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ABSTRACT: The paper introduced the basic model of process of safe ship control in a collision situation using a
game model with j objects, which includes non-linear state equations and non-linear, time varying constraints
of the state variables as well as the quality game control index in the forms of the game integral payment and
the final payment. Approximated model of the process control as the model of multi-step matrix game in the
form of dual linear programming problem has been adopted here. The Game Ship Control GSC computer
program has been designed in the Matlab/Simulink software in order to determine the own ship’s safe
trajectory. These considerations have been illustrated with examples of a computer simulation using an GSC
program for determining the safe ship's trajectory in real navigational situation. Simulation research were

passed for five sets of strategies of the own ship and met ships.

1 INTRODUCTION

The process of the own ship passing other ships at sea
very often occurs in conditions of uncertainty and
conflict accompanied by an inadequate co-operation
of the ships with regard to the International
Regulations for Preventing Collisions at Sea
(COLREG). It is, therefore, reasonable to investigate,
develop and represent the methods of a ship’s safe
handling using the rules of theory based on dynamic
games and methods of computational intelligence.

In practice, the process of handling a ship as a
control object depends both on the accuracy of the
details concerning the current navigational situation
obtained from the ARPA (Automatic Radar Plotting
Aids) anti-collision system and on the form of the
process model used for determining the rules of the
handling synthesis. The ARPA system ensures
automatic monitoring of at least 20 j-th encountered
objects, determining their movement parameters

(speed Vj, course ;) and elements of approaching to
own ship (D;. = DCPA ;- Distance of the Closest
Point of Approach, T/ =TCPA, - Time to the
Closest Point of Approach) and also assess the risk 7
of collision (Bist 2000, Cahill 2002, Gluver & Olsen

1998).

However, the range of functions of a standard
ARPA system ends up with a simulation of a
manoeuvre selected by navigator. The problem of
selecting such a manoeuvre is very difficult as the
process of control is very complex since it is dynamic,
non-linear, multi-dimensional and game making in its
nature (Figures 1 and 2) (Fang & Luo 2005, Fossen
2011, Lisowski 2013b, Perez 2005).

While formulating the model of the process it is
essential to take into consideration both the
kinematics and the dynamics of the ship’s movement,
the disturbances, the strategy of the encountered
objects and the formula assumed as the goal of
control. The diversity of selection of possible models
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directly affects the synthesis of the ship’s handling
algorithms which are afterwards affected by the
ship’s handling device, directly linked to the ARPA
system and, consequently, determines the effects of
safe and optimal control.

Figure 1. Parameters describing the process of the own ship
passing j-th encountered ship.
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Figure 2. Vectors of own ship and encountered objects.

2 BASIC MODEL OF GAME SHIP CONTROL

The most general description of the own ship’s
passing the j number of other encountered ships is the
model of a differential game of a j number of objects
(Figure 3).

General dynamic features of the process are
described by a set of state equations in the following
form:
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Xi :fi(x(‘)goa X,

V.
uy's u)/, 1) M)
=9 . . .
where X, (t) is ¥, dimensional vector of the
process state of the qwn ship determined in a time
span t€(t,,t,], x;’(t) is §,dimensional vector
of the process state for the j-th object, u,° é is vo
dimensional control vector of the own ship and
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ﬁjv-j (t) is v dimensional control vector of the j-th
object (Isaacs 1965, Keesman 2011).

The state variable Xg ’ is represented by the
values: course, angular turning speed, speed, drift
angle, rotational speed of the screw propeller and
cogtrollable pitch propeller - of the own ship and
X; /by the values: distance, bearing, course and
spgoed - of the j-th object. While the control value
Uy~ is represented by: reference rudder angle,
reference rotational speed screw propeller and
reference cqntrollable pitch propeller - of the own
ship and % ;’ by the values: course and speed - of the
j-th object (I&il & Koditschek 2001).

