
493 

1 INTRODUCTION 

1.1 Autonomy and Automation 

In the scope of DLR's Transport Program - the project 
I4Port works on reaping the fruits of digitalization by 
making intermodal shipping more efficient, robust 
and transparent by focussing on transport processes in 
the port as a hub of a transportation network. 

The aim of the project is to improve the efficiency 
and robustness of inter- and trans-modal logistic 
chains by making port processes more intelligent and 
informative as well as increase their integrity. The 
goal is to research technological and process-oriented 
approaches for optimised, efficient and secure traffic 
and logistic processes in a port as an intermodal hub. 
I4Port is a bridge into Helmholtz' Program Oriented 
Funding Period IV (PoF IV) where the Transport 
Program will put an increased emphasis on Nodes as 
Intermodal Hubs. 

Part of the project I4Port are conceptual and 
technological developments for maritime and inland 
waterway traffic related to ports, for example: PPP 
and RTK for position, navigation and timing [2, 8, 15]. 
Additionally, the project concerns itself with the 
development of planning algorithms for autonomous 
vessels in busy waterways - the work presented int 
this paper. 

In this paper we present a concept for the 
movement planning of an autonomous ferry - in an 
inland waterway. Ferries on inland waterways are an 
especially welcoming area of application for highly 
automatic or even autonomous systems for operating 
vessels. Usually a ferry will travel close to a 
predefined trajectory in a very limited and well know 
area. Also, the ships operations can easily be 
supported and augmented by land-based or other 
permanent infrastructure, especially sensors for traffic 
situation assessment and environmental influences 
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like wind speed and direction as well as waterflow 
and -level. 

In this paper we investigate the movements of a 
simulated vessel to evaluate a concept for 
autonomous movement planning using a state-of-the-
art artificial intelligence algorithm. As a blueprint we 
will use the ferry crossing the river Warnow from 
Warnemünde to Hohe Düne in Rostock Port. 

1.2 Autonomy vs Automation 

As there are different uses of the words “autonomy” 
and “automation” - throughout this paper we will be 
using following definitions: 

We will use the words “automation” or 
“automatic” when a system has little or no human 
involvement in operation and solves well-defined 
tasks that have predetermined conditional responses, 
for example a system that shows rule-based behaviour 
in a well-known and/or well-structured environment. 

We will use the words “autonomy” or 
“autonomous” when a system has certain capabilities 
that allow it - within a defined and bounded 
application domain - to flexibly respond to unplanned 
situations thereby showing a certain degree of self-
governance and self-directed behaviour. As an 
additional criterium the system’s response should be 
adaptive to and/or learned from the environment. 

1.3 Manoeuvre Automation Levels 

The classifications of autonomy levels for surface 
vehicles are based considerably on the concept 
defined by the Society of Automotive Engineers (SAE) 
in 2014 [11]. With six levels, this classification ranges 
from purely manual to fully autonomous control. 
Only at the highest level does the control actually 
have a fully autonomous characteristic, so that the 
vehicle can independently reach a mission objective. 
The levels in between are characterised by a higher 
degree of automation. 

The most classifications for the marine world 
adapted the SAE levels, without considering the 
significant differences between car and ship control. 
This starts with the dimensions of the vehicles, 
followed by the costs for a new building or even just 
the modification towards more automation. Finally, 
the personnel expense is higher as well as the 
knowledge and skills of a master are manifold more 
extensive than those of a car driver.  

Often, the marine classifications include the remote 
control from shore [7, 10]. This presupposes that 
extensive and high-frequency communication 
between ship and shore can be realised, whereby the 
ship must also be equipped with far more sensors 
than is the case today with conventional ships, which 
are primarily controlled on sight. The amount of 
sensor data from additional cameras, lidar and radar 
sensors would significantly increase the data volume. 
Additionally, remote control requires the complete 
digitisation of the engine and propulsion systems in 
order to monitor and command their states from 
shore. 

