TRANSINAV

http://www.transnav.eu

the International Journal
on Marine Navigation
and Safety of Sea Transportation

Volume 7
Number 4
December 2013

DOI: 10.12716/1001.07.04.01

Determination of Inertia Forces Acting on Break Bulk

Cargo en Route

A.O. Chepok
Odessa National Maritime Academy, Odessa, Ukraine

ABSTRACT: The paper presents the analytical method of defining inertia forces that act on

break bulk cargo

as a result of the oscillatory motion of the vessel exposed to the effect of ambient forces. Considering that the
linear models of roll, pitch and heave applicable in this case, the problem is solved by expressing the angle of
heel, the angle of pitch, and the amplitude of heave. The obtained functions are differentiated and the inertia
forces are determined by means of applying the Newton's second law.

1 INTRODUCTION

In the sea transportation of break bulk cargo,
particularly that of the non-standard dimensions,
both the weight of each load and the acting forces of
inertia should be considered when designing the
securing arrangement of the cargo. The inertia forces
can be evaluated once the linear accelerations
affecting the cargo are known, which depend on the
laws of linear displacement changes for the cargo and
the deck of the vessel relative to the reference
coordinate system.

Generally the oscillatory motion of the ship is
characterized by six degrees of freedom and is
described by six differential equations. The ship
oscillations are strongly coupled [1]. It is shown in [2]
that one can apply the linear models of roll, pitch and
heave to obtain the linear acceleration in the first
approximation, i.e. use the corresponding isolated
equations for the calculation.

To be able to find the inertia forces acting on a
cargo item in an inertial reference frame it is enough
to apply the Newton's second law, provided that the
mass of the unit and the respective accelerations are

known. The accelerations can be found as the second
time derivatives of the angle of heel, the angle of
pitch, and the amplitude of heave functions.

The expressions for the angles and the amplitude
can be obtained by solving the equations for roll,
pitch, and heave. This is done on the assertion that for
the task of finding the forces of inertia the equations
for roll, pitch, and heave can be considered decoupled

[3].

2 PARAMETERS OF OSCILLATIONS

2.1 Roll

As roll is the governing factor and generates
dominant forces of inertia further considerations
proceed with the equation that define roll solving the
problem so as to find the expression for the angle of
heel 6. For this, as suggested in [4], we use the
original second-order linear differential equation that
defines the roll angle of a vessel &
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where Jx = moment of inertia of the vessel about the
longitudinal axis X-X; mx = generalized added masses
of water about the longitudinal axis X-X; g =
damping coefficient about the longitudinal axis X-X;
D = displacement of the vessel (force of gravity); ho =
transverse initial meta-centric height; yo = reduction
coefficient for the roll oscillations; ax = the apparent
frequency of the waves.

After dividing the equation (1) by the coefficient of
the highest derivative we obtain the normalised form
of the equation:
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where roll damping coefficient h:
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and eigenfrequency of the rolling vessel a:
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The expression (2) is a linear non-homogeneous
differential equation with constant coefficients, and its
solution is the sum of a particular solution &, which
describes the forced oscillation of the vessel about the
axis X-X influenced by the regular waves, and the
solutions of the corresponding homogeneous
equation, which describes own damped oscillations of
the ship.

Since the amplitude of the vessel's own damped
oscillations turns to zero rather quickly, the equation
of roll, as a stationary process, according to [4] can be
described as forced oscillations only, i.e.:
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2.2 Pitch
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Similarly to the case of roll, as it was demonstrated in
the works [3, 4] ship performs forced oscillations with
the frequency of @ while pitching. The isolated
equation of longitudinal pitching, as well as its
solution, has structure similar to the structure of the
transverse rolling equation, i.e. describes not only the
vessel's own damped oscillations, but also the forced
harmonic oscillations with the pitch frequency. This
way the expression that defining the current angle of
trim g is similarly characterized by the induced
harmonious vibrations with the pitch frequency ax:
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where ys = reduction coefficient for the roll
oscillations; ax = eigenfrequency of the pitching
vessel; hp= pitch damping coefficient.

2.3 Heave

Finally, heave is the result of the orbital motion of the
vessel on a radius equal to the half of the wave height
[3, 5]. Heave motion ¢ has harmonic character with
the frequency of oscillations ax and can be described
as follows:

¢ = ¢ sin(w,t) 5)

where ¢ = amplitude of the vertical motion induced
by the waves with the height of /:

¢, =0.,5h, (6)

3 FORMULATING THE INERTIA FORCES

The resulting expressions (3), (4) and (5) allow us to
calculate the angular accelerations of the roll and
pitch, the linear acceleration and inertia forces acting
on the cargo. From this we find the inertia forces
induced by roll, pitch and heave that act on a cargo
unit with the mass ..

The most substantial is the lateral force of inertia
of the roll Fo. It is obvious that:

where ay = linear acceleration due to roll.

In its turn, the linear acceleration ay is the product
of the angular acceleration @ by the radius of
curvature ry relative to the longitudinal axis passing
through the center of gravity of the vessel G, i.e.:

a, = ry49

Thus finding the angular acceleration 6 as the
second derivative of the roll angle by differentiating
twice the expression (3) yields:

0= -0,w}sin(ot-y)
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Successively the inertia force Fois defined as:
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The longitudinal force Fo can be derived in much
the same way, ie. F= - max where ar = linear
acceleration due to pitch.

The linear acceleration in this case is a, =,/
where r» = radius of curvature relative to the
transverse axis. The angular acceleration £ can be
obtained by differentiating the expression (4) twice:
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Therefore the force of inertia Fo is represented by
the equation:

— 2.
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The heaving force of inertia F.is formulated as

F§=-I’}’Ic§

Linear acceleration ¢ we get as the second
derivative of the expression (5):

{=~Lyosin(ayt)

Then, taking into account equation (6) we finally
put F; as:

F. =05 h,m, o7 sin(w,t) )

It is to be noted that the inertia forces Fg, Fj, and F¢
were obtained with the reference to the unperturbed
system of coordinates. Then in order to be able to
calculate the reactions in lashings of the cargo these

inertial forces and the force of gravity P. must be
projected on to the ship's frame of axes which is
inclined by the angles of heel 8 and trim S as shown
in the Figure 1.
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Figure 1. Frame of axes referenced to the unperturbed
system of coordinates.

4 REMARKS AND CONCLUSIONS

The article describes the method of deriving the
inertia forces acting on a cargo unit so these forces can
be accounted for in further calculations to determine
the maximum working load of lashings for the cargo.
The method is based on the presumption that the
linear models of roll, pitch and heave are sufficient for
the case and can be considered independent within
the scope of the problem. The resulting expressions of
the angle of heel, the angle of trim and the amplitude
of vertical motion induced by waves allow calculating
the respective angular and linear accelerations. The
inertia forces determined in the unperturbed
reference frame can be easily ported to the ship's
system of coordinates as the relation between the two
systems of coordinates is known. The obtained
functions are used by the author in his mathematical
model describing the process of safe stowage and
lashing of break bulk cargo on board a ship.
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