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1 INTRODUCTION 

The detection of small vessels with insignificant radar 
scattering cross section (RCS) is of crucial importance 
for navigation safety when navigating in coastal 
waters with dense maritime traffic such as near 
tourist destinations with large tourist populations 
during summer season. This is especially true for 
indented coasts with numerous islands and deep 
coves such as Croatian coast. With these 
circumstances, the ability to detect small vessels at 
short ranges determines safety of navigation, 
especially during night and in bad weather 
conditions. Situation is additionally worsened by the 
typical material composition of these small vessels 
since plastic, wood and rubber do not contribute to 
RCS as much as metal parts. For that reason, this 

paper concerns with the numerical computation of 
RCS of the small rubber boat. 

Radar installations on ships navigating these 
waters vary from small radars installed on small 
vessels with typical power output of 4kW (e.g. 
Garmin) to 25kW marine radars typically installed on 
larger passenger vessels such as ferry-boats. Many 
ship captains have reported the inability to reliably 
detect fast approaching rubber boat with radar which, 
additionally, is difficult to distinguish from sea 
clutter. Thus, in this paper, we attempt not to improve 
radar itself but we rather numerically investigate the 
possibility of finding the optimal height of radar 
installation above the sea line to maximize the 
possibility of radar detection of rubber boat. 
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Numerical methods available for RCS computation 
generally fall in one of three distinct categories: ray-
tracing methods, physical optics methods and full 
wave methods. Ray tracing methods are often 
complicated because multibouncing of rays need to be 
taken into account (Liu, 2012). Furthermore, ray 
tracing methods do not take into account the 
changing electromagnetic properties of the materials 
used for interior of the vessel. Methods such as 
physical optics (PO) and physical theory of diffraction 
(PTD) can compute RCS with acceptable error, 
however these methods are not well suited for 
accounting the changing material properties in the 
interior of the ship. 

Thus, if we were to account for changing material 
properties inside the vessel we can use one of the 
following: FDTD (finite difference method), some 
hybrid combination of method of moments (MoM) 
with finite element method (FEM). However, these 
methods can only provide near field solution of 
electromagnetic scattering problem and they need to 
be subjected to near-to-far field transformation 
(NTFFT) in order to compute RCS which is 
cumbersome procedure (Taflove, 2005). 

To avoid NTFFT transform, in this research we use 
our own previously published method for RCS 
computation based on hybrid BEM/FEM with edge 
elements (Dodig, 2017). This method first finds the 
near field solution and from these electromagnetic 
field values, using our own RCS equation, we 
compute RCS directly from near field values. Thus, 
the NTFFT transformation is avoided and sometimes 
this approach produces better results (e.g. the case of 
RCS computation at interior resonance frequencies, 
see. Dodig, 2017). 

The results of the numerical computation of RCS 
are presented in section 5, where RCS is expressed as 
the function of the angle between the line of sight 
connecting radar antenna and rubber boat and the sea 
level. It is shown that detection probability of the 
rubber boat is very angle dependent for vertical 
polarization and that in order to maximize the 
detection probability of rubber boat at certain distance 
the radar antenna should be placed at some definite 
height above the sea level.  

2 NEAR FIELD COMPUTATION WITH EDGE 
ELEMENT HYBRID BEM/FEM 

To compute the RCS of radar target the necessary step 
is the computation of backscattered electric and 
magnetic field at the exterior boundary of the 
computational problem shown in figure. This 
computed backscattered EM field is the near field 
solution of EM scattering problem and, as such does 
not represent the far field data necessary for RCS 
computation. 

In order to obtain the near field solution one needs 
to obtain the solution of general 3D electromagnetic 
scattering problem. This general 3D scattering 
problem is shown in figure 1, where incident electric 
and magnetic fields are denoted as iE



 and iH


, 
backscattered fields are denoted SE



 and SH


 and 
interior fields are denoted intE



 and intH


. Interior 

and backscattered electromagnetic fields are the fields 
we wish to compute, while the incident electric and 
magnetic fields are known, and in the case of the 
computation of ship’s RCS they come from radar 
antenna. Because the electromagnetic properties of 
materials ( , ,r rµ σ ) change inside computational 
domain V , we need to use computational method 
that can take these changes into account. 