 
Figure 1. Ferry crossing in Warnemünde, using a map from 
openseamap.org 

 
Figure 2. Manoeuvre Automation Levels, adapted from [13] 

The concept of Manoeuvre Automation Levels 
(MAL) is a user-centred approach for gradual 
automation of conventional ships which are already in 
service today [13]. It is initialised by assistance of the 
manual control and the stepwise addition of 
automatic functionalities via a Manoeuvre Assistance 
System (MAS). 

The approach is designed to both increase safety 
and efficiency already in manually controlled vessel 
manoeuvring in higher structured environments such 
as ports and coastal areas, and to transparently 
communicate the new automatic functions to the 
watch officer so that she can continue to exercise her 
responsibility for the vessel. 

In the first level Manoeuvre Assistance (MAL1), 
the MAS is introduced to bundle the necessary 
nautical information and show the motion prediction 
in the electronic navigational chart (ENC). This level 
also serves to familiarise the nautical personnel with 
the MAS functions. 

In the second level Partial Manoeuvre Automation 
(MAL2), short manoeuvre sequences are introduced, 
which can be initialised and supervised via MAS, e.g., 
automatic berthing or automatic collision avoidance 
manoeuvres in open waters. A prerequisite for 
automatic manoeuvres is a digital manoeuvre plan, 
which is displayed in the ENC. The plan is converted 
into a trajectory that forms the target for the automatic 
manoeuvring. By comparing of manoeuvre plan, 
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actual and predicted motion track, the officer of the 
watch can evaluate if the trajectory control is working 
correctly. In the worst case, it should take over 
manual control again. 

In MAL3, High Manoeuvre Automation, the 
automatic manoeuvre sequences are expanded. The 
procedure may include an entire crossing from port to 
port, which is based on a digital plan for the current 
weather situation or other framework conditions. 

The highest level MAL4 presents the Autonomous 
Manoeuvring. There is no crew on board the ship, 
neither on the bridge nor in the engine control room. 
The vessel is autonomously controlled under all 
circumstances. This absolute formulation shows how 
unlikely this scenario is for longer missions.  

In the research project GALILEOnautic, the 
presented concept of manoeuvre automation was 
adapted with different MALs for different vehicle 
types. 

The hybrid ferry BERLIN (Scandlines shipping 
company) was equipped with a MAS with tools for 
motion prediction and consumption optimisation in 
MAL1 [12]. The ferry, with its defined route between 
Germany and Denmark and tight schedule, is 
supported by MAS to speed up the berthing processes 
and make them more efficient. In order to establish 
this MAS, models for the dynamic motion behaviour 
and the engine processes have been developed. For 
the future personalisation of the MAS user interface 
via the menu, the nautical staff was consulted. 

Currently automatic manoeuvring in MAL2 is 
prepared with the digitised German research vessel 
DENEB. Automatic berthing in the port of Rostock is 
planned, which should firstly test in the open sea. The 
same berthing manoeuvres but with actuator failures 
or obstacles in the planned path should be realised 
with small unmanned surface vehicles in preparation 
of MAL3.  

The introduction of highly automatic and 
autonomous systems can also be seen in light of the 
challenges of a demographic transition. A 
transformation that should include the support of an 
aging and changing workforce, especially with a 
younger generation expecting a more digitalized and 
challenging working environment. The technological 
transformation should be done in a manner that the 
existing workforce does not lose their abilities - such a 
de-skilling could lead to more accidents and harm for 
people and infrastructure. 

So, the introduction of automatic and autonomous 
systems should take the workers along with it, clearly 
defining responsibilities as in the Manoeuvre 
Automation Levels is one aspect of this. 

2 METHODS 

The aim of this research is, for the planning algorithm, 
to directly learn the fulfilment of an objective from 
using the control inputs of a vessel, without the 
intermediate and additional step of path planning.  

Methods for this kind of end-to-end learning for 
autonomous movement planning are manifold. 

