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1 INTRODUCTION 

Autonomous ships that can be operated remotely 
have been envisaged as both safer and as a way of 
improving maritime operational efficiency while 
reducing crew-related costs. Several developmental 
and research projects on this topic are therefore being 
conducted globally. This technology is still in its 
infancy, and more knowledge about its operation is 
required. In remote ship operations, officers are 
relocated from onboard the ship to Shore Control 
Centers (SCCs). Technical autonomous ship 
controllers (ASCs) are placed onboard the ship to 
allow SCC operators to connect and interact with 
onboard control systems [1]. The SCC operational 
modes are a combination of monitoring and control 
modes [2]. Generally, SCC operators monitor status 

indicators for weather, location, collision, visibility, 
engine and propulsion. The control modes include 
status investigation, ASC updates, remote operation 
and intervention [3].  

However, introducing new approaches to control 
ships remotely also introduces different types of 
human factor challenges from those found in 
traditional maritime systems, with regard to both 
human-machine and human-human interactions [4]. 
As a result, the 103rd session (5-14 May 2021) of the 
Maritime Safety Committee has approved the 
outcome of a regulatory scoping exercise for the use 
of Maritime Autonomous Surface Ships (MASS) [5]. 
At that session, terms such as master, responsible 
person, crew, remote control centers and remote 
operators as seafarers were identified as potential 
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gaps in the operation of MASS, which should be 
addressed before extensive deployments of 
autonomous ships take place [5]. An investigation of 
the human factors underlying remote ship operations 
is therefore necessary in order to mitigate safety 
hazards while improving operational efficiency.  

If the hypothesis that the human-machine interface 
(HMI) can be successfully implemented is confirmed, 
it is expected that SCC operators will control and 
monitor up to six ships simultaneously [6]. These 
operators will require appropriate levels of control, 
situational awareness and workloads. To find out 
what the appropriate levels are, a quasi-experimental 
project, MUNIN, has tested the hypothesis with data 
from SCC and maneuvering systems. The results 
indicate that the hypothesis that HMI can be 
successfully implemented should be accepted; 
however, tests of the remote maneuvering system 
were not fully successful [6]. More tests are therefore 
needed, and the aim of the current study is to assess 
how increases in mental workload influence the stress 
levels of SCC operators during remote ship 
operations. 

To achieve this aim, we first performed a literature 
review to investigate the human factors which 
influence monitoring operations. The results of the 
review were then used to develop a series of 
hypotheses to (i) identify which types of variables 
(ship indicators) affect workload during monitoring 
operations, (ii) verify that workload and stress affect 
monitoring operations, and (iii) identify whether 
brain signals captured by electroencephalography 
(EEG) can be utilized to assess the stress levels and 
workloads of SCC operators during remote ship 
operations. Finally, two SCC experiments were 
performed to analyze low and high workload 
scenarios.  

The remainder of this paper is organized as 
follows: Section 2 presents the literature review and 
hypotheses; Section 3 presents the material and 
methods; Section 4 presents the results of the 
experiments; Section 5 discusses the results; and 
Section 6 concludes this study and presents a 
roadmap for future research. 

2 LITERATURE REVIEW 

2.1 Remote Ship Operations  

The Maritime Safety Committee of the International 
Maritime Organization (IMO) approved interim 
guidelines for MASS trials in 2019 that defined four 
degrees of ship autonomy. The first degree of ship 
autonomy includes ships with automated processes 
and decision support. Onboard seafarers operate and 
control shipboard functions and systems on ships 
with the first degree of autonomy. The onboard crew 
are ready to take control of automated and 
unsupervised operations [7]. The second degree of 
ship autonomy includes ships which are controlled 
remotely by onboard seafarers. On ships of this 
degree, the ship is operated and controlled from a 
distant location, but there are also crew onboard the 
ship who can take control of shipboard systems and 
functions [7]. The third degree of ship autonomy, the 

ship is remotely controlled without any seafarers on 
board: as with the second degree, the ship is 
controlled from another location, but in this case there 
are no crew on board. The fourth degree of ship 
autonomy includes fully autonomous ships which can 
make decisions and determine the actions to be taken 
by themselves [7].  

It is important to mention that the operation of an 
autonomous ship can involve a combination of one or 
more control modes and levels of autonomy during a 
voyage [2, 7, 8]. For example, operators in the SCC can 
employ direct remote control when a ship approaches 
port traffic, in harsh weather or in unexpected traffic 
situations [9]. Hence, in a ship-shore system with any 
level of automation, operators (humans) are still 
involved, but are distributed in SCCs instead of 
operating conventionally onboard ships [7, 9].  

