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1 INTRODUCTION 

Among many logistical problems, appearing during 
cargo transportation, there is always a form of route 
rationalization problem. Whether it is a land 
transportation by means of rail or road transport, or a 
maritime transportation, or even an air 
transportation, it necessary to find optimal route for 
moving cargo from point A to point B. Building a 
supply chain may involve solving this problem 
repeatedly for many iterations [1]. Thus, it is very 
important to have an instrument, supporting the 
decision making process, when it comes to route 
rationalization. 

In maritime container cargo transportation, it is 
crucial to build economically stable closed vessel 
routes. Container vessels should be able to perform a 
round trip and return to the initial port, having 
delivered as many containers as possible, while also 
having spent least possible time to perform a trip and 
using shortest routes. 

It is possible to reduce a route rationalization 
problem in its general form down to a classic 

travelling salesman problem (TSP). The criterion for 
solution optimality may be length of a route, time of 
cargo transportation by a certain route, amount of 
fuel consumed, etc. A classic TSP implies that a 
salesman (in this study’s case – a vessel) has a task of 
travelling through a number of cities (sea ports), 
visiting each one only once. The problem is to find 
optimal route  

2 METHODS AND MATERIALS 

Theoretically it is possible to solve a route 
rationalization problem (or a TSP) by means of the 
most obvious brute force method. However, the 
complexity of the problem does not allow to do this 
in a sensible amount of time, due to faster than 
exponential (factorial) growth of possible outcomes 
with a polynomial growth of input. In fact, the 
travelling salesman problem is proven to be NP-hard 
[2]. This means, that there are no deterministic 
algorithms, capable of solving the problem in 
polynomial time. Thus, the only way to solve the 
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problem is to use approximating algorithms, which 
allow to find at least a proximate solution in 
polynomial time. 

There are many approaches to solving TSP using 
approximating algorithms. A number of researchers 
use particle swarm algorithms to solve TSP [3, 4]. 
Other researchers use dynamic programming [5, 6]. 
There is a vast plane of studies including the usage of 
evolutionary algorithms, specifically genetic 
algorithms [7, 8, 9]. It is also a common practice to use 
combinations of methods, such as a combination of a 
genetic algorithm with a dynamic programming [10]. 

This paper proposes the usage of a modified 
genetic algorithm. The core of the algorithm has 
already been proposed in a previous study by the 
authors [11]. This study considers improved version 
of the proposed algorithm and highlights some of the 
performance results of the algorithm. 

Any classic genetic algorithm consists of the 
following steps: 
1 initialization; 
2 selection; 
3 genetic operators (usually crossover and 

mutations); 
4 termination. 

Steps 2 and 3 are repeated until a certain condition 
is met or a certain amount of algorithm steps is 
performed, which calls the function of termination. 

Optimality criterion for each solution is abstract 
distance between points (in this study’s case sea 
ports). In terms of genetic algorithms theory 
optimality criterion is called a fitness function, and is 
calculated for each solution on each step of algorithm. 
Each sea port has its X and Y coordinates, which 
allows to calculate the distance between each two 
ports, using (1): 

( ) ( )
2 2

,i j i j i jD x x y y= − + −  (1) 

This allows to build distance matrix, which 
includes distances between all pairs of sea ports. 

A possible solution for a vessel route 
rationalization problem is a sequence of vessel’s ports 
of call arranged in a certain order. The sequence 
should always be closed, i. e. the initial port should 
be the same as the final port, and there should not be 
any reoccurring ports. A classic crossover operator is 
not applicable to this problem, because of the way the 
genetic inheritance works. Parent solutions provide 
parts of their port sequences, but they do not 
consider, that these parts may repeat in children 
solutions. This is illustrated on Fig. 1, a. 

The algorithm, suggested by authors, builds 
around splitting solutions in two parts: heads and 
tails. Each solution provides two children: one with 
the head of its parent and the other one with the tail 
of its parent. Missing parts of children are then 
generated randomly out of the number of missing 
ports. This ensures that no port in a solution sequence 
is repeated twice. The proposed algorithm is 
illustrated on Fig. 1, b. 

 

a) 

 

b) 

  

Figure 1. Port inheritance: a — classic GA; b — chimerical 
GA. 

In order to keep the size of solution population 
constant the two resulting chimera children are 
compared based on their fitness functions. The best 
out of two solutions is selected to be carried to the 
next generation, the other one is destroyed. 

In previous research the chimerical GA (hence the 
chimera children used in genetic operators stage of 
the algorithm) was prototyped using means of VBA 
and MS Excel. A more advanced model was built in 
AnyLogic 6. The current version of the algorithm is 
built in Visual Studio Community Edition 2019 as a 
console application written in C#. This allowed to 
build a more open source application, as it is not 
constrained by licenses of certain software. 

The application is controlled by a number of 
console-typed commands, including commands for: 
− generating ports and locating them (inputs are 

number of ports and X and Y coordinates); 
− generating initial solution population (input is 

size of population); 
− running chimerical GA (inputs are percent of 

mutations and number of algorithm steps 
(generations). 

a) 

 

b) 

 

Figure 2. Console view examples: a — distance matrix 
output example; b — chimera GA step example. 