One, more mathematical, way would be the use of 
the calculus of variations - augmenting a trajectory 
yp(t) by a set of parameters p to describe the systems 
response to the environment. One then minimizes a 
Functional J(yp) with respect to the parameter set p. 
For example, the functional J(yp) can be a path integral 
along the trajectory yp(t). This approach can become 
very difficult very easily, because it needs to evaluate 
derivates of the functional J(yp) with respect to the 
parameter-set p analytically. 

Another, more recent, approach - from artificial 
intelligence - for adaptive control of dynamical 
systems is the use of recurrent neural networks 
(RNN), where one constructs a parametrised graph - a 
network of simple arithmetic operations - describing 
the systems response to input and the computation of 
the objective function. The solution can then be found 
by repeatedly using backpropagation to compute 
gradients with respect to the objective function and 
successively get new search directions for iterative 
parameter updates - leading to new weights in the 
neural network that over time will minimize the 
objective function. 

A third and relatively new option is differentiable 
programming. It allows to write down the systems 
parametrised response to control inputs, the resulting 
trajectory and the subsequent calculation of the 
objective function as imperative source code and to 
use automatic syntax transformations and an analysis 
of the information flow while running the program to 
compute gradients that can be used as new search 
directions in the parameter space. Repeatedly re-
running the code and following the gradients as 
search directions enables to minimize the objective 
function and allows to reach the programmed goal of 
the mission. 

The research question we investigated was: How 
far does one get, using differentiable programming 
for computing the search directions and simple 
gradient descent to minimise the objective function 
(called loss function in machine learning) to enable 
the autonomous movement-planning of a simulated 
vessel? 

As a framework for our foray into differential 
programming we use the software DiffTaichi, that 
was presented at the International Conference on 
Learning Representations in 2020 [4]. The Code is 
available on GitHub [3]. 

2.1 A Cursory Overview 

Using the framework DiffTaichi allows to write plain 
(but annotated) Python code describing the simulated 
physics of the vessel, the parametrised response of the 
ship to control inputs and the objective of the ship’s 
movement in an imperative coding style. The 
resulting source code will be transformed using an 
abstract syntax tree (AST), the internal representation 
of the source code, before it is compiled for the 
underlying architecture (CPU, GPGPU, OpenCL). 

In DiffTaichi the sequence of execution steps can 
be recorded during a program run on what is called a 
tape. Using the tape of recorded instruction from a 
specific simulation run we can compute a partial 
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derivate of the calculated loss - with respect to the 
parameters - to calculate the gradient as a new search 
direction for the next optimization step in the 
parameter space. 

To a very rough approximation a program in 
DiffTaichi might look like the following: 

 

import taichi as ti  
 
# define variables 
loss = ti.var(dt=ti.f32) 
system_state = ti.var(dt=ti.f32) 
 
# place the variables in memory 
ti.root.place(system_state) 
ti.root.place(loss) 
 
# set flag to compute gradients 
ti.root.lazy_grad() 
 
# define a kernel 
# describing the system 
@ti.kernel 
def run_system(): 
  # evolve system_state  
  # for example, by time-stepping 
 
# define the objective functions 
@ti.kernel 
def compute_loss(): 
  # compute the loss 
  # from system_state 
 
# run the time-stepping scheme 
run_system() 
 
# compute the objective (loss) 
with ti.Tape(loss): 
  compute_loss() 

 

Running that program once we will get a gradient 
"system_state.grad". This gradient can be used for 
further computations, for example as a search 
direction in the parameter space to minimize the 
objective function. Running the program repeatedly 
while updating parameters and recomputing the 
parameterized system's trajectory accordingly we are 
enabled to reach the goal encoded in the objective 
function. 

2.2 Physical Model 

The DiffTaichi kernel "run_system", to be provided by 
us, has two parts to it, a physical model and a time 
stepping scheme to evolve the systems state. 

We choose to describe the physical state of our 
simulated vessel by its position (x, y coordinates in an 
ENU-frame centred at the point of departure), speed 
through water (v), heading (φ) as well as its turn rate 
(ω). 

