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1 INTRODUCTION 

In his recent papers the author presented application 
of Mathematical Theory of Evidence (MTE) in nav-
igation. The Theory appeared to be flexible enough 
to be used for reasoning on the fix. Contrary to the 
traditional approach, it enables embracing 
knowledge into calculations. Knowledge regarding 
position fixing includes: characteristics of random 
distributions of measurements as well as ambiguity 
and imprecision in obtained parameters of the distri-
butions. Relation between observations errors and 
lines of position deflection is also important. Uncer-
tainty can be additionally expressed by subjectively 
evaluated masses of confidence attributed to each of 
observations. 

New scheme enabling inclusion of knowledge in-
to the fixing process was presented by Filipowicz 
2009c. Way of computation of belief and plausibility 
as well as location vectors grades can be found in 
other papers by Filipowicz 2009a, 2009b. Location 
vectors were constructed assuming normal distribu-
tion of measurement errors. The latest was rather a 
result of limitation imposed on the publications. In 
order to fill up the hiatus empirical distributions are 
discussed herein.  

Those interested in computational complexity of 
the fixing algorithms and ways of detecting local 

maxima should refer to another paper Filipowicz 
2010a.  

This paper is devoted to a new idea in position 
fixing in terrestrial navigation. Therefore character-
istics of measurements errors are discussed, relation 
between imprecision of the measured values and 
lines of position or isolines is also presented. 

During computation process abnormally high in-
accuracy should be detected. In proposed approach 
the condition results in large mass of inconsistency, 
which occurs when no zero mass is assigned to emp-
ty sets. High inconsistency mass leads to rejection of 
the fix or undertaking steps towards fix adjustment. 
Selected position can be evaluated based on the final 
inconsistency but also on plausibility and belief val-
ues. It should be noted that constant errors are of 
primary importance when quality of the fix is con-
sidered. Using methods that remove systematic de-
flection of a measurement is recommended. Exploit-
ing horizontal angles instead of bearings makes the 
fixed position independent from constant errors. The 
latest is a reason that part of the paper is devoted to 
the horizontal angle isoline. 

MTE exploits belief and plausibility measures, it 
operates on belief structures. Belief structures are 
subject to combination in order to increase their ini-
tial informative context. The structures can be crisp, 
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interval and fuzzy valued. Mainly crisp valued struc-
tures were presented and discussed in the author’s 
previous papers. The structures consist of sets of 
normal location vectors along with crisp masses of 
confidence attributed to them. Vectors normality can 
be achieved through transformation procedure called 
normalization. Approaches known as Dempster and 
Yager methods are widely used. Advantages and 
disadvantages of the two proposals are discussed 
from nautical usage point of view. Being stuck to the 
original proposals proved to be not adequate while 
position fixing. For this reason a modified normali-
zation procedure is proposed in this paper. 

2 FUZZY EVIDENCE 

Crisp valued standard deviation of a measurement is 
inadequate. In recent navigation books mean error is 
described as imprecise interval value usually as: 
[±σˉd, ±σ+

d]. Mean error of a distance measured 
with radar variable range marker is within the inter-
val of [±1% ÷ ±1.5%]. In the same condition mean 
error of a bearing taken with medium class radar is 
within [±1° ÷ ±2°] as presented by Jurdziński 2008 
& Gucma 1995. Using fuzzy arithmetic notation it 
can be written as a quad (-2, -1, 1, 2). The latest 
means fuzzy value with core of [-1°, 1°] and support 
of [-2°, 2°], and reflects the statement that the error 
is within [±1° ÷ ±2°]. Graphic interpretation of the 
proposition is shown in Figure 1. The scheme en-
gages probability and possibility theory. Observa-
tional errors are assumed to follow a normal distri-
bution. Mean error estimates standard deviation 
(square root of a variance) of the distribution. The 
picture shows two confidence intervals related to 
two different distribution functions. A confidence in-
terval is an interval in which a measurement falls 
within a range with selected probability. It is as-
sumed that the confidence intervals are symmetrical-
ly placed around the mean. A confidence interval 
with probability equal to 0.683, for the Gauss proba-
bility density function is the interval [α - σ, α + σ] 
where α is a mean and σ is a standard deviation. 

Two confidence intervals introduce imprecision 
that is usually expressed by an interval or fuzzy val-
ue that is a synonym of fuzzy set.  