The method of computational electromagnetism 
that can take into account the change of these 
electromagnetic properties is hybrid BEM-FEM, 
which is the combination of boundary element 
method (BEM) and finite element method (FEM), and 
the method is thoroughly described in ref. Dodig 
2012-2014. Electric field exterior to computational 
boundary V∂ ,  shown in figure 1, can be described 
by Stratton-Chu electric field integral equation (EFIE) 
which in its time harmonic form can be written as 
(e.g. Stratton 1939): 

 
Figure 1. Outline of EM scattering problem. Volume of 
computational domain is denoted V  and the artificial 
boundary is denoted V∂ . Fields iE



 and iH


 are 
incident to V∂  while SE



 and SH


 are backscattered 
fields. 
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For interior fields, that is for electromagnetic fields 
inside computational volume V  shown in figure 1, 
the time harmonic Faraday’s law takes the following 
mathematical form: 

' 'E Hint intiωµ∇ × = −′
 

 (2) 

and time harmonic Maxwell-Ampere equation is 
given by: 

( )' 'H Eint intiσ ω′∇ × = +
 

  (3) 
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Taking the curl of Equation 3 and combining with 
Equation 2 yields the following differential equation: 

' '1 H H 0
σ iω int intiωµ ∇× ∇ × + = 


′

+ 

 


 (4) 

With computational methods for electrostatics the 
unknown fields 'Eint



 and 'Hint



 are usually 
approximated with nodal approximating functions. 
However, that is not appropriate for full wave 
methods. With full wave methods we use edge 
element approximating functions in order to preserve 
the continuity of tangential components of electric 
and magnetic fields (see Dodig 2017 for details). Edge 
elements approximate electric and magnetic fields 
using vector approximating functions iw  as: 

1
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i
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= ∑




   (5) 
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=

= ∑

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   (6) 

where n  is the number of edges on the element, ie  
and ih  are unknown coefficients associated with 
each edge of the element. Vector approximating 
functions kw  are associated with thk  edge of the 
element by the following relation: 

k i j j iw N N N N= ∇ − ∇

 (7) 

where iN  and jN  are nodal approximating 
functions associated with nodes of the element 
(Nedelec, 1980). 

Due to physical jump conditions of electric and 
magnetic fields at the interface between two materials 
with different electromagnetic properties, all the 
exterior fields in Equation 1 i.e. 'Eext



 and '
extH


,  can 
be replaced by interior fields  'Eint



 and '
intH


. This is 
due to tangential continuity of electric and magnetic 
fields across the boundary where material properties 
change. With these conditions, Equation 1 and 
Equation 4 can be coupled and combining with 
Equations 5 – 7 the following system of equations is 
obtained: 
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  (8) 

where Ie  are edge element coefficients computed 
from incident field iE



,  be  and bh  are edge 
element coefficients associated with edges at the 
artificial boundary V∂  and vh  are edge element 
coefficeints associated with interior of the 
computational domain V . The hybrid BEM-FEM 
method of numerical computation of near 
electromagnetic field was rigorously tested over the 
period of several years in various physical settings 
(Dodig 2012-2017 and Cvetković 2017). 

3 NUMERICAL METHOD OF RADAR CROSS 
SECTION COMPUTATION 

Radar cross section is computed directly from the 
edge element coefficients computed in previous 
section. These coefficients are associated with near 
electric and magnetic field, that is, the near 
electromagnetic field can be reconstructed from edge 
element coefficients (Dodig 2017). To compute radar 
cross section, one has to convert the near field to far 
field. Previously, this transformation from near field 
to far field was achieved by the employment of some 
elaborate and computationally expensive numerical 
methods (Taflove 2005). These methods are 
collectively known as Near-to-Far-Field-
Transformation (NFFT). 