2.2 Human SCC Operators  

Human SCC operators are defined as officers of the 
watch who are responsible for monitoring the ship 
and intervening if necessary [2]. According to the 
MUNIN project, SCCs will be responsible for most 
supervisory monitoring and control operations [7]. In 
the course of a voyage, operators’ dynamic navigation 
tasks are comprised of different aspects, such as: (i) 
planning the mission, confirmation and designation; 
(ii) handling critical situations during the voyage; (iii) 
monitoring the ship’s status and health, judging 
whether the ship needs maintenance and preparing a 
maintenance plan if necessary [10]; (iv) 
communicating with other ships and shore elements; 
(v) maneuvering the ship in ports and waterways, 
either remotely or from on board; and (vi) gaining 
experience and learning from the outcomes of 
operations to improve future activities. Accordingly, 
the operator’s performance depends on three factors: 
problem recognition, making correct and timely 
decisions, and acting correctly continuously and on 
demand [10].  

Investigations have clearly indicated that human 
errors cause the majority of maritime accidents, and 
this highlights the importance of human factor 
studies. However, the main question is how human 
factors should be studied, since human errors do not 
occur in an isolated environment. Indeed, human 
errors are intermixed with other problems such as the 
complexity of human interactions, including human-
human interactions and human interactions with 
other factors in the system [11]. Therefore, several 
studies [4, 12, 13] have investigated human factor 
issues that could affect human-human and human-
machine interactions during remote ship operations 
and within SCCs. These studies have revealed mental 
workload and stress as the human factors with the 
highest impact on human errors. 

2.3 Mental Workload and Stress 

The mental workload caused by the various 
challenges of modern shipping, including complex 
systems, high levels of automation and decreasing 
crew sizes, has been identified as the main human 
factor affecting human performance in this context. 
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This mental workload is cognitive or perceptual and 
is caused by the amount of mental effort which an 
operator must expend to perform a task or a series of 
tasks [11]. Kari et al. [4] have identified that SCC 
operators with workloads that are too demanding 
may have difficulties understanding the situation of 
the ship they are monitoring. Generally, the best 
operator performance occurs at an intermediate level 
of mental workload [11].  

The operator’s stress level is related to situations in 
which the operator perceives that the available 
resources are insufficient to manage the task and 
situation. High levels of stress can lead operators to 
focus on limited aspects of their tasks and overlook 
other aspects. As a result, high levels of stress can lead 
operators to take unsafe and risky actions [11]. This 
means that a perceived mismatch between the 
demands of a task or event and an individual's 
resources leads to an increase in stress levels [14]. 
Moreover, several studies have indicated that stress 
and mental workload are strongly interconnected. For 
instance, it has been found that there is a positive 
correlation between mental workload and stress, 
which implies that when operators are exposed to 
greater workloads their stress levels tend to increase 
[14]. 

2.4 Related Work 

Dussault et al. [15] have studied the effect of mental 
workload without exposing participants to actual 
physical risk by using EEG and ECG to investigate the 
cortical and cardiovascular changes which occur 
during simulated flight. A total of 12 pilots 
participated in the experiment, which involved 10 
sequences with different mental workloads. The 
results indicated that theta band power was lower at 
the central, parietal, and occipital regions of the brain 
during the two simulated flight rest sequences than it 
was during visual and instrument flight sequences. In 
addition, rest sequences resulted in higher beta (at the 
C4 region) and gamma (at the central, parietal, and 
occipital regions) band powers than active segments 
did. In another study, Qing et al. [16] investigated 
mental workload during the production process by 
using EEG and Galvanic Skin Response (GSR). 
Participants were divided into two groups according 
to whether they were novices or veterans. The novice 
participants had higher levels of mean voltages in the 
right hemisphere of their brains for SMR, theta, beta 
and gamma. This implies that the novice group 
presented a higher level of mental workload that was 
reflected by fatigue (reflected by theta band power), 
awakening level (reflected by beta band power), 
memory (reflected by gamma band power) and 
attention (reflected by SMR band power).  

Another study, titled “An evaluation of mental 
workload with frontal EEG”, recorded the frontal EEG 
signals of 20 participants during four activities 
(arithmetic operation, finger tapping, mental rotation 
and a lexical decision task) in order to investigate 
dynamic changes in mental workload. The EEG 
output indicated that theta activity increased as the 
difficulty of tasks increased [17]. Mohanavelu et al. 
[18] used EEG to demonstrate the relationship 
between dynamic workload and two elements of 

cognitive workload and attention. A total of 16 male 
fighter pilots participated in the experiment. The 
researchers found that alpha band power and both 
high and low beta band powers, as recorded by the 
FT10, FP1, FC1, P4, P7, Pz, T8, CP2 and C4 sensors, 
were more dominant during the cruise phase of the 
study. In addition, the FC2, FP2, FT10, and C4 sensors 
indicated more significant levels of total beta band 
power during the landing phase in comparison with 
the other workload tasks.  