During the simulated motion of the vessel the 
autonomous movement planning algorithm gets to 
control the ships engine power and the position of the 
rudder. Therefore, the system is underactuated. As a 
simplification we assume that the control inputs affect 
the engines state and rudder position without any 
delay. By changing the power of the engine and 
therefore the thrust, the algorithm can accelerate or 
decelerate the vessel. By controlling the rudder, the 

turn rate can be influenced, as long as the ship is 
moving relative to the water. 

To model the ship’s acceleration or deceleration, 
we have to include drag forces on the hull. The drag 
force has a hydrodynamic component, but is 
dominated by wave-making, so we approximate it to 
scale proportional to the 3rd power of the speed 
through water (v), with the proportionality factor 
being the vessels hull speed and a drag coefficient.  

For controlling the ship’s turn-rate the 
autonomous movement planning algorithm gets to 
control the rudder’s position. To compute the forces 
acting on the rudder and therefore the angular 
acceleration, we use the approximate method for 
calculating the forces from Żelazny published in [14]. 

To complete the physical model for the simulation 
we need some static parameters, like, the density of 
water, but also the ship’s mass, width, length overall 
and the length of its water line (and therefore the hull-
speed). For the purpose of our calculations we took 
the data from DLR's research vessel Aurora (Table 1). 
Table 1.DLR Research Vessel Aurora _______________________________________________ 
Length        7 [m] 
Width       2.54 [m] 
Ship mass       2800 [kg] 
Length of waterline   6.5 [m] 
Hull-speed      1.25 3.2lwl⋅ =  _______________________________________________ 
 

 
Figure 3. DLR Research Vessel Aurora 

Additionally, to compute changes in the turn rate 
(the angular acceleration) from rudder forces we need 
an approximation of the ships rotational moment of 
inertia. This moment will change depending on mass 
distribution, e.g. how the vessel is loaded - for 
example as passengers move. As a first approximation 
we used the momentum of inertia of a cuboid of the 
same volume and weight. The angular moment of 
inertia of the vessel itself could be measured when the 
ship is craned out of or into the water to refine this 
estimation. 

Using the systems state and the approximated 
vessel dynamics, we get a system of 5 ordinary 
differential equations in 5 variables (position: x, y, 
velocity through water: v, heading: φ, rate of turn: ω): 
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Where Irot is the ship’s rotational moment of inertia 
and l is the distance of the rudder from the vessel’s 
centre of mass. 

We solve this system numerically by integrating it 
using an explicit Euler scheme of first order. This 
integration also has to be implemented in DiffTaichi 
specific source code to be part of the differentiable 
program. 

In addition, we follow the authors of the DiffTaichi 
paper in making sure to have an additional time step 
at zero crossings of v, as in those points the thrust 
changes sign. This addition is important to get 
meaningful derivatives of any objective function with 
respect to the parameter inputs when zero crossings 
occur. In the DiffTaichi paper [9] it is called the time 
of impact (TOI) as the authors are trying to make a 
roboter walk. 

2.3 Objective Functions 

The kernel "compute_loss" we showed in the cursory 
overview is an objective function one has to select in 
such a way as to suitably encode the goal of the 
planning algorithm. 

During our research of differential programming 
for autonomous movement planning we used 
increasingly demanding and complex objective 
functions. 

We started simple, with an objective that 
minimizes the distance to the opposite shore: 

 

@ti.kernel 
def compute_loss_arrival_beach(i: ti.i32): 
 loss[None] = integral[i] 
              + (y[i]-goal_y)**2 

 

The variable i in this case indicates at what time-
step this objective functions is being evaluated. As 
shown before this kernel usually will be evaluated 
after the last time-step. 

The "integral[i]" in the example above will be used 
to optimize certain aspects of the overall trajectory, for 
example energy consumption, travel time or the 
length of the trajectory. It could also be used to 
penalize strong variations in controlling inputs or the 
velocity to smooth the overall sailing experience. 