In test mode the optimal fitness function is known 
beforehand, as all the ports are situated in a shape, 
closest to a circle. The resulting polygon’s perimeter 
is the optimal solution. Termination condition is met 
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when a solution’s a fitness function equals to optimal 
fitness function. 

Examples of a distance matrix for 10 ports and of 
GA step output for 12 ports are presented on Fig. 2. 

3 RESULTS 

Several strategies were tested with the algorithm. 
Table 1 and Fig 3. provides results for comparing two 
particular strategies. Strategy 1 considers constant 
size of solution population and a 15% chance of 
mutations on each step of the algorithm. Strategy 2 
considers making size of population equal to the 
number of sea ports, while chance of mutations 
equals to 10%. 

 
Figure 3. Comparison of strategies for running chimerical 
GA 

The table and figure above show that the speed of 
the algorithm (in steps, or generations) grows with 
the size of population, which is expected. However, 
this effect may not be the same, when comparing real 
time of algorithm running. Due to larger population 
in strategy 2, each step takes longer to calculate which 
leads to longer time delays in between algorithm 
steps. Moreover, strategy 1 (with constant 12 
solutions in population) is more favorable for lower 
numbers of sea ports (12 and lower). This leads to 
strategy 3, which would suggest, that it is necessary 
to pick such sizes of populations, which are 
approximately twice the amount of sea ports. This is 
tested with 20 ports rationalization problem. 

Results of testing strategy 3 are presented on Fig. 4 
and Fig. 5. Observations were performed for each 
250000th step. 

a) 

 

b) 

  

c) 

 
Figure 4. Strategy comparison for chimerical GA for 20 
ports: a — 12 solutions, 15% mutations, b — 20 solutions, 
20% mutations, c — 40 solutions, 15% mutations. 

 

Table 1. Strategy comparison for running chimerical GA __________________________________________________________________________________________________ 
N of  Strategy 1                Strategy 2 
ports  Size of   %    Steps (generations)    Size of   %    Steps (generations) 
   population  mutations to find optimal solution  population  mutations to find optimal solution __________________________________________________________________________________________________ 
5   12     15%     2        5     10%     1 
6   12     15%     2        6     10%     15 
7   12     15%     3        7     10%     37 
8   12     15%     6        8     10%     69 
9   12     15%     11        9     10%     83 
10   12     15%     37        10     10%     23 
11   12     15%     163       11     10%     166 
12   12     15%     199       12     10%     291 
13   12     15%     1343       13     10%     1457 
14   12     15%     4003       14     10%     3071 
15   12     15%     7089       15     10%     2599 
16   12     15%     117448      16     10%     52255 
17   12     15%     155089      17     10%     75748 
18   12     15%     143562      18     10%     139670 
19   12     15%     696619      19     10%     327347 __________________________________________________________________________________________________ 
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It is seen from the figures, that in all three cases the 
algorithm fluctuates around some mean value, finding 
solutions with higher and lower fitness function. 
However, those mean values are different and the 
larger the size of population, the closer the mean 
value becomes to the optimal solution. Moreover 
strategy 3 allowed to find a considerably close 
solution to the optimal one with fitness function of 
686 miles, while the optimal fitness function is 625 
miles. Best found solutions are shown on Fig. 5. 

 

Figure 5. Best solutions, found for 20 ports with chimerical 
GA 

Besides the fact, that fitness function of the best 
solution lowers with the rise of population size, the 
amount of solutions having lower fitness functions 
increases. The number of observations with sub 1000 
fitness functions is 3, 9 and 19 out of 20 for strategy 1, 
2 and 3 accordingly. 

4 DISCUSSION 

Results of this research advance further the results of 
authors’ previous research on chimerical genetic 
algorithm. It is shown, that there are many possible 
strategies to be used for running chimerical GA. It is 
as important to pick the right strategy as it is 
important to lay down the validity of the model, 
based on genetic algorithms. 

The dependency on the size of population is 
shown in the results section above. The size of 
solution population should grow with growth of 
number of sea ports for a vessel to call. The size of the 
population should be around twice the number of 
ports for reliable results to appear. However, the rate 
of performance of the model (in real-time seconds) 
should also be a consideration as well as number of 
steps needed to find optimal solution. Having too 
many initial solutions may result in significant delays 
in performance of the model. 

Results show that proposed strategy 3 (population 
size is twice the number of sea ports) is preferable not 
only because it was the closest to optimal solution 
with 20 ports, but also because it is more stable. The 
fact that nearly every observation (19 of 20) has the 
best solution with fitness function of lower than 1000, 
while other strategies have significantly less such 
observations, speaks in its favor. 

5 CONCLUSION 

A number of conclusions is made: 
1 Genetic algorithms are a common method, used 

for solving TSP, which means, that they are 
applicable for solving vessel’s route rationalization 
problem. 

2 A modification of a genetic algorithm is suggested 
with a modified crossover operator. The modified 
version of the algorithm operates with splitting a 
solution in two halves (heads and tails) and 
generating the missing half randomly. The 
modified algorithm is improved in this paper and 
is implemented with use of C# programming 
language. 

3 Tests are performed on the proposed version of the 
chimerical GA, which show the robustness and 
validity of the algorithm. 

4 Different strategies of using the algorithm are 
discussed. It is found, that the preferable strategy 
involves generating solution population with size 
twice the number of sea ports. 
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