
493

1 INTRODUCTION

1.1 Autonomy and Automation

In the scope of DLR's Transport Program - the project
I4Port works on reaping the fruits of digitalization by
making intermodal shipping more efficient, robust
and transparent by focussing on transport processes in
the port as a hub of a transportation network.

The aim of the project is to improve the efficiency
and robustness of inter- and trans-modal logistic
chains by making port processes more intelligent and
informative as well as increase their integrity. The
goal is to research technological and process-oriented
approaches for optimised, efficient and secure traffic
and logistic processes in a port as an intermodal hub.
I4Port is a bridge into Helmholtz' Program Oriented
Funding Period IV (PoF IV) where the Transport
Program will put an increased emphasis on Nodes as
Intermodal Hubs.

Part of the project I4Port are conceptual and
technological developments for maritime and inland
waterway traffic related to ports, for example: PPP
and RTK for position, navigation and timing [2, 8, 15].
Additionally, the project concerns itself with the
development of planning algorithms for autonomous
vessels in busy waterways - the work presented int
this paper.

In this paper we present a concept for the
movement planning of an autonomous ferry - in an
inland waterway. Ferries on inland waterways are an
especially welcoming area of application for highly
automatic or even autonomous systems for operating
vessels. Usually a ferry will travel close to a
predefined trajectory in a very limited and well know
area. Also, the ships operations can easily be
supported and augmented by land-based or other
permanent infrastructure, especially sensors for traffic
situation assessment and environmental influences

Differentiable Programming for the Autonomous
Movement Planning of a Small Vessel

C. Bahls1 & A. Schubert2
1 German Aerospace Center, Neustrelitz, Germany
2 University of Rostock, Rostock, Germany

ABSTRACT: In this work we explore the use of differentiable programming to allow autonomous movement
planning of a small vessel. We aim for an end to end architecture where the machine learning algorithm directly
controls engine power and rudder movements of a simulated vessel to reach a defined goal. Differentiable
programming is a novel machine learning paradigm, that allows to define a systems parameterized response to
control commands in imperative computer code and to use automatic differentiation and analysis of the
information flow from the controlling inputs and parameters to the resulting trajectory to compute derivatives
to be used as search directions in an iterative algorithm to optimize a goal function. Initially the method does
not know about any manoeuvring or the vessels response to control commands. The method autonomously
learns the vessels behaviour from several simulation runs. Finally, we will show how the simulated vessel is
able to fulfil some small missions, like crossing a flowing river while avoiding crossing traffic.

http://www.transnav.eu

the International Journal
on Marine Navigation
and Safety of Sea Transportation

Volume 15
Number 3

September 2021

DOI: 10.12716/1001.15.03.01

494

like wind speed and direction as well as waterflow
and -level.

In this paper we investigate the movements of a
simulated vessel to evaluate a concept for
autonomous movement planning using a state-of-the-
art artificial intelligence algorithm. As a blueprint we
will use the ferry crossing the river Warnow from
Warnemünde to Hohe Düne in Rostock Port.

1.2 Autonomy vs Automation

As there are different uses of the words “autonomy”
and “automation” - throughout this paper we will be
using following definitions:

We will use the words “automation” or
“automatic” when a system has little or no human
involvement in operation and solves well-defined
tasks that have predetermined conditional responses,
for example a system that shows rule-based behaviour
in a well-known and/or well-structured environment.

We will use the words “autonomy” or
“autonomous” when a system has certain capabilities
that allow it - within a defined and bounded
application domain - to flexibly respond to unplanned
situations thereby showing a certain degree of self-
governance and self-directed behaviour. As an
additional criterium the system’s response should be
adaptive to and/or learned from the environment.

1.3 Manoeuvre Automation Levels

The classifications of autonomy levels for surface
vehicles are based considerably on the concept
defined by the Society of Automotive Engineers (SAE)
in 2014 [11]. With six levels, this classification ranges
from purely manual to fully autonomous control.
Only at the highest level does the control actually
have a fully autonomous characteristic, so that the
vehicle can independently reach a mission objective.
The levels in between are characterised by a higher
degree of automation.

