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1 INTRODUCTION 

The latest reports from Ding et al. [10], Ehrgott et al. 
[11, 14], and Odu et al. [40] on the use of multi-criteria 
optimization show that they occur in various areas of 
application: in medicine, agriculture, product and 
production design, financing, and the design of 
moving objects (vessels, cars, aircraft, and drones), 
wherever you need to make optimal decisions in the 
face of compromises between two or more conflicting 
goals. 

Thus, Balraj [2] presents the multi-criteria 
optimization of a rotary electrical discharge 
machining process. Cotton et al. [7] describe multi-
criteria optimization for mapping programs to multi-
processors. The use of multi-criteria optimization 
methods in radiation therapy planning is proposed by 
Craft [8]. Glavac et al. propose [16] the multi-criteria 
optimization of a car structure using a finite-element 
method. Another interesting application of multi-

criteria optimization in humanitarian aid is proposed 
by Gutjahr et al. [17]. Hirsch et al. [19] present a multi-
criteria optimization approach to the design and 
operation of a district heating supply system over its 
life cycle. The application of multi-criteria analysis 
methods for the determination of priorities in the 
implementation of irrigation plans are described by 
Karleusa et al. [21]. Maniowski [34] proposes the 
multi-criteria optimization of chassis parameters of 
Nissan 200 SX for drifting competitions. Multi-criteria 
optimization and its application to earthwork 
processes is presented by Paulovicova [41]. Sheikus et 
al. [48] describe the static optimization of rectification 
processes using mobile control actions. A multi-
criteria optimization technique for SSSC-based power 
oscillation dumping controller design is proposed by 
Swain et al. [53]. Tahvili [55] presents the multi-
criteria optimization of system integration testing. 
Roy [47] describes a multi-criteria supporting 
decision. 
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Analyses included in the literature [1, 8, 13, 38, 42, 
43, 47, 52] show that multi-criteria optimization plays 
an important practical role, e.g., maximizing profit 
while minimizing production costs, maximizing 
efficiency while reducing the fuel consumption of a 
moving object, or reducing the weight of a device 
while increasing the strength of its individual 
components. 

At the end of the eighteenth century, the English 
philosopher and economist Jeremy Bentham [3] 
formulated the following utilitarian principle: "The 
greatest utility for the largest number of criteria". He 
promoted the principle of utility as a standard for 
proper action on the part of governments and 
individuals. Actions are acceptable when they are 
aimed at promoting happiness or pleasure, and 
rejected when they tend to cause unhappiness or pain. 
By combining these criteria, we are actively trying to 
promote overall happiness. 

The literature [9, 13, 23] shows that when 
implementing these requirements, very often there are 
contradictions, i.e., in a given space of decision 
variables, individual criteria cannot simultaneously 
achieve their extreme values, and their participation is 
measured by a weight factor. 

Among all technical objects, moving objects 
constitute a significant amount, for which the method 
of controlling their movement significantly affects 
both the operating costs and the accuracy and safety 
of the transport tasks. This applies to land, sea, and air 
objects in terms of manned and unmanned facilities. 
Remote sensing devices, such as radar, lidar, and 
other highly specialized measurement solutions are 
used to identify detection processes and control 
moving objects. When planning and implementing the 
motion control of objects, there are many possible 
acceptable solutions, from which the best or optimal 
solution should be selected.  

Different static and dynamic optimization methods 
can be used to find the optimal solution. Lazarowska 
[27] presents a multi-criteria trajectory base path 
planning algorithm for a moving object in a dynamic 
environment as an intelligent control system. 

Summarizing the literature review, in the scientific 
studies conducted so far, the encountered moving 
objects have been treated as a limitation of the process 
state, and not as control objects [22, 25, 26, 28, 32, 33, 
39, 51, 54, 57]. There is the possibility that active 
control of the encountered objects leads to cooperative 
or non-cooperative game control. In the work of [31], 
a game control method comparison was made when 
avoiding collisions with multiple objects using radar 
remote sensing, ensuring the lowest final payoff of the 
positional or matrix game, only in the form of the 
amount of deviation of the safe route of the cruise 
from the set trajectory. 