The constraints of the control and the state of the
process are connected with the basic condition for the
safe passing of the ships at a safe distance Ds in
compliance with COLREG Rules, generally in the
following form (Mesterton-Gibbons 2001):

g,[x) (), u] ()] <0 j=1.2,m @)

The constraints (2) as ,,ship’s domains” take a form
of a circle, ellipse, hexagon or parable and may be
generated, for example, by the neural network (Figure
4) (Cockcroft & Lameijer 2006, Landau et al. 2011,
Lisowski 2014a, Millington & Funge 2009, Zio 2009).
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Figure 3. Block diagram of a model ship’s differential game
including j participants.
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Figure 4. The shapes of the neural ship’s domains in the
situation of 10 encountered objects.



The synthesis of the decision making pattern of the
ship’s handling leads to the determination of the
optimal strategies of the players who determine the
most favourable, under given conditions, conduct of
the process. For the class of non-coalition games, often
used in the control techniques, the most beneficial
conduct of the own ship as a player with j-th object is
the minimization of her goal function in the form of
the payments — the integral payment and the final
one:

(O dt+r,(t,)+d(t,) — min )

Igzj[x

)

The integral payment determines the loss of way
of the own ship to reach a safe passing of the
encountered objects and the final one determines the
risk of collision and final game trajectory deflection
from reference trajectory (Straffin 2001).

Generally two types of the steering goals are taken
into consideration - programmed steering wuo(t) and
positional steering  uo[xo(t),t]. The basis for the
decision making steering are the decision making
patterns of the positional steering processes, the
patterns with the feedback arrangement representing
the differential games.

The application of reductions in the description of
the own ship’s dynamics and the dynamic of the j-th
encountered object and their movement kinematics
lead to the approximated matrix game model
(Cymbal et al. 2007, Engwerda 2005, Lisowski 2013a).

3 APPROXIMATED MODEL OF GAME SHIP
CONTROL
3.1 State and control variables

The differential game is reduced to a matrix game of a
j number of participants who do not co-operate
among them (Figure 5) (Lisowski 2014b).
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Figure 5. Block diagram of a model ship’s approximated
game j participants.

own ship

The state and control variables are represented by
the following values:

(4)

3.2 Risk of collision

The matrix game includes the values determined
previously on the basis of data taken from an anti-
collision system ARPA the value a collision risk 1j
with regard to the determined strategies of the own
ship and those of the j-th encountered objects.

The form of such a game is represented by the risk
matrix R=[rj(vo, vj)] containing the same number of
columns as the number of participant I (own ship)
strategies. She has; e.g. a constant course and speed,
alteration of the course 20° to starboard, to 20° port
etc., and contains a number of lines which correspond
to a joint number of participant II (j-th object)
strategies:

o Ryvo-1 My,
r21 r22 r2,v0 -1 erO
5)
I & I & (
Vll V]2 s Vl,Vo—l ViVo
R=[rj(vo,v;)]=
J ] ceee
rvjl rvj2 rvj,vo—l rvjvo
ol v, 2 e Iy vo-1 v, vy

The value of the risk of the collision 7; is defined as
the reference of the current situation of the approach
described by the parameters D] /.. and T/, to the
assumed assessment of the situation defined as safe
and determined by the safe distance of approach Ds
and the safe time Ts— which are necessary to execute a
manoeuvre avoiding a collision with consideration
actual distance D; between own ship and encountered
j-th ship:

1
Dl{lin ’ Tn{in ’ Dj s
l”j: g T +82 T +83 F (6)

where the weight coefficients €1, e and e are
depended on the state visibility at sea (good or
restricted), kind of water region (open or restricted),
speed V of the ship, static L and dynamic La length of
ship, static B and dynamic Ba beam of ship, and in
practice are equal (Figures 6 and 7):

1<(g,&,,85)=<20 @)
L;=1.1(L+0.3457") (8)
B, =1.1(B+0.767 LV°%) ©9)
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Figure 6. The surface of the collision risk value rj in
dependence on relative values distance and time of j-th
object approach.

Figure 7a. Dependence of the collision risk on the strategy
the own ship and that of the j-th encountered object to
approaching from the LB.

Figure 7b. Dependence of the collision risk on the strategy
the own ship and that of the j-th encountered object to
approaching from the SB.