The most classifications for the marine world
adapted the SAE levels, without considering the
significant differences between car and ship control.
This starts with the dimensions of the vehicles,
followed by the costs for a new building or even just
the modification towards more automation. Finally,
the personnel expense is higher as well as the
knowledge and skills of a master are manifold more
extensive than those of a car driver.

Often, the marine classifications include the remote
control from shore [7, 10]. This presupposes that
extensive and high-frequency communication
between ship and shore can be realised, whereby the
ship must also be equipped with far more sensors
than is the case today with conventional ships, which
are primarily controlled on sight. The amount of
sensor data from additional cameras, lidar and radar
sensors would significantly increase the data volume.
Additionally, remote control requires the complete
digitisation of the engine and propulsion systems in
order to monitor and command their states from
shore.

Figure 1. Ferry crossing in Warnemünde, using a map from
openseamap.org

Figure 2. Manoeuvre Automation Levels, adapted from [13]

The concept of Manoeuvre Automation Levels
(MAL) is a user-centred approach for gradual
automation of conventional ships which are already in
service today [13]. It is initialised by assistance of the
manual control and the stepwise addition of
automatic functionalities via a Manoeuvre Assistance
System (MAS).

The approach is designed to both increase safety
and efficiency already in manually controlled vessel
manoeuvring in higher structured environments such
as ports and coastal areas, and to transparently
communicate the new automatic functions to the
watch officer so that she can continue to exercise her
responsibility for the vessel.

In the first level Manoeuvre Assistance (MAL1),
the MAS is introduced to bundle the necessary
nautical information and show the motion prediction
in the electronic navigational chart (ENC). This level
also serves to familiarise the nautical personnel with
the MAS functions.

In the second level Partial Manoeuvre Automation
(MAL2), short manoeuvre sequences are introduced,
which can be initialised and supervised via MAS, e.g.,
automatic berthing or automatic collision avoidance
manoeuvres in open waters. A prerequisite for
automatic manoeuvres is a digital manoeuvre plan,
which is displayed in the ENC. The plan is converted
into a trajectory that forms the target for the automatic
manoeuvring. By comparing of manoeuvre plan,

495

actual and predicted motion track, the officer of the
watch can evaluate if the trajectory control is working
correctly. In the worst case, it should take over
manual control again.

In MAL3, High Manoeuvre Automation, the
automatic manoeuvre sequences are expanded. The
procedure may include an entire crossing from port to
port, which is based on a digital plan for the current
weather situation or other framework conditions.

The highest level MAL4 presents the Autonomous
Manoeuvring. There is no crew on board the ship,
neither on the bridge nor in the engine control room.
The vessel is autonomously controlled under all
circumstances. This absolute formulation shows how
unlikely this scenario is for longer missions.

In the research project GALILEOnautic, the
presented concept of manoeuvre automation was
adapted with different MALs for different vehicle
types.

The hybrid ferry BERLIN (Scandlines shipping
company) was equipped with a MAS with tools for
motion prediction and consumption optimisation in
MAL1 [12]. The ferry, with its defined route between
Germany and Denmark and tight schedule, is
supported by MAS to speed up the berthing processes
and make them more efficient. In order to establish
this MAS, models for the dynamic motion behaviour
and the engine processes have been developed. For
the future personalisation of the MAS user interface
via the menu, the nautical staff was consulted.

Currently automatic manoeuvring in MAL2 is
prepared with the digitised German research vessel
DENEB. Automatic berthing in the port of Rostock is
planned, which should firstly test in the open sea. The
same berthing manoeuvres but with actuator failures
or obstacles in the planned path should be realised
with small unmanned surface vehicles in preparation
of MAL3.