The purpose of this article is to extend the 
scientific analysis of the single-criteria optimization of 
the final payoff to the two-criteria optimization of the 
final payoff, consisting of both the final deviation 
from the set trajectory and the final risk of collision. In 
order to determine a compromise between these two 
criteria, a comparative analysis of the six most 
frequently used methods of multi-criteria static 
optimization was performed. 

The article presents an original scientific topic, 
previously unpublished, assigned to the scientific 
discipline - automation, electronics and electrical 
engineering, concerning the synthesis of systems for 
safe and optimal ship traffic control with the use of 
artificial intelligence methods and game theory. 

2 MULTI-CRITERIA STATIC OPTIMIZATION 
TASK 

Multi-criteria optimization is the most natural method 
of inference, consisting of determining the optimal 
solution and its acceptability from the point of view of 
the adopted criteria. When implementing these 
criteria, there are most often contradictions that, in a 
given space of decision variables, individual criteria 
cannot reach their extreme values at the same time. 
Then, there is a need to find a compromise solution. 

2.1 Control Quality Index 

The synthesis of the optimal control of moving objects 
is most often carried out as convex optimization, a 
special class of mathematical optimization problems 
that covers least squares and linear programming 
problems, and can be solved numerically very 
efficiently. According to Boyd and Vandenberghe [5], 
a mathematical optimization problem has the 
following form: 

( )minimize F x  (1) 

( )subject to 0, 1,2,...,sg x s S =  (2) 

( ) 0; 1,2,...,wh x w W= =  (3) 

to describe the problem of finding an x that minimizes 
F(x) among all x that satisfy conditions (2) and (3). 

We call x  Rn the optimization variable, and 
function F: Rn→R is the objective function or cost 
function. The inequalities gs(x)  0 are called 
inequality constraints, and the corresponding 
functions gs: Rn→R are called the inequality constraint 
functions. The equations hw(x)=0 are called the 
equality constraints, and the functions hw: Rn→R are 
the equality constraint functions. The set of points for 
which the objective and all of the constraint functions 
are defined is as follows: 

1 1

S W

s w

s w

D dom g dom h

= =

=   (4) 

which is called the domain of the optimization 
problem (1). A point x  D is feasible if it satisfies the 
constraints gs(x)  0, s = 1, …, S and hw(x)=0, w=1,…, 
W. Problem (1) is said to be feasible if at least one 
feasible point exists, and is infeasible otherwise. The 
set of all feasible points is called the feasible set or the 
constraint set. 

The optimal value F* of problem (1) is defined as 
follows: 

( ) ( ) ( ) * inf | 0, 1,..., , 0, 1,...,s wF F x g x s S h x w W=  = = =  (5) 
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The task of multi-criteria optimization is to find 
such a vector of decision variables, x, as shown in the 
following equation: 

1 2[ , ,..., ,..., ]; 1,2,...,i Nx x x x x i N== =  (6) 

which optimizes the vector of the decision objective 
function F as a control quality index: 

( )
1

( ), 1,2,...,

C

c c

c

F x k F x c C

=

= =  (7) 

where kc is the weight factor for the Fc component of 
the control objective function, taking into account 
both its percentage share and the physical units of the 
components themselves. 

2.2 Pareto Optimal Front 

The well-known 80/20 rule states that 80% of the 
results come from only 20% of the causes, in other 
words, more modest means can be achieved with less 
effort. The development of this principle was made in 
1897 by Italian economist Vilfred Pareto.  

The definition of a set of optimal Pareto points in 
the space of variants can be expressed as follows, "A 
given variant is Pareto optimal if none of its grades 
can be corrected without worsening at least one of the 
others". 

According to the considerations of Messac et al. 
[37], the set of non-dominated solutions from the 
entire permissible search space is called the optimal 
set in the Pareto sense, and these solutions form the 
so-called Pareto front. The solutions from this set are 
not dominated by any others, so in this sense, they are 
optimal solutions for the problem of multi-criteria 
optimization.  

Eshenauer et al. [12] show that as the non-Pareto 
optimal variants can be improved for all criteria, the 
introduction of the optimal Pareto concept reduced 
the problem of finding a solution to a task with 
multiple criteria for selecting a point from this set. 

3 GAME CONTROL OF SHIP 

As an example of a multi-criteria static optimization 
task, one can consider the process of game control of 
the ship in situations of passing many encountered 
objects, which is illustrated in Figure 1. 