Umar Saeed et al. [19] classified long-term stress 
with machine learning algorithms which utilized 
resting state EEG recording signals. They revealed 
that beta and gamma band powers, as measured by 
the AF3 sensor, were statistically significantly 
different in the stress and the control group (with a 
label assigned by expert evaluators used as the 
reference). 

2.5 Research Hypotheses 

The current study involves the evaluation of mental 
workload and stress during remote ship operations 
using EEG signals. Six hypotheses to assess the level 
of stress during remote ship operations are proposed.  

Kari et al. [4] have identified high mental 
workload as a human factor issue which affects the 
performance of operators in SCCs. In SCCs, remote 
control systems should promote an optimal level of 
situational awareness by providing a high level of 
information, which increases the risk of high 
workload during remote ship operations. The impact 
of high workload as a primary human factor issue 
during remote operation has also been highlighted in 
previous studies [14, 20, 21]. Since we wanted to make 
sure that our experiments succeeded in manipulating 
the workload, the first hypothesis tests whether the 
level of workload was successfully manipulated 
during the experiments. The level of workload was 
assessed using the NASA task load index (TLX) to 
identify whether operators perceived a higher level of 
workload during the second scenario.  

Remote operators can also experience higher levels 
of stress when they face more demanding tasks and 
higher mental workloads [11]. This indicates that 
there are connections between high mental workload 
and stress [11, 14]. Hence, the second hypothesis of 
this study is designed to investigate whether 
operators perceived a higher level of stress when a 
higher level of workload was imposed on them.  

The Autonomous Ship Controller (ASC) sends a 
set of ship status indicators to the SCC. The SCC 
operators use these ship status indicators to monitor 
the overall status of the ship [22]. Two ship status 
indicators, weather and risk of collision, highly affect 
the mental workload and stress levels of operators [22, 
1]. Van Buskirk et al. (2019) have proposed heavy 
weather ship handling simulation training to improve 
the competence of seafarers, because the need to make 
correct and time-sensitive ship handling decisions in 
heavy weather increases human stress levels and the 
risk of error [23]. In addition, Yoshida et al. (2021) 
have established that weather conditions, such as 
heavy rain and fog, increase the mental workload and 
stress levels of operators during autonomous surface 
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ship operations, particularly in highly congested areas 
[24]. Hence, the third hypothesis is designed to assess 
the impact of harsh weather on stress levels during 
remote ship operations.  

The human-machine interface (HMI) can greatly 
affect human performance during interactions with 
machines. Since SCC operators receive all their 
information from the HMI, the HMI’s design may 
affect the human operators’ performance during 
remote ship operations. Moreover, a well-designed 
HMI can facilitate access to processable situational 
information, which decreases the level of stress that 
operators are exposed to during remote ship 
operations [25]. In addition, there is a significant 
probability of human errors associated with HMI, and 
human errors associated with HMI will highly affect 
performance factors such as stress during the 
operation of autonomous ships [26]. Hence, the fourth 
hypothesis is designed to investigate the impact of 
HMI on the stress levels of operators during remote 
ship operations. 

Radio communication (voice over VHF) is a 
standard method of communication between remote 
operators [14]. Distorted communication and 
background radio communication have been 
identified as two main factors which create stress for 
aerial firefighting pilots during training [21]. 
Moreover, levels of theta, alpha and beta EEG band 
powers in the posterior and left front-central areas of 
the brains of air control traffic operators seem to 
increase during stressful radio communication with 
airplane pilots [27]. During stressful radio 
communications, the number of clear speech events 
on the part of air control traffic operators is reduced, 
probably due to faster pronunciation [27]. Hence, the 
fifth hypothesis is designed to investigate how VHF 
radio communication impacts the stress levels of 
operators during remote ship operations. 

Operators must be completely focused to avoid 
collision risks when investigating the vectors, 
status/heading and speed of the targets depicted by 
the collision indicator [22]. Perceived collision risks 
seem to increase the stress level of operators because 
of anxiety about collisions or the difficulty of 
performing collision avoidance navigation in close 
head-on or crossing situations [28]. Hence, the sixth 
hypothesis is designed to assess the impact of 
situations in which there is a risk of accidents on 
operators’ stress levels.  

In summary, this study will test the following 
hypotheses: 
1 There is a significant change in the level of 

workload between the first and the second 
scenario in the experiments. 
− Corresponding null hypothesis: there is no 

significant change in the level of workload 
between the first and second scenarios in the 
experiments. 

2 There is a significant change in stress when 
workload increases.  
− Corresponding null hypothesis: there is no 

significant change in stress when workload 
increases.  

3 There is a significant change in stress when ships 
are operating in harsh weather.  

− Corresponding null hypothesis: there is no 
significant change in stress when ships are 
operating in harsh weather.  

4 There is a significant change in stress when the 
number of ships increases. 
− Corresponding null hypothesis: there is no 

significant change in stress when the number of 
ships increases.  