The introduction of highly automatic and
autonomous systems can also be seen in light of the
challenges of a demographic transition. A
transformation that should include the support of an
aging and changing workforce, especially with a
younger generation expecting a more digitalized and
challenging working environment. The technological
transformation should be done in a manner that the
existing workforce does not lose their abilities - such a
de-skilling could lead to more accidents and harm for
people and infrastructure.

So, the introduction of automatic and autonomous
systems should take the workers along with it, clearly
defining responsibilities as in the Manoeuvre
Automation Levels is one aspect of this.

2 METHODS

The aim of this research is, for the planning algorithm,
to directly learn the fulfilment of an objective from
using the control inputs of a vessel, without the
intermediate and additional step of path planning.

Methods for this kind of end-to-end learning for
autonomous movement planning are manifold.

One, more mathematical, way would be the use of
the calculus of variations - augmenting a trajectory
yp(t) by a set of parameters p to describe the systems
response to the environment. One then minimizes a
Functional J(yp) with respect to the parameter set p.
For example, the functional J(yp) can be a path integral
along the trajectory yp(t). This approach can become
very difficult very easily, because it needs to evaluate
derivates of the functional J(yp) with respect to the
parameter-set p analytically.

Another, more recent, approach - from artificial
intelligence - for adaptive control of dynamical
systems is the use of recurrent neural networks
(RNN), where one constructs a parametrised graph - a
network of simple arithmetic operations - describing
the systems response to input and the computation of
the objective function. The solution can then be found
by repeatedly using backpropagation to compute
gradients with respect to the objective function and
successively get new search directions for iterative
parameter updates - leading to new weights in the
neural network that over time will minimize the
objective function.

A third and relatively new option is differentiable
programming. It allows to write down the systems
parametrised response to control inputs, the resulting
trajectory and the subsequent calculation of the
objective function as imperative source code and to
use automatic syntax transformations and an analysis
of the information flow while running the program to
compute gradients that can be used as new search
directions in the parameter space. Repeatedly re-
running the code and following the gradients as
search directions enables to minimize the objective
function and allows to reach the programmed goal of
the mission.

The research question we investigated was: How
far does one get, using differentiable programming
for computing the search directions and simple
gradient descent to minimise the objective function
(called loss function in machine learning) to enable
the autonomous movement-planning of a simulated
vessel?

As a framework for our foray into differential
programming we use the software DiffTaichi, that
was presented at the International Conference on
Learning Representations in 2020 [4]. The Code is
available on GitHub [3].

2.1 A Cursory Overview

Using the framework DiffTaichi allows to write plain
(but annotated) Python code describing the simulated
physics of the vessel, the parametrised response of the
ship to control inputs and the objective of the ship’s
movement in an imperative coding style. The
resulting source code will be transformed using an
abstract syntax tree (AST), the internal representation
of the source code, before it is compiled for the
underlying architecture (CPU, GPGPU, OpenCL).

In DiffTaichi the sequence of execution steps can
be recorded during a program run on what is called a
tape. Using the tape of recorded instruction from a
specific simulation run we can compute a partial

496

derivate of the calculated loss - with respect to the
parameters - to calculate the gradient as a new search
direction for the next optimization step in the
parameter space.

To a very rough approximation a program in
DiffTaichi might look like the following:

import taichi as ti

define variables
loss = ti.var(dt=ti.f32)
system_state = ti.var(dt=ti.f32)

place the variables in memory
ti.root.place(system_state)
ti.root.place(loss)

set flag to compute gradients
ti.root.lazy_grad()

define a kernel
describing the system
@ti.kernel
def run_system():
 # evolve system_state
 # for example, by time-stepping

define the objective functions
@ti.kernel
def compute_loss():
 # compute the loss
 # from system_state

run the time-stepping scheme
run_system()

compute the objective (loss)
with ti.Tape(loss):
 compute_loss()

Running that program once we will get a gradient
"system_state.grad". This gradient can be used for
further computations, for example as a search
direction in the parameter space to minimize the
objective function. Running the program repeatedly
while updating parameters and recomputing the
parameterized system's trajectory accordingly we are
enabled to reach the goal encoded in the objective
function.