 

Figure 1. Block diagram of the system for the game control 
of the ship in collision situations: pr—reference trajectory; 
p—real position of ship; ψr—reference course; α—rudder 
deflection; z—disturbances (wave, wind, and sea current); 
ψ—ship course; V—velocity of ship 

Ship controlling their movement by means of 
course and speed changes are characterized by the 
mutual distance and bearing from the ARPA radar 
remote sensing system, allowing for determining the 
risk of collision. The task of two-criteria static 
optimization of the ship safe trajectory is to look for 
the minimum final payoff value of the control 
objective function: 

2

1 1 2 2 1 2 min

1

c f f

c

F F k F k F k r k d F

=

= = + = + =  (8) 

where rf (%) is the final value of risk collision; df (m) is 
the final deviation of ship safe determined route from 
the set trajectory, shown in Figure 1; and k1 (%-1) and 
k2 (m-1) are sought compromise values of solutions to 
the static optimization problem. 

According to the author of [31], the ship collision 
risk is defined as a reference to two assessments of the 
navigation situation, shown in Figure 2. The first 
assessment contains the parameters Djmin and Tjmin of 
the real situation of the proximity of the objects. The 
second assessment concerns the same situation, but 
the safety is determined by parameters Ds, Ts, and Dj. 
Thus, this reference has three relative elements, 
namely, Djmin/Ds, Tjmin/Ts, and Dj/Ds, all of which are 
proposed to express the risk of collision, rj, as the 
following mean square form of these three relative 
elements: 
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 (9) 

where ε1, ε2, and ε3 are the weighting factors, 
depending on the visibility at sea and the intensity of 
marine traffic. 

 

Figure 2. Displaying the situation of passing ship with 
encountered objects, in particular with the j-th object; ψ—
ship course; V—velocity of ship; ψj—j-th object course; Vj—
velocity of j-th object; Xr, Yr—ship reference coordinates; 
pr—reference position of ship; Dj —distance to j-th object; 
Nj—bearing to j-th object; Djmin—distance of the closest point 
of approach; Tjmin—time to the closest point of approach; 
Ds—a safe distance of approach 

Figure 3 illustrates an example of set of acceptable 
solutions of the task of safe control of the ship in a 



458 

situation of passing a larger number of encountered 
objects as a task of two-criteria optimization of control 
due to the risk of collision and deviation from the set 
motion trajectory. The Pareto-optimal front shape is 
shown as a set of non-dominated solutions to the 
game control task due to the final payoff value of the 
control objective function, which consists of the final 
value of risk collision and the final deviation of the 
ship safe determined route from the reference 
trajectory. 

 

Figure 3. Front Pareto multi-criteria optimization of the ship 
game controlling while safe passing the encountered 
objects: F1 = rf (%)—value of the final collision risk; F2 = df 

(m)—value of the final deviation trajectory 

4 MULTI-CRITERIA STATIC OPTIMIZATION 
METHODS 

Many practitioners [4, 15, 20, 24, 29, 30, 50] have 
worked for many years to answer the question of 
whether the optimal Pareto point is the best 
optimization method.  

The methods of solving this task can be 
distinguished by the following: Bentham's 
utilitarianism rules (UR), Rawls' principle of justice 
principle (JP), Salukvadze reference point (RP), 
Benson weighted sum (WS), Haimes ε-restrictions 
(εR) and Goal programming (GP). 

4.1 Bentham’s Utilitarianism Rule UR Method 

The use of the J. Bentham [3] principle allows for 
accepting the criterion of the sum of the partial Fc 
criteria (Figure 4). 

First, lines with a constant value of the sum of the 
components of the objective function were drawn. 
Then these lines were shifted in parallel in the 
direction of decreasing the value of this sum of 
components. The last line, tangent to the Pareto-
optimal front, marks the point of the UR of the two-
criteria optimality of the safe passing of the ship while 
passing the encountered objects.  

The coordinates of this point determine the values 
of the weighting coefficients k1 and k2 of the 
components of the final payoff value of the control 
objective function. The location of the UR point in the 
k1 and k2 coordinates system allowed to assess the 
compromise of the quality of safe control of the ship 
between the risk of collision and deviation from the 
set cruise route, convertible into the costs of transport 
operating and the time obligations of the shipowner. 