5 There is a significant change in stress when 
operators establish VHF communication.  
− Corresponding null hypothesis: there is no 

significant change in stress when operators 
establish VHF communication.  

6 There is a significant change in stress when there is 
a risk of accident. 
− Corresponding null hypothesis: there is no 

significant change in stress when there is a risk 
of accident. 

3 MATERIALS AND METHODS  

In this study, a series of experiments was performed 
to evaluate the impact of workload and stress on 
operators of SSCs and thus to evaluate the proposed 
hypotheses. 

3.1 Instruments - EEG and NASA TLX 

Generally, workload and stress are measured 
subjectively by means of interviews or questionnaires. 
However, it is also possible to investigate changes in 
brain activity directly by using tools which measure 
biological processes. In this study, both direct and 
subjective measures were used. EEG was used for 
direct measurements and the NASA TLX system was 
used for subjective measurements. NASA TLX was 
mainly employed as a supportive technique to verify 
that manipulation of the workload, the independent 
variable, was successful and that participants were 
exposed to a higher workload in the second scenario. 

EEG is used to record human brain signals, and 
our previous study showcased the applicability of 
EEG to the assessment of the stress levels of SCC 
operators under different workloads [29]. EEG 
records the electrical activity of the brain using 
electrodes, also called sensors. The electrodes are 
attached to the scalp to record the electrical potential 
generated by the brain [30]. Types of EEG systems 
differ according to the type of connection between the 
electrodes and the scalp surface; these types include 
dry and wet electrode EEG systems. Wet electrode 
EEG systems include gel, saline and semi-dry or 
water-based systems [30] and require the use of 
electrolytic liquid to improve conductivity. The 
EMOTIV EEG EPOC Flex saline kits which were 
utilized in this study are comprised of 32 electrodes. 
The EMOTIV EEG cap uses electrodes in the 
following locations: AFz (driven right leg ), FCz 
(common mode sense), Fp1, Fp2, F7, F3, Fz, F4, F8, 
FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, Cz, C4, T8, 
CP5, CP1, CP2, CP6, TP9, TP10, P7, P3, Pz, P4, P8, O1, 
Oz, and O2 [31]. The EEG EPOC FLEX passes signals 
through a few stages of processing. First, it processes 
data to remove sharp spikes, then passes data through 
a high-pass filter to remove the DV offset and slow 
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drift. It then applies a Hanning filter before 
performing a fast Fourier transform (FFT). Band 
power is calculated from the square of the amplitude 
in each frequency bin and output is presented as uV^2 
/ Hz.  

The NASA TLX system was developed by NASA 
Ames Research Center in the 1980s and is used to 
subjectively assess the workload of human operators 
working with human-machine interaction systems 
[32]. The NASA TLX is comprised of two instruments, 
a self-reporting questionnaire and comparison cards, 
and measures overall workload as the mean of 
weighted ratings. The self-reporting questionnaire is 
comprised of six questions, answered on a scale of 1-7, 
which are designed to assess levels of perceived 
workload and stress. The measurement of workload 
includes six subscales reflecting the independent 
variables mental workload, physical workload, 
temporal demand, frustration, effort and 
performance. The NASA TLX is based on an 
assumption that some combination of the 
aforementioned variables is likely to indicate the 
workload [33]. In the NASA TLX form, participants 
rate the performance questions from “perfect” to 
“failure”, and other questions from “very low” to 
“very high” [34]. The comparison cards include the 
same six variables, and participants are asked to 
choose one item in each card. 

3.2 The experiments 

The experiments were performed in the navigation 
simulators of Norsk Maritim Kompetansesenter 
(NMK), a department of the Norwegian University of 
Science and Technology, Alesund, Norway. Three 
healthy male participants with no psychiatric 
problems or neurological disorders, participated in 
the experiments as SCC operators. The participants 
worked in the maritime domain but were not experts 
in the use of simulators. Before the experiments 
started, they were informed about the process and 
received written instructions for the experiments. In 
addition, informed consent was obtained from all 
subjects involved in the study. During the 
experiments, navigation simulators were used to 
represent an SCC (specifically the instructor room) 
and three ship bridge simulators were used to 
represent remotely controlled ships.  

During the experiments, workload and stress were 
considered to be the independent and dependent 
variables respectively. On the basis of the status 
indicators in SCCs [35, 36, 22], the independent 
variable was manipulated by changing the number of 
targets (traffic), the number of ships to the SCC 
operator had to monitor, the difficulty of the route, 
the weather, and by introducing accident risks and 
establishing VHF communication between the SCC 
and ships. Table 1 illustrates the manipulation and 
measurement of the variables during the experiments. 