2.2 Physical Model

The DiffTaichi kernel "run_system", to be provided by
us, has two parts to it, a physical model and a time
stepping scheme to evolve the systems state.

We choose to describe the physical state of our
simulated vessel by its position (x, y coordinates in an
ENU-frame centred at the point of departure), speed
through water (v), heading (φ) as well as its turn rate
(ω).

During the simulated motion of the vessel the
autonomous movement planning algorithm gets to
control the ships engine power and the position of the
rudder. Therefore, the system is underactuated. As a
simplification we assume that the control inputs affect
the engines state and rudder position without any
delay. By changing the power of the engine and
therefore the thrust, the algorithm can accelerate or
decelerate the vessel. By controlling the rudder, the

turn rate can be influenced, as long as the ship is
moving relative to the water.

To model the ship’s acceleration or deceleration,
we have to include drag forces on the hull. The drag
force has a hydrodynamic component, but is
dominated by wave-making, so we approximate it to
scale proportional to the 3rd power of the speed
through water (v), with the proportionality factor
being the vessels hull speed and a drag coefficient.

For controlling the ship’s turn-rate the
autonomous movement planning algorithm gets to
control the rudder’s position. To compute the forces
acting on the rudder and therefore the angular
acceleration, we use the approximate method for
calculating the forces from Żelazny published in [14].

To complete the physical model for the simulation
we need some static parameters, like, the density of
water, but also the ship’s mass, width, length overall
and the length of its water line (and therefore the hull-
speed). For the purpose of our calculations we took
the data from DLR's research vessel Aurora (Table 1).
Table 1.DLR Research Vessel Aurora ___
Length 7 [m]
Width 2.54 [m]
Ship mass 2800 [kg]
Length of waterline 6.5 [m]
Hull-speed 1.25 3.2lwl⋅ = ___

Figure 3. DLR Research Vessel Aurora

Additionally, to compute changes in the turn rate
(the angular acceleration) from rudder forces we need
an approximation of the ships rotational moment of
inertia. This moment will change depending on mass
distribution, e.g. how the vessel is loaded - for
example as passengers move. As a first approximation
we used the momentum of inertia of a cuboid of the
same volume and weight. The angular moment of
inertia of the vessel itself could be measured when the
ship is craned out of or into the water to refine this
estimation.

Using the systems state and the approximated
vessel dynamics, we get a system of 5 ordinary
differential equations in 5 variables (position: x, y,
velocity through water: v, heading: φ, rate of turn: ω):

497

()
()

x

y

thrust drag

turn

v sin φ w

v cos φ w

ω
F F

l F

rot

x

y

v
m

I

ϕ

ω

= ⋅ +

= ⋅ +

=
−

=

⋅
=

Where Irot is the ship’s rotational moment of inertia
and l is the distance of the rudder from the vessel’s
centre of mass.

We solve this system numerically by integrating it
using an explicit Euler scheme of first order. This
integration also has to be implemented in DiffTaichi
specific source code to be part of the differentiable
program.

In addition, we follow the authors of the DiffTaichi
paper in making sure to have an additional time step
at zero crossings of v, as in those points the thrust
changes sign. This addition is important to get
meaningful derivatives of any objective function with
respect to the parameter inputs when zero crossings
occur. In the DiffTaichi paper [9] it is called the time
of impact (TOI) as the authors are trying to make a
roboter walk.

2.3 Objective Functions

The kernel "compute_loss" we showed in the cursory
overview is an objective function one has to select in
such a way as to suitably encode the goal of the
planning algorithm.

During our research of differential programming
for autonomous movement planning we used
increasingly demanding and complex objective
functions.