 
Figure 2. RCS plot of the metallic sphere coated with 
dielectric layer with relative permittivity 4r = . This 
calculation was performed using EFIE formulation and 
hybrid BEM/FEM at resonant frequency of 300 MHz and 
was compared with Mie series solution. 

The necessity for NFFT can be circumvented 
completely and far field can be computed directly 
from edge element coefficients by the application of 
our previously published computational technique 
(Dodig 2017). Radar cross scattering section σ  is 
defined as ratio of backscattered and incident field: 
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 (9) 

where *
SE


 represents the complex conjugate of 
backscattered vector field SE



. It was shown in ref. 
Dodig 2017 that this backscattered field can be written 
in compact form as: 

4

ik r

S S
eE F

rπ

−

=


 



 (10) 

where complex vector SF


 can elegantly be 
computed from edge element coefficients as the sum: 
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Computation of ( )SF eρ





 from known boundary 
edge coefficients bje  and bjh  is fast, and if 
necessary, the line integrals in Equation 11 can be 
solved analytically to further improve the speed and 
accuracy of RCS calculation. Equations 9 – 11 are well 
tested on canonical models, were compared with Mie 
series analytical solutions and were tested in the case 
of dielectrically coated PEC sphere (e.g. Dodig 2017) 
where it has been shown that accurate results can be 
obtained even at resonance frequencies as shown in 
figure 2. 

4 PHYSICAL AND GEOMETRICAL MODEL OF 
RUBBER BOAT 

From the standpoint of collision avoidance and from 
standpoint of early detection of small targets in 
military missions, the rubber boat is considered as the 
radar target of choice. The rubber boat model used for 
numerical RCS computation is the model of small 
service boat usually attached to Croatian Navy ships 
for the support of some small scale off-ship military 
missions. The rubber boat was subjected to series of 
3D laser measurements to accurately capture the 
geometry of the boat, as shown in figure 3.  

 
Figure 3. Photo of the rubber boat at laser measurement site. 
The relevant geometric features of the boat are captured at 
spatial points marked with green dots. 

Geometry capture software produced the set of 3D 
points and set of linear triangles from laser 
measurements, conveniently given in the form of STL 
(stereolitography) file. However, to produce the mesh 
of good quality with Ansys ICEM software the 
parasolid or similar input file is required. For that 
purpose, Geomagic software was used to convert 

from STL file to Parasolid x_t format and then the air 
and water volume surrounding the boat were added 
with Siemens SolidEdge CAD software as shown in 
figure 4. 

CAD model of the rubber boat was loaded into 
Ansys ICEM mesher to produce the tetrahedral mesh 
shown in figure 5, where the volume of the air was 
removed to enhance the visibility of interior elements.  

 
Figure 4. CAD model of the geometry for RCS computation. 
Upper half of the volume consists of air and the lower half 
of the volume consists of seawater. Rubber boat is partially 
immersed in water and partially immersed in air. 

Final computational models consists of 285,064 
tetrahedral elements and of 1,870 triangular elements 
used to model the boundary of the computational 
model. 

 
Figure 5. The mesh of the model shown in figure 4 with air 
volume removed. The model consists of 286,934 elements 
where 285,064 tetrahedral elements were used to model the 
interior of computational domain and 1,870 elements were 
used to model the boundary of computational domain. 

Electrical parameters σ , r ,   rµ  of the seawater, 
air, rubber and plastic were compiled from various 
sources from literature (e.g. Talley 2011, Garazza 
2011) and these are shown in table 1. 