 

Figure 4. The sum of partial criteria according to J. Bentham, 
and the optimal solution Bentham's utilitarianism rule (UR) 
on the Pareto front; weighting values of optimal game final 
payoff: k1=13.9 %-1, k2=0.007 m-1 

The sum of partial criteria according to J. Bentham, 
and optimal solution Bentham's utilitarianism rule 
(UR) on Pareto front; weighting values of optimal 
game final payoff: k1=13.9 %-1, k2=0.007 m-1. 

 

Figure 5. Optimal ship trajectory while safely passing 19 
encountered objects for the Bentham's utilitarianism rule UR 
method multi-criteria optimization of the final payoff value 
of the control objective function: rf = 24 %; df = 150 m; 

min 334.65URF =  —minimum value of objective function (8) 
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4.2 Rawls' Principle of Justice JP Method 

In 1971, American philosopher John Rawls formulated 
[44] the following principle of justice, "Least usability, 
as big as it can". In his theory, Rawls refers to the 
principle of "Justice as Fairness"—the distribution of 
goods is justice (just) if it is impartial (fair), i.e., if it 
offers everyone the same opportunities. Figure 6 
presents the principle of max-minimization of J. 
Rawls. 

 

Figure 6. The max-minimization of partial criteria according 
to J. Rawls, and the optimal solution on the Pareto front; 
weighting values of optimal game final payoff: k1=5.0 %-1, 
k2=0.052 m-1 

The position of the optimal point on the Pareto-
optimal front results from the condition of the 
minimum value of the logical sum of the components 
of the control objective functions. 

Figure 7 shows the results of a computer 
simulation of the optimal controlling own object while 
passing 19 encountered objects, using the Rawls' 
principle of justice JP method on the Pareto front. 

 

Figure 7. Optimal ship trajectory while safely passing 19 
encountered objects for the Bentham's utilitarianism rule JP 
method multi-criteria optimization of the final payoff value 
of the control objective function: rf = 9 %; df = 1037 

m;
min 98.91JPF = —minimum value of two-criteria objective 

function (8) 

The appointment of a fair solution, according to J. 
Rawls, is a more difficult issue than finding a solution 
when using the aggregate criterion for choosing a 
weighted sum. 

4.3 Salukvadze Reference Point RP Method 

In 1971, the Georgian automatist Mindia E. 
Salukvadze [48] proposed an approach based on the 
concept of a reference point, namely, "In the Pareto 
collection, the nearest point in relation to the reference 
point is sought", presented by Stadler [49]. The Pareto 
collection looks for the nearest point in relation to the 
reference point.  

Salukvadze proposed the intersection point 
tangent as a point of reference to the set of acceptable 
solutions (Figure 8). 

 

Figure 8. An approach using a reference point, according to 
M. E. Salukvadze, and an optimal solution on the Pareto 
front; weighting values of optimal game final payoff: k1=5.1, 
k2=0.05 

The Salukvadze reference point method was 
developed by Wierzbicki [58, 59], who developed the 
mathematical foundations of reference point methods 
based on the conical separation of sets. 

Figure 9 shows the results of a computer 
simulation of the optimal controlling the ship while 
passing 19 encountered objects, using the Salukvadze 
reference point RP method on the Pareto front. 
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Figure 9. Optimal ship trajectory while safely passing 19 
encountered objects for the Salukvadze reference point RP 
method multi-criteria optimization of the final payoff value 
of the control objective function: rf = 12 %; df = 1000 
m; min 111.21RPF =  —minimum value of the two-criteria 
objective function (8) 

4.4 Benson Weighted Sum WS Method 

In the method of the American computer scientist 
Harrold Phillip Benson, described in 1988, the metric 
is used to measure the distance of the tested solution 
from an ideal solution that meets all of the criteria. In 
the literature [35, 36, 46], it is shown that minimizing 
the distance between the ideal solution and the tested 
solution allows for finding to the best solution 
belonging to the set of acceptable solutions. 

The initial solution is randomly selected from 
among the acceptable solutions to the problem.  

The graphical interpretation of this method is the 
search for a tangent to the permissible set, inclined at 
an angle determined by the weight coefficients w (w1 
and w2). The vector W, formed from the w coefficients, 
is perpendicular to the tangent sought, and the 
solution is the common points of the set edge and 
tangent.  