 

 

 

 

Table 1. Types of workload and stress variables and how 
they were manipulated and measured. _______________________________________________ 
Variables Type of   Manipulation  Measurements 
    variable  _______________________________________________ 
Workload Independent Number of   NASA-TLX  
         targets,     technique 
         number of   Self-reporting  
         ships to be   questionnaire 
         monitored by  
         the SCC  
         operators,  
         difficulty of  
         the route,  
         weather, other  
         events such  
         as accidents 
Stress  Dependent        Physiological  
               measurements of  
               stress Raw EEG  
               data 
               Self-reporting  
               questionnaire _______________________________________________ 
 

Before the low and high workload scenarios, an 
initial scenario was performed to establish a baseline 
for the assessment of the impact of different levels of 
workload on brain activity, as well as for the 
identification of the trends and anomalies in the EEG 
signals. Figure 1 depicts a participant performing the 
baseline scenario while the EPOC FLEX was recording 
the EEG signals of his brain activity. In the baseline 
scenario, each participant sat in a comfortable chair in 
a calm and quiet environment and read a newspaper 
or book for 10–15 minutes. 

 
Figure 1. A participant reading a book in a calm and quiet 
environment to establish baseline EEG brain activity. 

The content of the low and high workload 
scenarios, which was discussed and approved in 
advance by three pilots (as experts in this domain), are 
presented in Table 2. Each of low and high workload 
scenarios were considered as a package of factors that 
may affect the level of workload perceived by remote 
ship operators. 
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Table 2. The high and low workload scenarios _______________________________________________ 
Scenario  First (low workload) Second (high workload) _______________________________________________ 
Area   Kristiansund to    Vatlestraumen (moderate 
    Trondheim     difficulty) 
    (low difficulty) 
Number of Three container ships Five container ships 
ships   (three-ship bridge  
    simulators)   
Traffic  5+ targets      15+ targets  
Visibility Good visibility   Bad visibility, 
    in daylight     nighttime 
Weather  Moderated wind,   Strong wind, 
    calm sea-state    choppy sea 
VHF   No       Yes 
communication 
Risk of   No risk of accident  Two risks of accident 
accident   
Overall   Low       High 
workload _______________________________________________ 
 

Each experiment took 10–15 minutes due to the 
recording limitations of the EPOC Flex EEG. During 
the experiments, the EPOC Flex EEG recorded the 
brain activity of each participant via 32 sensors. 
Furthermore, a time recorder and a checklist were 
used to record events in order to synchronize the EEG 
data with external events. In addition, a video camera 
recorded activities in the SCC (instructor room) 
during the experiments to facilitate the correlation of 
external events with the operators’ EEG signals. Each 
participant filled out the NASA TLX questionnaire 
and performed the comparison card exercise after 
each scenario in order to assess whether the workload 
increased in the second scenario and identify which 
factors were perceived by operators as demanding 
tasks during each experiment. In this way, the 
perception of high workload will be cross-validated 
by factors that operators perceived as demanding 
tasks during remote ship operations.. Figure 2 depicts 
a human operator performing the first scenario in the 
SCC, where the human operator was responsible for 
monitoring a ship. 

 
Figure 2. A participant performing the low workload 
scenario (first scenario) in the SCC. 

To simulate the monitoring mode of SCCs, during 
the experiments participants were responsible for 
monitoring the status and route of each ship and, if 
necessary, sending high-level commands to the ship. 
The participants monitored ships’ status indicators, 
including speed, rate of turn, heading, engine status, 

rudder status, and propeller revolution. In cases of 
red alarms, participants were responsible for 
informing the ships via VHF communication.  

Since the experiments involved three scenarios for 
three participants, nine sets of EEG data and NASA 
TLX self-reporting questionnaires and rating cards 
were produced. The scores of the rating sheet and 
rating cards were analyzed to calculate the overall 
workload. 

3.3 Analysis 

The EEG signals were analyzed by SPSS and a cloud-
based visualization platform (Kibana). The EEG 
dataset comprised 160 features and a total of 42,084 
samples, because signal of each EEG sensor 
preprocessed to generate five band powers including 
alpha, low beta, high beta, theta and gamma. Samples 
in the dataset were thus labeled with a binary value 
for the workload variable (where 0 = low workload 
and 1 = high workload). SPSS was used to calculate 
the Pearson correlation coefficient matrix and a 
correlation coefficient for each of 160 band powers. 
The Pearson correlation coefficient matrix was then 
used to identify which EEG band powers correlated 
with changes in workload and stress. A cloud-based 
visualization platform using Elastic Stack [37] was 
used to analyze the EEG data and identify trends and 
anomalies. Finally, the EEG data were correlated with 
workload variables to identify how the brain activity 
of human operators changes under changes in 
workload and stress.  

The NASA TLX system analysis a two-part 
evaluation process comprised of rating and weighting 
processes. There were 15 pair-wise comparison cards 
for the six scales. On each card, participants circled 
the member of each pair that contributed more to the 
workload. In addition, participants filled out the 
rating sheet with a numerical rating for each scale. 
The overall workload score for each participant was 
calculated by multiplying each rating by the relevant 
weighting factor. Finally, the sum of the weighted 
ratings was divided by 15 (15 being the sum of the 
weights) [38]. 