Figure 1 shows trapezoid-like membership func-
tion that locates adjacent bearings within the defined 
set. The function returns possibility regarding giv-
en x, it attributes x degree of inclusion within the set. 
For example abscissa: x = α+0.5 fully belongs to the 
given set, contrary to x = α+1.5, its inclusion within 
the set is partial with degree of membership equal 
to 0.5. Different membership functions intended for 
nautical application were discussed by the author in 
his previous paper Filipowicz 2009a. 

 

σ¯
α  

σ+
α  

gradient 

probability/possibility 

α  

1 

1°  2°  -2°  -1°  

-σ¯
α  

-σ+
α  

 
Figure 1. Graphic interpretation of the proposition “bearings 
mean error is between ±1°÷±2°” 

 
Empirical parameters are estimated based on ob-

servations. Empirical probability is widely used in 
practice. In terrestrial navigation it is exploited quite 
often. Theoretical probabilities are estimated by 
those calculated from experiments and observations. 
Empirical probability is the ratio of the number of 
those results that fall into a selected category to the 
total number of observations.  

The empirical probability estimates statistical 
probability. Avoiding any assumptions regarding ob-
tained data is the main advantage of estimating 
probabilities using empirical data. Histograms are 
widely used as graphical representation of empirical 
probabilities. Histogram is a diagram of the distribu-
tion of experimental data. Usually histogram con-
sists of rectangles, placed over non-overlapping in-
tervals also known as bins. The histogram is 
normalized and displays relative frequencies. It then 
shows the proportion of cases that fall into each of 
several bins. In normalized histogram total area of 
rectangles equals to one. The bins or intervals are 
usually chosen to be of the same size. There is no 
universal rule to calculate number of bins. In the 
presented application their quantity equals to the 
number of ranges established around measured value 
assumed as governed by normal distribution. Empir-
ical distribution of observational errors with impre-
cise bin width and relative frequencies is shown in 
Figure 2. 

Family of sets {{lk}i} of measured values are giv-
en as a result of experiments. Therefore sets of mean 
values {l̄i} and the bin width s can be obtained. Ex-
treme deflection of means ∆l̄–

 and ∆l̄+ can be also 
known. Modal value1 l̄m is calculated based on ex-
treme means. Consequently empirical mean and bin 
widths are interval valued with above mentioned 
limits. Relative frequencies {pj} for each of consid-

                                                 
1 Modal value is defined for a fuzzy set. Usually it is calculated as a 
mean of the set’s core, Piegat 2003. It should be noted that modal val-
ue is of secondary meaning in distribution characteristics. 



 

 

ered bins are obtained as crisp or imprecise valued. 
Formulas from 1 to 4 define complete set of parame-
ters for empirical distributions. 
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Figure 2. Empirical distribution with imprecise bin width and 
relative frequencies 

3 ISOLINES AND THEIR GRADIENTS 

Results of measurements plotted at a chart appear as 
lines of position. From the mathematic point of view 
the lines of position are isolines or in many cases 
lines tangent to them. An isoline for a function of 
two variables is a curve connecting points where the 
measurement has the same value. In terrestrial navi-
gation, an isoline joins points of equal bearing, dis-
tance or horizontal angel. A bearing is the direction 
one object is from a vessel. Isoline of a bearing is a 
line, the same distance from an object produces cir-
cle. Isoline of the horizontal angle is also a circle 
since all inscribed angles that subtend the same arc 
are equal. The arc joins observed objects. Figure 3 
presents isoline of a horizontal angle. A horizontal 
angle obtained as difference of two bearings is a 
valuable thing for navigator since it does not contain 
constant error. 

The gradient of a function is a vector which com-
ponents are the partial derivatives of the function. 
For function of two variables gradient is defined by 
Formula 5. 
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Figure 3. Isoline of a horizontal angle and its gradient in select-
ed point (g1 and g2 refers to gradients of the first and second 
bearing, first bearing is taken to the left object) 

 
Product of the gradient at given point with a vec-

tor gives the directional derivative of the function in 
the direction of the vector. The direction of gradient 
of the function is always perpendicular to the isoline. 
Gradients, measurements error and lines of position 
deflections are dependent values. Formula 6 shows 
the relation. 
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Table 1. Parameters of the horizontal angle isoline  __________________________________________________ 
    isoline parameter     formula __________________________________________________ 

isoline radius           
)sin(2

12

β
dr =  

center coordinates   (x1+r cos(90-β+θ, y1+r sin(90-β+θ)) 

gradient module         



=

Nm
rad

21

12

dd
dg  

__________________________________________________ 
d12   – distance between observed objects 
θ   – inclination, related to x axis, of the line passed through  
    the objects (θ = 0 in Figure 3) 
x1, y1  – coordinates of the left object (see Figure 3) 
β   – horizontal angle calculated as difference of bearings  
    (β > 0) 
di    – distance to i-th object (di ≠ 0) 
 

Error of the measurement divided by the module 
or length of the gradient in selected point gives de-
flection of the isoline at the point. In the proposed 
solution limits of introduced strips and possible iso-
lines coverage are to be calculated accordingly. 
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Radius length, coordinates of the center and gra-
dient module for horizontal angle isoline can be cal-
culated with formulas presented in Table 1. 

