback system. 

 

Figure 2. Characteristic of the nonlinear element. 

The characteristic of the nonlinear element satisfies 
the condition 

(0) 0f =  and 
( )

0
f e

k
e

  , k  + . (12) 

It is assumed that the linear part (10) is positive, i.e. 
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nA M , nb + , 1 nc 
+ , (13) 

but not necessary asymptotically stable. 

It is also assumed that if the linear part is unstable 
then by suitable choice of the gain k1 we may obtain 
(Figure 3) asymptotically stable positive linear part 
with the transfer function  

1
1

( )
( )

1 ( )

T
T

k T





=

+
 (14) 

and the nonlinear element with the characteristic 

1 1( ) ( )f e f e k e= −  satisfies the condition (Figure 4) 

1
1 1 2 1

( )
(0),

f e
f k k k k

e
  = − . (15) 

 

Figure 3. Nonlinear feedback system with the gain k1. 

 

Figure 4. Characteristic of the nonlinear element with the 
gain k1. 

Definition 3. The nonlinear system is called globally 
(or absolutely) asymptotically stable if lim ( ) 0

t
x t

→
=  for 

any (0) nx + . 

Definition 4. The circle in the plane ( ( ), ( ))P Q   

with center in the point 1 2

1 2

,0
2

k k

k k

 +
− 
 

 and radius 

2 1

1 22

k k

k k

−
 will be called the 

1 2

1 1
,

k k

 
− − 
 

 circle. 

Theorem 4. The  fractional nonlinear feedback 

system (Figure 3) consisting of positive linear 

asymptotically stable part with the transfer function 

(14) and of nonlinear element with characteristic 

satisfying the condition (15) is globally asymptotically 

stable if the Nyquist plot of 1( ) ( ) ( )T j P jQ  = +  of the 

linear part is located on the right-hand side of the circle 

1 2

1 1
,

k k

 
− − 
 

 . 

Proof. Proof is based on the application of the 
Lyapunov method to the positive nonlinear system [12, 
15, 17]. As the Lyapunov function we choose the time 
function 

1( ) 0, [0, )
A tTV t e b t=   + , (16) 

where 1[ ]T T
n  =  is strictly positive vector, i.e. 

0k  , 1,...,k n= . 

The function ( ) 0V t   for [0, )t +  since 1 nA M  
is asymptotically stable and nb + . 

From (16) we have 

1
1

( )
( ) 0

A tTdV t
V t A e b

dt
= =   for [0, )t +  (17) 

since 1 0T A   for the Hurwitz matrix 1 nA M  
(Theorem 2). 

Therefore, by the Lyapunov theorem the fractional 
positive nonlinear system is asymptotically stable if 

1 0A tce b   for [0, )t + . (18) 

Note that 

1 1
1 1( ) [ ] [ ]

A t
nT c e b c I A b  −= = −L , (19) 

where L  is the Laplace transform operator. From (18) 
we obtain 

1

1
Re ( ) 0T j

k
 +   for 0  and 2 1 0k k k= −  . (20) 

Taking into account that 

1
2 1 1 2 1

2

2 1 1

1 ( ) 1
Re ( ) Re

1 ( )

1 ( )1
Re

1 ( )

T j
T j

k k k T j k k

k T j

k k k T j










 
+ = + = 

− + − 

 +
 

− + 

 (21) 

and that the border of asymptotic stability is the j  
axis we obtain 

2

1

1 [ ( ) ( )]

1 [ ( ) ( )]

k P jQ
j

k P jQ

 


 

+ +
=

+ +
 (22a) 

or 

1 2{1 [ ( ) ( )]} 1 [ ( ) ( )]j k P jQ k P jQ    + + = + + . (22b) 

From (22b) we have 

1 2( ) 1 ( )k Q k P  − = +  and 1 2[1 ( )] ( )k P k Q  + =  (23) 

and after elimination of   

2
1 2 1 2[1 ( )][1 ( )] ( ) 0k P k P k k Q  + + + =  (24a) 

or 

2 21 2

1 2 1 2

1
( ) ( ) ( ) 0

k k
P P Q

k k k k
  

+
+ + + = . (24b) 
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Note that (24b) can be rewritten in the form of the 
equation 

2 2

21 2 2 1

1 2 1 2

( ) ( )
2 2

k k k k
P Q

k k k k
 

   + −
+ + =   

   
 (25) 

which describes the circle 
1 2

1 1
,

k k

 
− − 
 

 (see Figure 5). 

This completes the proof. □ 

 

Figure 5. Nyquist plot with the circle 
1 2

1 1
,

k k

 
− − 
 

. 

This theorem can be considered as an extension for  
the fractional nonlinear systems with positive linear 
parts of the Kudrewicz theorem presented in [18] for 
nonlinear systems with standard linear parts. 

Example 2. Consider the fractional nonlinear 
system with unstable linear part with 

2

( ) 2 3
( )

( ) 1.8 0.1

L
T

M

 


  

+
= =

+ −
 (26) 

and nonlinear element with the characteristic u=f(e) 
shown in Figure 6. 

 

Figure 6. Characteristic of the nonlinear element of Example 
2. 

To obtain the fractional nonlinear system with 
asymptotically stable linear part we choose k1=0.2 and 
we obtain 

1
1 1

2 2

( ) ( )
( )

1 ( ) ( ) ( )

2 3 2 3

1.8 0.1 0.2(2 3) 2.2 0.5

T L
T

k T M k L

 


  

 

    

= = =
+ +

+ +
=

+ − + + + +

. (27) 

Note that the characteristic of the nonlinear element 
u=f(e) satisfies the condition (Figure 6) 

( )
0.2 2

f e

e
  . (28) 

In this case 

1 2

2 3
( ) ( ) ( )

0.5 2.2

j
T j P jQ

j


  

 

+
= = +

− +
, (29) 

where 

2 3

2 2 2 2 2 2

1.4 1.5 2 5.6
( ) , ( )

(0.5 ) (2.2 ) (0.5 ) (2.2 )
P Q

  
 

   

+ +
= = −

− + − +
 (30) 

The Nyquist plot and the circle   are shown on the 
Figure 7. By Theorem 4 the nonlinear system is globally 
stable. 

 

Figure 7. Nyquist plot with the circle (-5,-0.5). 

4 CONCLUDING REMARKS 

The global stability of fractional nonlinear systems 
with negative feedbacks and positive linear parts has 
been analyzed. The characteristics u=f(e) of the 
nonlinear element satisfy the assumption (12) and the 
linear parts described by the equations (11) are not 
necessary asymptotically stable. The gain k1 of the 
positive linear part has been chosen so that the transfer 
function (14) is asymptotically stable and the 
characteristic u=f(e) satisfies the condition (15). 

It has been shown that the nonlinear systems are 

globally asymptotically stable if the Nyquist plots of 

the linear parts are located on the right-hand side of the 

circles 







−−

21

1
,

1

kk
. This theorem is an extension of 

the Kudrewicz theorem presented in [18] for nonlinear 

systems with standard linear parts. 

The considerations have been illustrated by 
numerical examples. The considerations can be 
extended to the fractional nonlinear systems with 
positive linear parts and with positive descriptor linear 
parts. 
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