4 RESULTS  

The results of the NASA TLX analysis are presented 
graphically in Figure 3 to distinguish the overall 
workloads perceived by each participant after each 
scenario. Based on the NASA TLX technique, the 
overall workloads of the first participant were 
calculated as 3.2 and 18.5 during the low and high 
workload scenarios respectively. The overall 
workloads of the second participant were calculated 
as 7.5 and 11.86 during the low and high workload 
scenarios respectively. The overall workloads of the 
third participant were calculated as 5.2 and 16.6 
during the low and high workload scenarios 
respectively. Figure 3 depicts the calculated perceived 
overall workload of each participant in the 
experiments. As can be seen in Figure 3, all 
participants perceived a higher level of workload 
during the second scenario. 
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Figure 3. Calculated perceived overall workload of each 
participant in the first and second scenarios. 

The results of a paired samples t-test, including the 
mean difference, t-value and two-tailed probability of 
each variable, are presented in Table 3. According to 
the sampling distribution of t, the t-value was 4.303 
for the two-degree field for the rejection of a null 
hypothesis, with a 95% confidence interval (CI) and 
0.05 significance level. Furthermore, the 0.199 p-value 
was greater than the 0.05 alpha level, indicating that 
there was no significant change in overall stress 
between the baseline and low workload scenarios, 
with a 95% CI of mean difference [-5.46, 2.12]. 
Table 3. Statistical analysis of self-reporting questionnaires _______________________________________________ 
Variable       Mean. Diff t-value  Sig. (2-tailed) _______________________________________________ 
Overall stress     -1.666  -1.89  0.199 
(baseline-low workload) 
Overall stress (baseline- -5.00   -8.66  0.013 
high workload) 
VHF communication  -2.66   -3.02  0.94 
Risk of accident    -1.333  -1.51  0.27 
Weather       -3.66   0.11  0.008 
Number of ships    -4.00   -6.92  0.02 
Overall workload   -2.66   -8.00  0.15 _______________________________________________ 
 

The results indicate that there was a significant 
difference between the baseline and high workload 
scenarios: the 95% confidence interval [-7.48, -2.51] 
did not contain zero. In addition, the p-value was 
lower than the 0.05 alpha level, which also indicates 
there was a significant difference between baseline 
and high workload scenarios. 

The participants did not report higher levels of 
stress when establishing VHF communication or 
when there was an increased risk of accident in the 
high workload scenario. For VHF communication, a 
0.94 p-value that was greater than the 0.05 alpha level 
indicated that there was no significant difference in 
stress between the low and high workload scenarios 
during VHF communication. In addition, the t-value 
(3.024) was less than the critical t-value, which also 
indicated there was no significant difference in stress 
between low and high workload scenarios during 
VHF communication. For increased risk of accidents, 
a p-value (0.27) greater than the 0.05 alpha level 
indicated there was no significant difference in stress 
between low and high workload scenarios when there 
was a risk of accident. In addition, the t-value (-1.51) 
was less than the critical t-value, which also indicated 
there was no significant difference in stress between 

low and high workload scenarios when there was a 
risk of accident. 

Participants reported higher levels of stress in 
wavy waters and harsh weather and when the number 
of ships was increased. For weather, the p-value 
(0.008), t(2) (11.00) and the 95% CI [-5.10, -2.23] all 
indicated that there was a significant difference in 
stress between the low and high workload scenarios. 
In addition, the p-value was less than the 0.05 alpha 
level, which also indicated there was a significant 
difference in stress when the water was wavy and the 
weather was harsh. For the increase in the number of 
ships, the p-value (0.02) was less than the 0.05 alpha 
level, indicating that there was a significant difference 
in stress between the low and high workload 
scenarios. In addition, the size effect (0.86) indicated 
that there was a positive correlation between the 
increase in the number of ships and the participants’ 
stress levels. 

Participants reported higher levels of overall 
mental workload during the high workload scenario. 
The statistical analysis indicated that there was a 
significant change in the overall mental workload 
during the high workload scenario: the p-value was 
0.15, the t(2) was -8.00, and the 95% CI [-4.10, -1.23] 
did not contain zero.  

Thus, based on the statistical analysis of the NASA 
TLX self-reporting questionnaires and comparison 
cards, it can be concluded that two variables—harsh 
weather and the number of ships—affected the 
workload, and consequently the stress levels, of the 
SCC operators in the experiments.  