Table 2 contains data regarding isoline shown in 
Figure 3. The data embrace distances, gradients 
modules and isoline errors calculated for measure-
ments standard deviation of ±1°. Appropriate values 
were obtained for selected points placed in the iso-
line. 

 
Table 2. Selected points at the horizontal angle isoline, gradi-
ents and isoline errors  __________________________________________________ 
x     0   1  3  4  5  6  8  9 
y     3.2  4.9 6.2 6.4 6.4 6.2 4.9 3.2 
d1 [Nm]   3.2  5.0 6.8 7.5 8.1 8.6 9.4 9.6 
d2 [Nm]   9.6  9.4 8.6 8.1 7.5 6.8 5.0 3.2 







Nm
g   16.7  11.1 8.8 8.5 8.5 8.8 11.1 16.7 

±M [cables] 0.60  0.90 1.14 1.18 1.18 1.14 0.90 0.60 __________________________________________________ 
isoline error M was calculated for measurement mean error  
σ = ±1° 

 
Isoline of a horizontal angle and its limits calcu-

lated for interval [β - 3σ, β + 3σ] is shown in Figure 
4. Limits of an isoline shows its extreme shifts due 
to measurements errors. These limits can be of the 
same size along the line as for example for distanc-
es. For bearings and horizontal angles limits vary 
depending on the position of the observer. Within 
the limits strips related to confidence intervals are 
established. Levels of confidence and way of select-
ing stripes are discussed in the paper by Filipowicz 
2010b. 
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Figure 4. Isoline of the horizontal angle and its limits 

4 SCHEME OF A POSITION FIXING 

Let us consider three rectangular ranges related to 
three isolines as shown in Figure 5. Within ranges 

six strips were distinguished. Widths of the strips are 
calculated based on measurement errors and the iso-
line gradients. Each strip has fuzzy borders depend-
ing on imprecision in estimations of the isoline er-
rors distribution. Theoretical or empirical 
probabilities of containing the true isoline within 
strips are given. Having particular point and all be-
fore mentioned evidence support on representing 
fixed position for given point should be found. This 
is quite different from traditional approach where 
single point should be found and available evidence 
hardly exploited. 

The scheme of approach is as follows: 
Given: available evidence obtained thanks to nauti-
cal knowledge 
Question: what is a support that particular point can 
be considered as fixed position of the ship?  
 

 
Figure 5. Three isolines with strips established around them 

 
Figure 5 shows common area of intersection of 

three areas associated with three isolines. Six strips 
were selected around each isoline, the strips were 
numbered as shown in the figure. Number 3’ refers 
to the far most section, number 3 indicates closest 
range according to gradient direction and regarding 
observed object(s). Assuming normal or empirical 
distribution probabilities attributed to each of the 
strips might be as shown in Table 3. 

 
Table 3. Example probability values  __________________________________________________ 
strip    3’   2’   1’   1   2   3 __________________________________________________ 
normal  
distribution 0.021 0.136 0.342 0.342 0.136 0.021 
empirical  
distribution 0.05  0.15  0.30  0.35  0.10  0.05 __________________________________________________ 
 



 

 

Figure 5 also shows magnified fragment of the 
area with two points situated within it. Points are 
marked with a and b. For both points hypothesis that 
they represent fixed position will be calculated. 
Support that point a can be considered as a fix is jus-
tified by the following probabilities related to (note 
that point a is entirely situated within crossing 
strips): 
− membership within strip 1 regarding isoline I 
− membership within strip 2’ regarding isoline II 
− location within strip 1’ regarding isoline III 

Position of point b is partial within strips related 
to isolines II and III. Its memberships are estimated 
as follows: II/2’→0.3, II/1’→0.7, III/1’→0.9, 
III/2’→0.1. Thus support that point b can be consid-
ered as a fix is justified by the following: 
− full membership within strip 1 with reference to 

isoline I 
− partial location within strip 2’ regarding isoline II 
− partial location within strip 1’ regarding isoline II 
− partial membership within strip 1’ with reference 

to isoline III 
− partial location within strip 2’ with reference to 

isoline III 
Evaluation of each of the measurements should 

also be included in calculation. Navigator knows 
which observation is good or bad, which are prefer-
able to the others. Usually the opinion is subjective 
and can be expressed as linguistic term or a crisp 
value.  