72

Figure 7c. Dependence of the collision risk on the strategy
the own ship and that of the j-th encountered object to
approaching from the stern.

The constraints affecting the choice of strategies
are a result of the recommendations of the way
priority at sea. Player I (own ship) may use w of
various pure strategies in a matrix game and player
II (encountered object) has v of various pure
strategies (Osborne 2004).

3.3 Control algorithm

As the game, most frequently, does not have saddle
point the state of balance is not guaranteed, there is a
lack of pure strategies for both players in the game. In
order to solve this problem dual linear programming
may be used (Pantoja 1988, Seghir 2012, Speyer &
Jacobson 2010).

In a dual problem player I having w various
strategies to be chosen tries to minimize the risk of
collision (Modares 2006):

Iy =min rj (10)
Vo

while player II having v strategies to be chosen try to

maximize the risk of collision (Mehrotra 1992):

1/ =max r;

' (11)
Vi

The problem of determining an optimal strategy
may be reduced to the task of solving dual linear
programming problem:

(I({ )* = min max 7; (12)

J
Vo \7:

Mixed strategy components express the
probability distribution P=[pj(vo, v;)] of using pure
strategies by the players:



Pu  Pn Piv,-1 Pu,

Pn  Pn Pay;1 Py,

pvll pvlz pv],vo—l pvlvo 13
P=[p,ryv,)]= 49

pvjl pv/z pv/,v(,—l pvjv(,

pv,,,l pva pvm,va -1 pvmvﬂ

The solution for the steering goal is the strategy of
the highest probability and will also be the optimal
value approximated to the pure strategy:

(ug" )* =u," {[Pj (Vo Vj)]max} (14)

The safe trajectory of the own ship has been
treated here as a sequence of changes course and
speed.

The values established are as follows: safe passing
distances among the ships under given visibility
conditions at sea Ds, time delay of manoeuvring and
the duration of one stage of the trajectory as one
calculation step. At each step the most dangerous
object is determined with regard to the value of the
collision risk r. Consequently, on the basis of the
semantic interpretation of the COLREG Regulations
the direction of a turn of the own ship is selected to
the most dangerous encountered object (Flechter
1987).

The collision matrix risk R is determined for the
admissible strategies of the own ship w and those v
for j-th object encountered. By applying dual linear
programming in order to solve the matrix game you
obtain the optimal values of the own course and that
of the j-th object at the smallest deviation from their
initial values.

If, at a given step, no solution can be found at a
speed of the own ship V, the calculations are repeated
at the speed reduced by 25% until the game has been
solved. The calculations are repeated step by step
until the moment when all elements of the matrix R
become equal to zero and the own ship, after having
passed the encountered objects, returns to her initial
course and speed.

In this manner optimal safe trajectory of the ship is
obtained in a collision situation (Fadali & Visioli
2009).

Using the function of Ip — linear programming from
the Optimization Toolbox contained in the Matlab
software, the Game Ship Control GSC program has
been designed for the determination of the safe ship’s
trajectory in a collision situation.

4 COMPUTER SIMULATION

4.1 GSC1 program

Simulation tests in Matlab/Simulink of the GSC
program have been carried out with reference to real
situation of passing j=10 encountered ships.

For the first base version GSC1 of the program, the
following values for the strategies have been adopted
(Figure 8) (Lisowski & Lazarowska 2013, Nisan et al.
2007):

vy =13 —|0° + 60°| for each of the 57,

v, 225—>(—600 + +600) for each of the 5°.
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Figure 8. Possible mutual strategies of the own ship and
those of the j-th encountered object in program GSC1.

The computer simulation, performed on version of
the GSC1 program is presented on Figure 9.

4.2 GSC2 program

For the second version GSC2 of the program, the
number of own ship strategies has been reduced to
(Figure 10):

Vo =13 —>|0° + 60°| for each of the 5°,

v, =3-(-30°, 07 +30°).