 
Figure 4 Objective: crossing of the flowing river, drifting in 
the first run, discovering the use of thrust to cross (the 
arrow’s size indicates the relative velocity through water)  

3 RESULTS 

Now that we have a fully differentiable model, we can 
put it in an optimization loop, where we run the 
explicit time-stepping to get a full trajectory, calculate 
the objective function (the loss) with the computed 
trajectory as an input and get back gradients as new 
search direction for updated controlling inputs that 
will minimize the objective after a few runs. 

After we got the basic algorithm working (e.g. the 
ferry discovering how to cross the river) of course we 
want the vessel to actually arrive where it can berth 
(at the Position with the coordinate pair: goal_x, 
goal_y): 

@ti.kernel 
def compute_loss_arrival_point(i: ti.i32): 
 loss[None] = integral[i] 
              + (y[i]-goal_y)**2 
              + (x[i]-goal_x)**2 

 

We might also find it helpful for the ship to arrive 
with almost now relative speed to the quay to not 
damage port infrastructure or injure passengers and 
also to allow an automatic docking procedure to take 
over: 

 

@ti.kernel 
def compute_loss_arrival_speed(i: ti.i32): 
 loss[None] = integral[i] 
   + (x[i]-goal_x)**2 + (y[i]-goal_y)**2 
   + c1 * ((ti.sin(phi[i])*v[i]+flow_x)**2 
          +(ti.cos(phi[i])*v[i]+flow_y)**2) 

 

Where c1 is a penalty constant to scale the 
contribution of the final velocity to the overall loss 
appropriately. In our experiments we fixed c1 at 100.  

To help passengers to get off our ferry safely we 
prefer the vessel to arrive alongside the quay, so we 
encode that in an objective too: 
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@ti.kernel 
def compute_loss_arrival_head(i: ti.i32): 
 loss[None] = integral[i] 
  + (x[i]-goal_x)**2 + (y[i]-goal_y)**2          
  + c1 * ((ti.sin(phi[i])*v[i]+flow_x)**2 
         +(ti.cos(phi[i])*v[i]+flow_y)**2) 
  + c2 * ti.cos(phi[i])**2 

 

We use c2 is a penalty term to scale the final 
heading’s contribution of the to the overall loss 
function appropriately. In this experi-ments we fixed 
c2 at 1000. 

Using these increasingly complex objective 
functions allows the autonomous planning algorithm 
to reach more complex goals successively (see 
Figure 5).  

3.1 Collision Avoidance 

Apart from arriving at the correct place, with almost 
no speed and having a compatible orientation or 
heading we might want to optimize certain 
characteristics of the trajectory along its path. 

For example, this could be the minimization of the 
ship’s energy consumption, but we can also use it to 
ensure that we do not run into other ships while we 
fulfil the objective of crossing the river. 

To further this aim, we defined exclusion zones 
(for example ship domains) that our vessel should not 
come close to or enter. Of course, these exclusion 
zones move together with the vessels defining them 
when they advance. So, for each step along its path, 
the planning algorithm will be penalized for being in 
such a - possibly progressing - exclusion zone, or 
being too close to one. 

In principle it enables the computation of gradients 
of the overall algorithm if such a penalty function as a 
component is differentiable itself. Also, we found that 
it assists the convergence of the overall algorithm if 
the penalty function does not have a pole where the 
obstacle is. In our current research we settled with a 
Gaussian function centred a little in front of the 
obstacle but including it within a standard deviation. 

 

# penalty term for being too close 
# to the crossing vessel (at any time) 
penalty_cpa = ti.exp( 
 -((x-exclusion_x)**2/var_x + 
   (y-exclusion_y)**2/var_y +  
 2*(x-exclusion_x)*(y-exclusion_y)/cov_xy ) 

 

When we defined the several objective (loss) 
functions above they included an "integral[i]" term that 
will be used to sum this varying penalty contributions 
along the trajectory of the vessel - especially including 
the closest point of approach (CPA) - and combine it 
with the aim of minimizing the time travelled, the 
overall length of the trajectory and the overall 
variation in speed: 

# this objective will be integrated 
# along the path of the ferry 
integral[i] = integral[i-1] + delta_t * ( 
 weight_cpa_penalty * penalty_cpa + 
 weight_distance * ((d_x)**2+(d_y)**2) ) + 
 weight_integral_speed * (v**2) ) 

As an illustration, the moving exclusion zone for a 
crossing ship in the waterway is signified by the blue 
ellipses in Figure 5. 