 
Table 4. Example probability values  __________________________________________________ 
   mass of  sets    memberships 
strip  evidence   ref. I    ref. II.   ref. III __________________________________________________ 
3’  m3’ =  0.05  µi3’ 0  0   0  0   0  0 
2’  m2’ =  0.15  µi2’ 0  0   1  0.3  0  0.9 
1’  m1’ =  0.35  µi1’ 0  0   0  0.7  1  0.1 
1  m1 =  0.30  µi1  1  0.5  0  0   0  0 
2  m2 =  0.10  µi2  0  0.5  0  0   0  0 
3  m3 =  0.05  µi3  0  0   0  0   0  0 __________________________________________________ 
uncertainty      0.3    0.2    0.1 __________________________________________________ 
ref. stands for reference to: 
index i indicates isolines (I, II or III) 
 

Table 4 contains preliminary results of the exam-
ple analysis. The table contains fuzzy points loca-
tions within selected strips, locations are given with 
reference to each of the isolines. Example empirical 
probabilities are included in column 2. Last row pre-
sents uncertainty, weights of doubtfulness, which is 
a complement of credibility, attributed to each 
measurement. 

Belief structure is a mapping or an assignment of 
masses to normal location sets. Location vectors are 
to be normal it means that their highest grade must 
be one. Subnormal sets should be converted to their 

normal state using normalization procedure. Vectors 
are supplemented with all one set, which expresses 
uncertainty. It says that each location is equally pos-
sible. Mass attributed to this vector shows lack of 
confidence to a particular measurement. Thanks to 
this value all observations can be subjectively differ-
entiated. All location vectors have assigned mass of 
confidence. Appropriate values are calculated as a 
product of empirical probability assigned to particu-
lar strip and complement of uncertainty related to 
given measurement. It should be noted that the sum 
of all masses within a single belief structure is to be 
equal to one. Table 5 presents three normalized be-
lief structures constructed based on data from Ta-
ble 4. 

Belief structures are subject of combination in or-
der to obtain knowledge base enabling reasoning on 
the position of the ship. It is known that combination 
of belief structures increase their initial informative 
context. By taking several distances and/or bearings 
a navigator is supposed to be confident on true loca-
tion of the ship.  

Plausibility and belief of the proposition repre-
sented by a fuzzy vector included in collection of re-
sult sets are calculated. In position fixing plausibility 
is of primary importance, for discussion on this topic 
see Filipowicz 2009a, 2010c. To calculate final 
plausibility and belief one has to use formulas pre-
sented by Denoeux 2000, the expressions were fur-
ther simplified by the author Filipowicz 2010c. In 
presented example plausibility values that given 
points can be selected as a fixed position are: pla = 
0.62, plb = 0.60. Obviously a dense mesh of points is 
to be considered in practical implementations. 

 
Table 5. Final normalized belief structures  __________________________________________________ 
   b.s. I        b.s.II      b.s. III __________________________________________________ 
{1  0.5}  0.21   {1  0.3} 0.12  {0  1}  0.08 
{0  1}   0.07   {0  1}  0.28  {1  0.1} 0.31 
{1  1}   0.72   {1  1}  0.60  {1  1}  0.61 __________________________________________________ 
b.s.  stands for belief structure 