This method, with a correctly drawn starting point, 
can find the optimal Pareto solutions, even for non-
convex decision spaces. One of the disadvantages of 
this solution is the non-differentiable purpose 
function. In this case, you cannot use gradient-based 
methods to solve this problem (Figure 10). 

The advantage of this method is the ability to find 
all Pareto optimal solutions when determining the 
abstract ideal (abstract) solution. The disadvantage of 
this method is the need to normalize the objective 
function, which is not always an easy task. In 
addition, an ideal solution should be determined, 
which requires the optimization of each criterion 
separately. Using this method as the a'priori method, 
the task of the decision-maker is to provide an ideal 
point, which, in many cases, can be determined 
intuitively, based on knowledge of the decision 
problem. 

 

Figure 10. The Benson weighted sum method and the 
optimal solution on the Pareto front; weighting values of 
optimal game final payoff: k1=7.9, k2=0.03 

Figure 11 shows the results of a computer 
simulation of the optimal controlling the ship while 
passing 19 encountered objects, using the Benson 
weighted sum WS method on the Pareto front. 

 

Figure 11. Optimal ship trajectory while safely passing 19 
encountered objects for the Benson weighted sum WS 
method multi-criteria optimization of the final payoff value 
of the control objective function: rf = 17 %; df = 593 m; 

min 149.69WSF = —minimum value of the two-criteria objective 
function (8) 

4.5 Haimes ε-Restrictions εR Method 

The method developed by Yacov Y. Haimes [18] in 
1971 consists of selecting one of the criterion functions 
as a function of the goal and creating constraints from 
the other criteria functions. The most important 
criterion to be optimized is selected, assuming that the 
values of the other criteria meet the minimum 
assumed requirements (Figure 12). 
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Figure 12. The Himes method of ε-restriction and optimal 
solution on the Pareto front; weighting values of optimal 
game final payoff: k1=2.53, k2=0.128 

Figure 13 shows the results of a computer 
simulation of the optimal controlling the ship while 
passing 19 encountered objects, using the Haimes ε-
restrictions εR method on the Pareto front. 

 

Figure 13. Optimal ship trajectory while safely passing 19 
encountered objects for the Haimes ε-restrictions εR method 
multi-criteria optimization of the final payoff value of the 
control objective function: rf = 3 %; df = 2481 m; 

min 325.16RF  = —minimum value of the two-criteria objective 
function (8) 

The advantages of this method are finding 
different optimal Pareto solutions using different 
values for the ε parameter. The main advantage of this 
approach over the weighted sum method is the ability 
to find a solution belonging to the set of Pareto-
optimal solutions when the problem space is both 
convex and concave. However, the disadvantage of 
such a solution is the significant dependence of the 
result on the selected parameter ε and the original 
optimization function. In some cases, the wrong 
choice of parameters for this method may not find any 
solution or may give the entire searched domain as a 
solution. However, the most important problem of 

this method is the fact that in reality, a simple one-
criterion problem is solved on the basis of only one 
parameter, after the prior elimination of solutions that 
do not meet the ε criterion. 

4.6 Goal Programming GP Method 

The goal programming method [6] consists of 
replacing a multi-criteria task with the following task: 

min min

( )

x

K K K

F

F x w c





=

− 
 (10) 

where (c1, c2, ..., cK) represent the coordinates of the C 
point defining the purpose of the search, and (w1, w2, 
..., wK) are the coordinates of the vector W, defining 
the direction of the search. 

Then, according to the authors of [45, 56], the task 
is reduced to searching for the C point from the set of 
acceptable solutions, in which the values of the 
criteria are closest to some of the ideal values 
determined by the coordinates (c1, c2, ..., cK). 

The optimal search is carried out in the criterion 
space, starting from point C in the direction 
determined by vector W. The solution is a rectangular 
point with sides parallel to the system axis, a lower 
left corner at point C, and a diagonal parallel to the 
vector W (Figure 14). 

 

Figure 14. The method of goal programming and the 
optimal solution on the Pareto front; weighting values of 
optimal game final payoff: k1=3.52, k2=0.075 

The coordinate values of point C (c1 and c2) come 
from the person making the arbitrary decision. The 
choice of vector components W (w1 and w2) 
determines the importance of the individual 
optimization criteria. 