We started simple, with an objective that
minimizes the distance to the opposite shore:

@ti.kernel
def compute_loss_arrival_beach(i: ti.i32):
 loss[None] = integral[i]
 + (y[i]-goal_y)**2

The variable i in this case indicates at what time-
step this objective functions is being evaluated. As
shown before this kernel usually will be evaluated
after the last time-step.

The "integral[i]" in the example above will be used
to optimize certain aspects of the overall trajectory, for
example energy consumption, travel time or the
length of the trajectory. It could also be used to
penalize strong variations in controlling inputs or the
velocity to smooth the overall sailing experience.

Figure 4 Objective: crossing of the flowing river, drifting in
the first run, discovering the use of thrust to cross (the
arrow’s size indicates the relative velocity through water)

3 RESULTS

Now that we have a fully differentiable model, we can
put it in an optimization loop, where we run the
explicit time-stepping to get a full trajectory, calculate
the objective function (the loss) with the computed
trajectory as an input and get back gradients as new
search direction for updated controlling inputs that
will minimize the objective after a few runs.

After we got the basic algorithm working (e.g. the
ferry discovering how to cross the river) of course we
want the vessel to actually arrive where it can berth
(at the Position with the coordinate pair: goal_x,
goal_y):

@ti.kernel
def compute_loss_arrival_point(i: ti.i32):
 loss[None] = integral[i]
 + (y[i]-goal_y)**2
 + (x[i]-goal_x)**2

We might also find it helpful for the ship to arrive
with almost now relative speed to the quay to not
damage port infrastructure or injure passengers and
also to allow an automatic docking procedure to take
over:

@ti.kernel
def compute_loss_arrival_speed(i: ti.i32):
 loss[None] = integral[i]
 + (x[i]-goal_x)**2 + (y[i]-goal_y)**2
 + c1 * ((ti.sin(phi[i])*v[i]+flow_x)**2
 +(ti.cos(phi[i])*v[i]+flow_y)**2)

Where c1 is a penalty constant to scale the
contribution of the final velocity to the overall loss
appropriately. In our experiments we fixed c1 at 100.

To help passengers to get off our ferry safely we
prefer the vessel to arrive alongside the quay, so we
encode that in an objective too:

498

@ti.kernel
def compute_loss_arrival_head(i: ti.i32):
 loss[None] = integral[i]
 + (x[i]-goal_x)**2 + (y[i]-goal_y)**2
 + c1 * ((ti.sin(phi[i])*v[i]+flow_x)**2
 +(ti.cos(phi[i])*v[i]+flow_y)**2)
 + c2 * ti.cos(phi[i])**2

We use c2 is a penalty term to scale the final
heading’s contribution of the to the overall loss
function appropriately. In this experi-ments we fixed
c2 at 1000.

Using these increasingly complex objective
functions allows the autonomous planning algorithm
to reach more complex goals successively (see
Figure 5).

3.1 Collision Avoidance

Apart from arriving at the correct place, with almost
no speed and having a compatible orientation or
heading we might want to optimize certain
characteristics of the trajectory along its path.

For example, this could be the minimization of the
ship’s energy consumption, but we can also use it to
ensure that we do not run into other ships while we
fulfil the objective of crossing the river.

To further this aim, we defined exclusion zones
(for example ship domains) that our vessel should not
come close to or enter. Of course, these exclusion
zones move together with the vessels defining them
when they advance. So, for each step along its path,
the planning algorithm will be penalized for being in
such a - possibly progressing - exclusion zone, or
being too close to one.