The samples in the EEG dataset were labeled with 
the corresponding values of the manipulated factors 
(weather, number of ships, risk of accident, etc). In 
this study, EEG band powers were considered as 
dependent variables, while the manipulated factors 
were considered as independent variables. According 
to the correlation coefficient matrix, two EEG band 
powers—gamma and beta—had the highest 
correlation with the independent variables. This 
indicates that gamma and beta band powers 
significantly increased when the number of ships that 
the participants had to monitor increased. This study 
follows the Pearson correlation coefficient 
classification: high ( ± 0.50 ≤  high ≤  ± 1), 
moderate (±0.30 ≤  moderate < ±0.50) and low 
correlation (±0.1 < low ≤ ±0.29). Figure 4 depicts 
the EEG sensors with high (purple), moderate (green) 
and low (blue) correlations with the weather and ship 
number variables in a 10–20 EEG sensor placement 
system. Figure 4.a illustrates that EEG sensors for the 
first participant had low correlation with the number 
of ships and with weather status. In Figure 4.a, 
sensors with low correlation to these two variables, 
including F3, FC1, TP9, TP10, P4, O1, Oz and O2, are 
colored in blue. Figure 4.b depicts the EEG sensors for 
the second participant which had moderate and high 
correlations with the number of ships and with 
weather status. Sensors with high correlation, 
including F7 and T8, are colored in purple, while 
sensors with moderate correlation, including Fp1, 
FP2, F4, F8, TP9, TP10 and P7, are colored in green. 
Figure 4.c depicts the EEG sensors for the third 
participant which had moderate and high correlations 
with the number of ships and with weather status. In 
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Figure 4.c the FT9 sensor with moderate correlation is 
colored in green, while the FT10 sensor with high 
correlation is colored in purple. 

 
Figure 4. EEG sensors that indicated high (purple), 
moderate (green) or low (blue) correlations with increases in 
workload and stress; (a) denotes participant 1, (b) denotes 
participant 2, and (c) denotes participant 3. 

Figure 5 depicts the EEG signals of beta and 
gamma band powers recorded during the 
experiments, where the first, second and third graphs 
illustrate baseline, low workload and high workload 
scenarios respectively in each sub-figure. The levels of 
EEG measurements were different in each scenario 
where sensors with moderate and high correlations 
presented considerable brain activity changes than 
sensors with low correlation. Hence, Figure 5 depicts 
brain activity levels in each scenario for the low 
(participant 1), moderate (participant 2) and high 
(participant 3) correlation group of sensors. Figure 5 
illustrates the level of changes for low, moderate and 
high correlation sensors therefore sensors were 
selected randomly for demonstration of brain activity 
changes during baseline, low and high workload 
scenarios. While the calculated correlation of all EEG 
sensors of participant 1 were low thus Figures 6.e and 
6.f depicts brain activity changes of low correlation 
sensors. Because sensors of participant 2 presented 
moderate and high correlations, Figure 5.c depicts 
brain activity measured by a sensor with moderate 
correlation while Figure 5.d depicts brain activity 
measured by a sensor with high correlation for 
participant 2. To show the changes of brain activity 
measured by different band powers, Figures 6.a and 
6.b depict brain activity measured by different band 
powers of a sensor with high correlation for 
participant 3. Figure 5.a indicates the EEG signal of 
gamma band power of the FT10 sensor for the third 
participant. As can be seen in Figure 5.a, the level of 
gamma band power significantly increased when the 
workload increased in the high workload scenario. 
Figure 5.b indicates the EEG signal of beta band 
power of the FT10 sensor for the third participant. 
Figure 5.b shows that levels of both beta and gamma 
band powers significantly increased when the 
workload increased in the high workload scenario. 
Figure 5.c depicts the EEG signal of the gamma band 
power of the P7 sensor for the second participant. 
Figure 5.c shows that the level of gamma band power 
also significantly increased in the high workload 
scenario. Figure 5.d depicts the EEG signal of the 
gamma band power of the T8 sensor for the second 
participant. Figure 5.d shows that the level of gamma 
band power also significantly increased when the 
workload increased in the high workload scenarios. 
Figure 5.e depicts the EEG signal of the gamma band 
power of the FC1 sensor for the first participant. 
Figure 5.e shows that the level of gamma band power 
changed slightly between the baseline, low workload 
and high workload scenarios. Figure 5.f depicts the 

EEG signal of the gamma band power of the F3 sensor 
for the first participant. Figure 5.f shows that the level 
of gamma band power also changed slightly between 
the low and high workload scenarios. 

 
Figure 5. Visualization of EEG band powers in uV during 
the baseline, low workload and high workload scenarios: (a) 
beta band power of FT10 sensor for participant 3; (b) 
gamma band power of FT10 sensor for participant 3; (c) 
gamma band power of P7 sensor for participant 2; (d) 
gamma band power of T8 sensor for participant 2; (e) 
gamma band power of FC1 sensor for participant 1 ; and (f) 
gamma band power of F3 sensor for participant 1 

5 DISCUSSION 

This study investigated human factor challenges 
during remote ship operations and highlighted the 
different human factors involved. It is evident that 
one of the main challenges is an increase in the mental 
workload of SCC operators due to operational tasks. 
SCC designers aim to identify the maximum 
workload level for the efficient performance of remote 
operations by SCC operators.  