The computer simulation, performed on version of
the GSC2 program is presented on Figure 11.
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Good visibility: Ds=0.5 nm Good visibility: D=0.5 nm

!

r(t)=0, d(t)=2.89 nm r(t)=0, d(tx)=2.83 nm

Restricted visibility: Ds=2.5 nm Restricted visibility: Ds=2.5 nm

-6 -4 2 0 2 4 & 8

1(t)=0, d(t)=4.73 nm r(tk)=0, d(tk)=6.75 nm

Figure9. The ship's game trajectories for the GSC1 Figure 11. The ship's game trajectories for the GSC2

algorithm. algorithm.
yiom] |
5. 4.3 GSC3 program
o]
e For the version GSC3 of the program, the number of
al : own ship strategies has been reduced to (Figure 12):
30 LB
VJ o 4 o o
2 vy, =4—07, 20, 407, 60°,
il v, =35(-30°,0°, +30°),
g .
60° SB
. . X[nm]
-1 0 1 2

Figure 10. Possible mutual strategies of the own ship and
those of the j-th encountered object in program GSC2.
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Figure 12. Possible mutual strategies of the own ship and
those of the j-th encountered object in program GSC3.

The computer simulation, performed on version of
the G5C3 program is presented on Figure 13.

Good visibility: Ds=0.5 nm

r(t)=0, d(t)=2.08 nm

Restricted visibility: Ds=2.5 nm

8 G 2 0 2 1 5 B
r(tx)=0, d(tx)=6.68 nm

Figure 13. The ship's game trajectories for the GSC3
algorithm.

4.4 GSC4 program

For the version GSC4 of the program, the number of
own ship strategies has been reduced to (Figure 14):

0°,307,60°

vy=3—>

7

v, =3-(-30°,0° +30°),

J

y[nm]
30° sB
300LB
2 Vi
2
\
i 30° sB
14
607 SB
*[nm]

-1 0 1 Fi
Figure 14. Possible mutual strategies of the own ship and
those of the j-th encountered object in program GSC4.

The computer simulation, performed on version of
the GSC4 program is presented on Figure 15.

4.5 GSC5 program

For the version GSC5, the number of the own ship
strategies has been reduced to (Figure 16):

0°, 60°
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v, =3-(-30°,0%+30°)
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y[nm]

c 1

30° 5B

30° LB
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60° 5B
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Figure 16. Possible mutual strategies of the own ship and
those of the j-th encountered object in program GSC5.

The computer simulation, performed on version of
the GS5C5 program is presented on Figure 17.
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Good visibility: Ds=0.5 nm

r(t)=0, d(t)=1.52 nm

Restricted visibility: Ds=2.5 nm

r(t)=0, d(t)=2.42 nm

Figure 15. The ship's game trajectories for the GSC4
algorithm.

5

CONCLUSIONS

Analysis of the computer simulation studies of GSC
program for different amounts of possible strategies

of

own ship and met objects allows to draw the

following conclusions:
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The synthesis of an optimal on-line control on the
base of model of a multi-step matrix game makes
it possible to determine the safe game trajectory of
the own ship in situations when she passes a
greater j number of the encountered objects;

The trajectory has been described as a certain
sequence of manoeuvres with the course and
speed;

Good visibility: Ds=0.5 nm

r(t)=0, d(t)=1.20 nm

Restricted visibility: Ds=2.5 nm

r(tx)=0, d(tx)=6.68 nm

Figure 17. The ship's game trajectories for the GSC5
algorithm.

— The computer program designed in the Matlab

also takes into consideration the following:
regulations of the Convention on the International
Regulations for Preventing Collisions at Sea,
advance time for a manoeuvre calculated with
regard to the ship’s dynamic features and the
assessment of the final deflection between the real
trajectory and its assumed values;

The essential influence to form of safe and optimal
trajectory and value of deflection between game
and reference trajectories has the number of
admissible strategies of own ship and encountered
objects;

It results from the performed simulation testing
this algorithm is able to determine the correct
game trajectory when the ship is not in a situation
when she approaches too large number of the
observed objects or the said objects are found at
long distances among them;



— In the case of the high traffic congestion the
program is not able to determine the safe game
manoeuvre. This sometimes results in the backing
of the own object which is continued until the time
when a hazardous situation improves.
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