5 NOTES ON NORMALIZATION OF PSEUDO 
BELIEF STRUCTURES 

Two strips that do not embrace the common points 
are disjunctive and their intersection is empty. Re-
sult of combination of the disjunctive vectors is a 
null set. Therefore product of masses attributed to 
both combined disjunctive vectors is assigned to 
empty set what means occurrence of inconsistency. 
Inconsistency results in a pseudo belief structure that 
must be converted to its normal state. Two normali-
zation procedures are used: one was proposed by 
Dempster another one by Yager. At first both of 
them considered crisp vectors. Further extensions for 
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fuzzy environment were suggested by Yager 1995. 
Although it is quite often that many authors refer to 
them using original methods inventor names. Nor-
malization procedures are quite different in two as-
pects, namely in allocation of inconsistency masses 
and modification of fuzzy sets contents called 
grades. Masses of inconsistency in Dempster ap-
proach increase weights attributed to not null sets. In 
Yager proposal the masses increase uncertainty. In 
case of subnormal sets Dempster suggested division 
by highest grade. It preserves allocation of points 
within selected strips. Yager proposed adding com-
plement of the largest grade to all elements of the 
set. It corrupts allocation of points within selected 
strips. Therefore results of subnormal belief struc-
tures conversion to their normal state using the two 
methods are different, see Table 6 for case study. 
Fuzzy sets are location vectors containing fuzzy 
memberships of a search space points within select-
ed strips. Thus Dempster transformation causes that 
points with not null locations increase their member-
ships, empty grades are not changed. In Yager nor-
malization all considered points gain some degrees 
of membership. Unfortunately it may adversely af-
fect computational process and ability of evaluation 
of the obtained fix. Therefore modified normaliza-
tion method is proposed. In the approach incon-
sistency masses increase uncertainty very much like 
in Yager method. Conversion of subnormal sets re-
mains in line with Dempster proposal. In order to 
obtain proper grades all of them are divided by the 
highest one. Modified method preserves location of 
search space points. The method also enables identi-
fication of all inconsistency cases as depicted by Fil-
ipowicz 2010b.  

Table 6. Two example fuzzy sets, their normalizations and 
combinations  __________________________________________________ 
        Location vectors       m(..) __________________________________________________ 
µ1   {0  0.8 0 0  0  0  0  0.6 0}  0.41 
µ1

Y  {0.2 1   0.2 0.2 0.2 0.2 0.2 0.8 0.2} 0.41 
µ1

D  {0  1  0 0  0  0  0  0.75 0}  0.48*) 
µ1

M  {0  1  0 0  0  0  0  0.75 0}  0.33 
µ2   {0  0  0 0.67 0  1  0  0  0}  0.20 
µµ1

Y
∧µ2 {0  0  0 0.2 0  0.2 0  0  0}  0.08 

µµ1
D

∧µ2 {0  0  0 0  0  0  0  0  0}  0.10 
µµ1

M
∧µ2 {0  0  0 0  0  0  0  0  0}  0.07 __________________________________________________ 

*)  - according to Dempster proposal masses of non empty sets 
are modified during normalization 
µ1

Y - fuzzy set µ1 normalized with Yager method 
µ1

D - fuzzy set µ1 normalized with Dempster method 
µ1

M - fuzzy set µ1 normalized with modified method 
µµ1

Y
∧µ2 - result of combination of fuzzy sets µ1

Y and µ2 
µµ1

D
∧µ2 - result of combination of fuzzy sets µ1

D and µ2 
µµ1

M
∧µ2 - result of combination of fuzzy sets µ1

Mand µ2 
 

 
Table 7. Dempster versus Yager versus modified approaches ________________________________________________________________________________________________________ 
             Dempster normalization   
            (Yager smooth normalization)*)    Yager normalization    modified normalization ________________________________________________________________________________________________________ 
way of modification of     increased by a factor calculated              reduced by complement of 
masses assigned to not null sets using inconsistency values    remain unchanged     the highest grade ________________________________________________________________________________________________________ 
            solely depend on initial      uncertainty is increased by  increased by reduction of 
result uncertainty      uncertainties         total mass of inconsistency  not null sets masses ________________________________________________________________________________________________________ 
modification of membership   general image of location vectors   null grades of location vectors  general image of location  
grades          is preserved, null grades remain   gain some membership   vectors is preserved 
             unchanged ________________________________________________________________________________________________________ 
ability to detect all   
inconsistency cases      possible           impossible        possible ________________________________________________________________________________________________________ 
recommendation       belief structures with fuzzy     belief structures with binary  belief structures with fuzzy 
             location vectors        location vectors      location vectors ________________________________________________________________________________________________________ 
not recommended for     belief structures with binary    belief structures with fuzzy   belief structures with binary 
             vectors and high inconsistency   vectors and high      vectors and high  
                          inconsistency       inconsistency ________________________________________________________________________________________________________ 
computational complexity   rather high          rather low        rather low ________________________________________________________________________________________________________ 
final solution affected by high               might adversely affect final   
inconsistency        not observed         solution         not observed ________________________________________________________________________________________________________ 
*) original method name suggested by Yager 1995 
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Table 6 embraces example of two fuzzy sets that 
are excerpted from belief structures. First of the sets 
is subnormal and needs to be converted. Their nor-
mal states obtained by three different methods are 
also presented. Results of combinations of the con-
verted sets with the second one are included in last 
three rows of the table.  