The current study focuses on variables that may 
increase the level of mental workload of SCC 
operators, such as the number of ships that they are 
responsible for, traffic, weather conditions, VHF 
communication and the risk of accidents. The 
correlation matrix of the EEG results indicates that the 
gamma and beta band powers of the FT10, P7 and T8 
sensors were highly correlated with weather status 
and the number of ships to be monitored. The gamma 
and beta band powers were, in fact, the only band 
powers that recorded changes in workload and stress 
levels in all participants. The results from the 
statistical analysis of the self-reported NASA TLX 
data also indicate significant changes in stress levels 
when ships are operating in harsh weather and when 
the number of ships is increased. When the number of 
ships were increased, number of human machine 
interfaces (HMIs) that an operator should interact 
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during experiments increased considerably. The way 
that operators received information from HMI also 
affected the level of stress because operators should 
collect critical information in a short time span for 
more than one ship. In addition, significant increase of 
P7 sensor (please see Figure 5c) which covers inferior 
lateral occipital cortex responsible for eye movements 
regarding object recognition in a visual information 
collection process supports the impact of HMI on 
stress when the number of ships increases. 
Furthermore, either low or no changes in stress were 
recorded when operators established VHF 
communication or when there was a risk of accidents. 
The direct measurement of brain activity by EEG and 
the subjective self-reported findings therefore support 
each other with regard to hypotheses 3, 4, 5 and 6, 
which make the findings more credible.  

All participants perceived a higher mental 
workload during the high workload scenario. Hence, 
this study successfully managed to manipulate mental 
workloads in the low workload and the high 
workload scenarios, which supports hypothesis 1. 
Since overall stress and workload increased during 
the high workload scenario, hypothesis 2 is also 
supported. Increase in the number of ships the 
operators were responsible for and worsening of the 
weather both had significant impacts on stress levels, 
and therefore hypotheses 3 and 4 are also supported. 
The results show, however, that establishing VHF 
communication and increasing the risk of accidents 
did not have significant impacts on operators’ stress 
levels, and therefore hypotheses 5 and 6 are not 
supported. Hence, four hypotheses (1, 2, 3 and 4) were 
accepted, while two hypotheses (5 and 6) were not 
accepted. Support for each hypothesis according to 
the experimental results is summarized in Table 4. 
Table 4. Hypotheses test results _______________________________________________ 
H# Hypothesis          Result _______________________________________________ 
1  There is a significant change in the  Supported 
  level of workload between the first and  
  the second scenario in the experiments 
2  There is a significant change in stress  Supported 
  when workload increases 
3  There is a significant change in stress  Supported 
  when ships are operating in harsh  
  weather 
4  There is a significant change in stress  Supported 
  when the number of ships increases 
5  There is a significant change in stress  Not supported 
  when operators establish VHF  
  communication 
6  There is a significant change in stress  Not supported 
  when there is a risk of accident _______________________________________________ 
 

This study also has some limitations. The number 
of participants is low, and the participants are not 
experienced SCC operators. 

6 CONCLUSION 

This study performed human-centered experiments to 
investigate the stress levels of SCC operators during 
human-human and human-machine interactions, and 
tested six hypotheses to assess the human factors of 
workload and stress. Nine experiments were 
performed to collect the brain activity of human 

operators using EEG equipment, resulting in a dataset 
consisting of more than 42,000 samples. In addition, 
the NASA TLX test was used so that the operators 
could self-assess workload and stress levels. On the 
basis of the statistical analysis, four hypotheses were 
accepted while two were rejected. In addition, a 
correlation coefficient matrix was generated to 
identify correlations between the brain activity of 
operators and workload and stress levels. This 
indicated that the beta and gamma band powers of the 
EEG recordings were highly correlated with workload 
and stress levels during remote ship operations. The 
results show that increases in workload result in 
significant changes in stress levels when ships are 
operating in harsh weather and when the number of 
ships each SCC operator is responsible for increases. 
The results also show that there is no significant 
change in stress levels when SCC operators establish 
VHF communication or when there is a risk of 
accidents. The practical implications of these findings 
are that SCC designers, SCC operator training 
programs and standardization bodies can utilize these 
results to improve the safety and efficiency of remote 
ship operations. 

Future studies should investigate other human 
factors affecting workload and stress levels in remote 
ship operations. Future studies are also needed to 
perform these experiments with experienced SCC 
operators in order to improve the applicability of the 
results of this study. Moreover, studies with more 
participants are needed. It would also be interesting to 
extend this study by performing machine learning 
processes on EEG signals to provide a platform for 
customizing operator training programs and 
improving SCC designs and protocols. 
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