Figure 15 shows the results of a computer 
simulation of the optimal controlling the ship while 
passing 19 encountered objects, using the goal 
programming GP method on the Pareto front. 
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Figure 15. Optimal ship trajectory while safely passing 19 
encountered objects for the goal programming GP method 
multi-criteria optimization of the final payoff value of the 
control objective function: rf = 7 %; min 132.94GPF =  —
minimum value of the two-criteria objective function (8) 

5 COMPARISON OF METHODS 

Figure 16 shows a comparison of the multi-criteria 
optimization methods of the object traffic control 
process at the reference trajectory. 

In the case of safe control of an object in collision 
situations, the most optimal compromise solution for 
two-criteria optimization tasks is the Rawls principle 
of justice (JP) method, i.e., controlling the movement 
of the ship, ensuring both a small final deviation in 
the cruise route and a small final risk of collision, 
providing the smallest value of the control objective 
function. But in other tasks of multi-criteria optimal 
control, depending on the shape of the Pareto-optimal 
front, there may be another better method, among the 
six presented in the article. 

The most extreme optimal solutions to this 
problem are provided by the Haimes ε-restrictions 
(εR) and Bentham utilitarianism rule (UR) methods. 

The Haimes ε-restrictions (εR) and goal 
programming (GP) methods provide the lowest final 
risk of collision, but with a large final cruise route 
deviation. The weighted sum (WS) and utilitarianism 
(UR) methods provide the highest final collision risk 
within the allowable range, but with the smallest 
deviation from the prescribed voyage route. 

The degree of cooperation in the anti-collision 
maneuvers between objects has a significant impact on 
the value of the final optimal solution. 

 

Figure 16. Comparison of multi-criteria optimization 
methods of the ship game control process in collision 
situations: εR—ε-restrictions; GP—goal programming; RP—
reference point; JP—justice principle; WS—weighted sum; 
UR—utilitarianism rule; F1 = rf—the final collision risk; F2 = 
df—the final deviation trajectory; Fmin—minimum value of 
the two-criteria objective function (8) 

6 CONCLUSIONS 

The methods of static multi-criteria optimization 
presented here constitute the most described part of 
all of the multi-criterial optimization methods. The 
differences in the value of the determined optimum 
are the most dependent on the shape of the Pareto 
front of the specific optimization task. 

Commonly accepted solutions for multi-criteria 
optimization tasks are sets bringing the front of Pareto 
optimal solutions closer. The basis for building 
approximate collections is the relation of domination 
in the sense of Pareto. It allows for introducing a 
partial order in the set of assessments of acceptable 
solutions and for selecting from the non-dominant 
solution assessments in order to build approximate 
sets. The size of the approximate set is not specified 
and, in practice, contains many assessments of 
equivalent solutions, without objective possibilities to 
indicate the best solution or the best solutions in the 
approximate set.  

The relation of the dominance of solution 
assessments can be extended to approximate sets and 
can be used to determine the relation of the 
preferences of approximate sets, and thus to the 
preliminary assessment of the quality of approximate 
sets or the effectiveness of the optimizers that were 
used to obtain these sets. 

In summary, traditional multi-criteria optimization 
methods are still very popular. This is because they 
give good results when finding potential solutions for 
a small number of solutions in the sense of Pareto, and 
also because knowledge about them and the 
availability of materials is currently widespread. 
Nevertheless, these methods are not without flaws. 
For a small amount of the optimal sets they do quite 
well, however, a larger set causes a significant 
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increase in the cost of calculations. This is because, 
usually, traditional methods need to be run several 
times to determine the optimal Pareto set. In addition, 
some techniques, such as the weighted criteria 
method, are sensitive to the shape of the Pareto-
optimal front.  

Despite the constant popularity presented in the 
article traditional multi-criteria optimization methods, 
in many problems, evolutionary algorithms are 
increasingly becoming their alternative. This is 
because they are better at dealing with a potentially 
large number of solutions in the Pareto sense. 

This review of methods does not exhaust all of the 
issues related to multi-criteria optimization, especially 
regarding moving objects—land, air, and sea—in 
terms of manned and unmanned vehicles. 

Future works could also consider methods of 
multi-criteria dynamic optimization. Particular 
attention should also be paid to the multi-criteria 
optimization of differential games problems related to 
the motion control of many moving objects. 
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