Combination is carried out using minimum opera-
tor and product of masses involved. Formula 7 de-
livers proper expressions. 
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Masses of credibility assigned to all vectors and 
to results of their combinations are shown in the last 
column of Table 6. 

Table 7 contains comparison of Dempster, Yager 
and modified normalizations taking into account 
practical aspects presented in first column. It should 
be noted that position fixing engages fuzzy location 
vectors therefore modified normalization should be 
recommended. Most important feature of the Demp-
ster and modified methods is ability to preserve gen-
eral shape of location vectors, null grades remain 
unchanged. Consequently all inconsistency cases 
can be detected. 

6 SUMMARY AND CONCLUSIONS 

Bridge officer has to use different navigational aids 
in order to refine position of the vessel. To combine 
various sources he uses his common sense or relies 
on traditional way of data association. So far Kal-
man filter proved to be most famous method of data 
integration. Mathematical Theory of Evidence deliv-
ers new ability. It can be used for data combination 
that results in enrichment of their informative con-
text. The Theory extension to a fuzzy platform pro-
posed by Yen 1990 enables wider and more complex 
applications. 

Based on the Theory concept new method of po-
sition fixing in terrestrial navigation is proposed. 
The method enables reasoning on position fixing 
based on measured distances and/or bearings. It was 
assumed that measured values are random ones with 
theoretical or empirical distribution. Knowledge on 
used aids and observed objects is included into com-
bination scheme. Relation between measurement er-
ror and deflection of the isoline was also depicted. It 
was suggested that instead of bearings concept of 
horizontal angles should be used, obtained isoline is 
constant error free.  

The true isoline of distance, bearing or horizontal 
angle is somewhere in the vicinity of the isoline 
linked to a measurement. To define true observation 

location probabilities six ranges were introduced. 
Probability levels assigned to each strip can be cal-
culated based on features of normal distribution or 
they can be delivered from experiments. Standard 
deviation of the distribution is assumed to be within 
known range. Empirical data also varies within some 
range. In both cases imprecise interval valued limits 
of ranges are to be adopted. Sigmoid membership 
functions are used for establishing points of interest 
levels of locations within established ranges. Calcu-
lated locations are elements of fuzzy sets called lo-
cation vectors. Vectors supplemented with the one 
expressing uncertainty compose one part of belief 
structure. Another part embraces masses of initial 
believes assigned to location vectors and uncertain-
ty. Complete belief structure is related to each of 
measurements. Mass assigned to uncertainty ex-
presses subjective assessment of measuring condi-
tions. One has to take into account: radar echo signa-
ture, height of objects, visibility and so on to include 
measurement evaluation. Fuzzy values such as poor, 
medium or good can be used instead of crisp figures. 
Imprecise masses values engage different way of 
calculation and will be discussed in a future paper.  

Belief structures are combined. During associa-
tion process search space points within common in-
tersection region are selected. Result of association 
is to be explored for reasoning on the fix. All associ-
ated items are to be taken into account in order to se-
lect final solution.  

Mathematical Theory of Evidence requires that 
mass of evidence assigned to null set is to be zero 
and fuzzy sets are to be normal. Assignment for 
which above requirements are not observed is pseu-
do belief structure and is to be normalized. Pseudo 
belief structures can occur at the structures prepara-
tion stage as well as during association process. 
Usually null sets are results of combination of two 
ranges or areas without common search space 
points. The occurrences indicate abnormality in 
computation that might result from extraordinary er-
roneous measurements and/or wrongly adjusted 
search space. Therefore all null assignment cases are 
to be recorded and analyzed. Two normalization 
procedures proposed by Dempster and Yager are 
widely used. Converting procedures are quite differ-
ent in two aspects. Masses of inconsistency in 
Dempster approach increase weights attributed to 
not null sets. In Yager proposal the masses increase 
uncertainty. In case of subnormal sets Dempster 
suggested division by highest grade, Yager proposed 
adding complement of the largest grade to all ele-
ments of the set. The latter causes that none of these 
approaches should be perceived as superior in case 
of position fixing. Therefore modified scheme was 
proposed. It takes best things from both proposals. 
Way of conversion of subnormal sets is taken from 
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Dempster method and managing of inconsistency 
comes from Yager approach. 
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