Table 1. Electrical properties σ , r ,   rµ  of the materials 
used for RCS computation compiled from various sources. _______________________________________________ 
Physical     σ    r       r μ  
property    [S/m] _______________________________________________ 
Seawater    0.00   88.00   1.00 
Air      0.00   1.00   1.00 
Rubber     0.00   2.50   1.00 
Plastic     3.00   3.00   1.00 _______________________________________________ 
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5 RESULTS OF RCS COMPUTATION 

Physical setting for RCS computation is shown in 
figure 6, where the rubber boat is at distance l  from 
the ship and radar antenna is at height h  above the 
sea level. The angle between the line connecting the 
radar antenna and rubber boat and the sea level is θ . 

Furthermore, it is assumed that sea is at calm state. 
Horizontal polarization (HP) and vertical polarization 
(VP) of the radar EM wave are shown in the same 
figure and k



 indicates the direction of propagation 
of radar EM wave. 

 
Figure 6. The rubber boat is at horizontal distance l  from 
the radar antenna and the radar antenna is at height h  
above sea level. Angle subtended between the line 
connecting the antenna an boat and between sea level is θ . 

To find the radar cross section Sσ  of the sea 
without the rubber boat we have first performed the 
series of calculations for the physical setup shown in 
figure 6 but without rubber boat. The results of 
numerical radar cross section calculation of Sσ  for 
various angles θ  is shown in figure 7 for both HP 
and VP. 

 
Figure 7. Radar cross sections  Sσ of the empty sea at 
calm state without rubber boat for various angles θ  
are shown for both HP and VP. 

Then the same series of numerical calculations is 
performed for the configuration shown in figure 6 
with the rubber boat included. This time, the radar 
cross section σ  is the total cross section that 
includes reflections from both the sea and from 
rubber boat. These results are shown in figure 8. 

 
Figure 8. Radar cross section  σ of the rubber boat and the 
sea at calm state as the function of angle θ  is shown for 
both HP and VP. 

 
Figure 9. The ratio of cross section /  Sσ σ is shown as the 
function of angle θ  is shown for both HP and VP. The sea 
state is considered to be calm. 

The reason why these calculations were performed 
separately (without rubber boat and with rubber boat) 
is to find how much radar cross section of the rubber 
boat distinguishes itself from the radar cross section 
of the sea. The ratio / Sσ σ  shows how much radar 
cross section of the rubber boat is above the radar 
cross section Sσ  of the empty sea and is shown in 
figure 9. 

 
Figure 10. Magnitude and vector plot of near electric field 
with air omitted for 3θ =  , horizontal polarization (HP). 
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6 CONCLUSION 

RCS of the rubber boat is computed for physical 
setting shown in figure 6 for various angles θ  and 
for both vertical and horizontal polarization of the 
radar EM wave. For numerical computation of near 
field we have used  hybrid BEM/FEM with edge 
elements. The results of near field computation were 
used as input for our own RCS computational method 
which uses this values directly without the need for 
NTFFT transformation. This method falls in the class 
of the full wave methods and it can account for the 
change of electric and magnetic properties of 
materials inside the computational domain. An 
example of near field computation for 3θ =   and 
horizontal polarization is shown in figure 10. 

To be able to distinguish the radar cross section of 
the sea and of the rubber boat we have first computed 
the RCS of the sea patch without the rubber boat and 
these results are shown in figure 7. Then we have 
computed total RCS of both rubber boat and sea as 
shown in figure 8. The measure of how much rubber 
boat is distinguished from the RCS of the sea itself is 
shown in figure 9. This measure is expressed as 
simple ratio between RCS of the sea and RCS of both 
sea and rubber boat. 

It should be noted that from figure 9 it follows that 
the detectability of the rubber boat differs for vertical 
polarization (VP) and horizontal polarization (HP). 
From figure 9 it follows that detectability of rubber 
boat for  horizontal polarization (HP) is 
approximately constant for the range of angles θ . 
However, for vertical polarization the detectability of 
rubber boat varies significantly with angle θ . 

Furthermore, the capabilities of our RCS 
computational software are currently limited with 
two limitations: the size of computational model (the 
number of unknowns) and with computational time. 

Currently, an effort is underway to address these 
issues so that much larger ship models could be used 
for RCS computation. 
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