In principle it enables the computation of gradients
of the overall algorithm if such a penalty function as a
component is differentiable itself. Also, we found that
it assists the convergence of the overall algorithm if
the penalty function does not have a pole where the
obstacle is. In our current research we settled with a
Gaussian function centred a little in front of the
obstacle but including it within a standard deviation.

penalty term for being too close
to the crossing vessel (at any time)
penalty_cpa = ti.exp(
 -((x-exclusion_x)**2/var_x +
 (y-exclusion_y)**2/var_y +
 2*(x-exclusion_x)*(y-exclusion_y)/cov_xy)

When we defined the several objective (loss)
functions above they included an "integral[i]" term that
will be used to sum this varying penalty contributions
along the trajectory of the vessel - especially including
the closest point of approach (CPA) - and combine it
with the aim of minimizing the time travelled, the
overall length of the trajectory and the overall
variation in speed:

this objective will be integrated
along the path of the ferry
integral[i] = integral[i-1] + delta_t * (
 weight_cpa_penalty * penalty_cpa +
 weight_distance * ((d_x)**2+(d_y)**2)) +
 weight_integral_speed * (v**2))

As an illustration, the moving exclusion zone for a
crossing ship in the waterway is signified by the blue
ellipses in Figure 5.

After including these penalty terms, we ran the
optimization loop again. The convergence was a lot
slower than for those computations that did not
include a moving obstacle in the objective function.
We also see, that the propagation of gradients for the
controlling inputs from the end of the trajectory to the
early movement phases could be improved.

Figure 5. The vessels trajectory after 1024, 8129 and 16384
optimizations steps. The ellipses signify the crossing
vessel’s exclusion zone.

4 CONCLUSION

Our numerical experiments show that differentiable
programming can be used for autonomous movement
planning with a simple model of a river crossing
ferry. The algorithm allows the vessel to flexibly
interact with and react to its environment for example
avoiding another vessel crossing its path.

The algorithm learned from the physical model,
for example goal-oriented steering and the selection of
its initial direction for an optimal departure.

Actually expected, but still encouraging, the
algorithm independently discovered the use of
reverse thrust shortly before docking to reduce its
relative speed. Surprisingly the control commands
(for power and steering) were very smooth and do not
have abrupt discontinuities.

499

Possible lines of research that we envision for the
further development of the method are an improved
selection of search directions and step sizes when
updating model parameters from gradients.

As we saw above the algorithm somewhat suffers
from diminishing gradients along the path especially
when avoiding a crossing obstacle. Necessary changes
in the controlling inputs only slowly propagate from
the end of the trajectory to the early phases. We want
to investigate how this can be overcome by selecting a
sufficient initial trajectory.

Additionally, we want to increase the speed of
convergence in general. To accomplish this, we will
have a look at different optimizations algorithm like
Stochastic Gradient Descent (SGD) [1, 5, 9] and Adam
(using adaptive moment estimation) [6].

For the purpose of evaluating and validating our
autonomous movement planning algorithm, it should
be connected to a ship handling simulator, that uses
its own physical model and includes process and
measurement noise. While directing the ship towards
its goal, the planning algorithm would then be run
iteratively to re-plan future movements and
controlling inputs from the current state (which
advances continuously), while using a method to
repeatedly estimate the vessels state and parameters.

The overall program, incorporating our
autonomous movement planning, will have to
repeatedly estimate position, speed, heading and turn
rate, while the algorithms parameters to be estimated
include the vessel's weight (and distribution),
draught, momentum of inertia as well as external
influences like water currents.

Of course, the ship will need updated estimates for
the position, speed and heading of other vessels to
take their future trajectories into account. This could
be improved upon by having multiple ships interact
with each other cooperatively - for example by using
planning algorithms that inform each other about
their planned trajectory and finding optimal
trajectories for all ships involved.

When optimising the motion behaviour of a single
ship, the local environment, the specific dynamic
motion model und the engine states can be considered
to find an optimal path or trajectory. The COLREGs
(Collision avoidance regulations) have to be part of
the applied algorithms to integrate an automatically
controlled vehicle into the local traffic situation with a
mixture from surface vehicles with different
automation level and degree of manoeuvrability.

The original manoeuvre trajectory has to be
changed and optimised according the current
situation. In consequence, the resulting calculated
manoeuvre can be more a stopgap than an
energetically optimal solution with minimal
consumption and emission. Therefore, cooperative
approaches should be investigated that optimise the
cooperative motion behaviour of several ships or a
fleet to achieve the best result for this group of ships.