After including these penalty terms, we ran the 
optimization loop again. The convergence was a lot 
slower than for those computations that did not 
include a moving obstacle in the objective function. 
We also see, that the propagation of gradients for the 
controlling inputs from the end of the trajectory to the 
early movement phases could be improved. 

 
Figure 5. The vessels trajectory after 1024, 8129 and 16384 
optimizations steps. The ellipses signify the crossing 
vessel’s exclusion zone.  

4 CONCLUSION 

Our numerical experiments show that differentiable 
programming can be used for autonomous movement 
planning with a simple model of a river crossing 
ferry. The algorithm allows the vessel to flexibly 
interact with and react to its environment for example 
avoiding another vessel crossing its path. 

The algorithm learned from the physical model, 
for example goal-oriented steering and the selection of 
its initial direction for an optimal departure. 

Actually expected, but still encouraging, the 
algorithm independently discovered the use of 
reverse thrust shortly before docking to reduce its 
relative speed. Surprisingly the control commands 
(for power and steering) were very smooth and do not 
have abrupt discontinuities. 
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Possible lines of research that we envision for the 
further development of the method are an improved 
selection of search directions and step sizes when 
updating model parameters from gradients. 

As we saw above the algorithm somewhat suffers 
from diminishing gradients along the path especially 
when avoiding a crossing obstacle. Necessary changes 
in the controlling inputs only slowly propagate from 
the end of the trajectory to the early phases. We want 
to investigate how this can be overcome by selecting a 
sufficient initial trajectory. 

Additionally, we want to increase the speed of 
convergence in general. To accomplish this, we will 
have a look at different optimizations algorithm like 
Stochastic Gradient Descent (SGD) [1, 5, 9] and Adam 
(using adaptive moment estimation) [6]. 

For the purpose of evaluating and validating our 
autonomous movement planning algorithm, it should 
be connected to a ship handling simulator, that uses 
its own physical model and includes process and 
measurement noise. While directing the ship towards 
its goal, the planning algorithm would then be run 
iteratively to re-plan future movements and 
controlling inputs from the current state (which 
advances continuously), while using a method to 
repeatedly estimate the vessels state and parameters. 

The overall program, incorporating our 
autonomous movement planning, will have to 
repeatedly estimate position, speed, heading and turn 
rate, while the algorithms parameters to be estimated 
include the vessel's weight (and distribution), 
draught, momentum of inertia as well as external 
influences like water currents. 

Of course, the ship will need updated estimates for 
the position, speed and heading of other vessels to 
take their future trajectories into account. This could 
be improved upon by having multiple ships interact 
with each other cooperatively - for example by using 
planning algorithms that inform each other about 
their planned trajectory and finding optimal 
trajectories for all ships involved.  

When optimising the motion behaviour of a single 
ship, the local environment, the specific dynamic 
motion model und the engine states can be considered 
to find an optimal path or trajectory. The COLREGs 
(Collision avoidance regulations) have to be part of 
the applied algorithms to integrate an automatically 
controlled vehicle into the local traffic situation with a 
mixture from surface vehicles with different 
automation level and degree of manoeuvrability. 

The original manoeuvre trajectory has to be 
changed and optimised according the current 
situation. In consequence, the resulting calculated 
manoeuvre can be more a stopgap than an 
energetically optimal solution with minimal 
consumption and emission. Therefore, cooperative 
approaches should be investigated that optimise the 
cooperative motion behaviour of several ships or a 
fleet to achieve the best result for this group of ships. 

Finally, within the framework of uncertainty 
quantification one could use the distribution in 
uncertain parameters, for example: non-linearities in 
the ship systems response, (future) trajectories of 
other vessels, to get a risk assessment for possible 

movement plans select an appropriate course of 
action. 
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