Finally, within the framework of uncertainty
quantification one could use the distribution in
uncertain parameters, for example: non-linearities in
the ship systems response, (future) trajectories of
other vessels, to get a risk assessment for possible

movement plans select an appropriate course of
action.

REFERENCES

1. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization
Methods for Large-Scale Machine Learning. (2018).

2. Hesselbarth, A., Medina, D., Ziebold, R., Sandler, M.,
Hoppe, M., Uhlemann, M.: Enabling Assistance
Functions for the Safe Navigation of Inland Waterways.
IEEE Intelligent Transportation Systems Magazine. 12, 3,
123–135 (2020).
https://doi.org/10.1109/MITS.2020.2994103.

3. Hu, Y.: DiffTaichi: Differentiable Programming for
Physical Simulation, https://github.com/yuanming-
hu/difftaichi, last accessed 2021/04/27.

4. Hu, Y., Anderson, L., Li, T.-M., Sun, Q., Carr, N., Ragan-
Kelley, J., Durand, F.: Differentiable Programming for
Physical Simulation. Presented at the International
Conference on Learning Representations (2020).

5. Kiefer, J., Wolfowitz, J.: Stochastic Estimation of the
Maximum of a Regression Function. The Annals of
Mathematical Statistics. 23, 3, 462–466 (1952).
https://doi.org/10.1214/aoms/1177729392.

6. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic
Optimization. Presented at the 3rd International
Conference for Learning Representations , San Diego
(2015).

7. Lloyd’s Register Groupe: Design Code for Unmanned
Marine Systems. (2017).

8. Medina, D., Vilà-Valls, J., Hesselbarth, A., Ziebold, R.,
García, J.: On the Recursive Joint Position and Attitude
Determination in Multi-Antenna GNSS Platforms.
Remote Sensing. 12, 12, (2020).
https://doi.org/10.3390/rs12121955.

9. Robbins, H., Monro, S.: A Stochastic Approximation
Method. The Annals of Mathematical Statistics. 22, 3,
400–407 (1951).

10. Rødseth, Ø., Nordahl, H.: Definition of autonomy levels
for merchant ships, Report from NFAS, Norwegian
Forum for Autonomous Ships. (2017).
https://doi.org/10.13140/RG.2.2.21069.08163.

11. SAE International: J3016B: Taxonomy and Definitions
for Terms Related to Driving Automation Systems for
On-Road Motor Vehicles - SAE International,
https://www.sae.org/standards/content/j3016_201806/,
last accessed 2021/04/27.

12. Schubert, A.U., Kurowski, M., Damerius, R., Fischer, S.,
Gluch, M., Baldauf, M., Jeinsch, T.: From Manoeuvre
Assistance to Manoeuvre Automation. In: Journal of
Physics: Conference Series. , Trondheim, Norway (2019).
https://doi.org/10.1088/1742-6596/1357/1/012006.

13. Schubert, A.U., Kurowski, M., Gluch, M., Simanski, O.,
Jeinsch, T.: Manoeuvring Automation towards
Autonomous Shipping. In: Proceedings of the
International Ship Control Systems Symposium (iSCSS).
, Glasgow, UK (2018). https://doi.org/10.24868/issn.2631-
8741.2018.020.

14. Żelazny, K.: Approximate Method of Calculating Forces
on Rudder During Ship Sailing on a Shipping Route.
TransNav, the International Journal on Marine
Navigation and Safety of Sea Transportation. 8, 3, 459–
464 (2014). https://doi.org/10.12716/1001.08.03.18.

15. Ziebold, R., Gewies, S.: Long Term Validation of High
Precision RTK Positioning Onboard a Ferry Vessel Using
the MGBAS in the Research Port of Rostock. TransNav,
the International Journal on Marine Navigation and
Safety of Sea Transportation. 11, 3, 433–440 (2017).
https://doi.org/10.12716/1001.11.03.06.

