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1 INTRODUCTION 

The problems of differential and integral calculus of 
non-integer orders – commonly known as fractional 
calculus – have been known since the days of famous 
mathematicians Gottfried Wilhelm Leibniz (1646-
1716) and Guillaume François Antoine de l'Hospital 
(1661-1704) [1–3, 10, 14–16]. However, until today, a 
description of the dynamic properties of an object by 
means of fractional calculus has not been used due to 
the barriers resulting from the lack of appropriate 
calculation methods and possibilities of verifying 
them (related, among others, to the limited calculating 
potential of earlier computers). Nowadays, technical 
and calculating possibilities cause that former 
limitations have disappeared and the said problems 
can now be solved [8, 11]. There are more and more 
publications dealing with the issue of differential 
equations of non-integer orders. Majority of them, 
however, deal with theoretical aspects of the problem.  

The dynamic development of research in recent 
years on the use of fractional calculus for the analysis 
of dynamic systems has prompted the authors to use 
it in the analysis and modelling of pneumatic systems 
that have been described so far with "classical" 
mathematical analysis [4–13]. The authors of the paper 
have developed a method for describing the dynamic 
properties of pneumatic systems, based on fractional 
calculus which allows to analyse the properties of a 
wide range of pneumatic systems of any order. 

The simulation tests of the membrane pressure 
transducer, presented in the paper [13], were 
performed with the use of classical differential 
calculus and fractional calculus. In the construction of 
the mathematical model of the analysed dynamical 
system, the Riemann-Liouville definition of the differ-
integral of non-integer order was used. 

For simulation studies MATLAB were used [5, 6, 8, 
9]. In the laboratory tests, which were the verification 
of the simulation tests of the membrane pressure 
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transducer, the following assumptions were made: the 
analysed pneumatic systems were modelled as a 
linear system; the pneumatic system was described 
with a transfer function characterizing the dynamics 
of this system and the components contained therein, 
assuming constant physical parameters and omission 
of aging of its components; an assessment was 
accepted of the dynamic properties of the pneumatic 
systems in terms of amplitude and phase; pneumatic 
systems with a pressure of up to 1MPa were analysed 
while operating in the frequency range up to 500Hz; 
with the variability of the thermodynamic parameters 
of the air as a working medium, it can be treated as an 
ideal gas; in the analysis of the pneumatic systems, an 
adiabatic process was assumed whereas the pressure 
distribution in the whole volume of the measuring 
chamber was homogeneous. 

2 MEMBRANE PRESSURE TRANSDUCER 

Simulation tests of the membrane pressure transducer 
were performed using a classical and fractional 
differential calculus. The tested transducer was made 
from a pressure chamber and an inlet pipe, which 
supplied a working medium (air). To determine how 
the connection of the intake pipe to the transducer 
chamber affected its dynamic properties, the acoustic 
system shown schematically in Figure 1 is considered. 

 

Figure 1. Pressure chamber with inlet pipe: r, l - tube 
dimensions, p0 - input pressure (force ), p - pressure in 
transducer chamber  

The relationship that binds the output signal p(t) 
(pressure inside the chamber) to the signal p0(t) 
(pressure at the open end) and referring to the RLC 
electrical circuits can be represented as: 
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Constants occurring in expression (1) can be 
represented as: 
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where: 
ρ [kgm-3] - gas density; 
η [kgm-1s-1] - dynamic viscosity; 
Cp [Ns2m-5] - pneumatic capacity (gas compressibility); 
p(t) [Pa] - pressure in transducer chamber; 
p0(t) [Pa] - input pressure; 
V [m3] - transducer chamber volume; 
Lp [m3N-1] - pneumatic induction (gas inertia); 
Rp [Nsm-5] - flow resistance; 
c [ms-1] - speed of sound in the gas; 
r, l [m] - dimensions of the inlet pipe. 

By specifying the frequency ω0 and damping ratio 
ξ as: 
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where: ξ <1. 

Expression (1) finally assumes the form: 
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Equation (4) is a mathematical description of the 
dynamics of the analysed pneumatic system, using 
classical differential calculus (of integer orders). The 
impulse response of the analysed pneumatic system is 
given by: 
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The step response of the system is expressed by: 
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Given that the derivatives of integer orders in the 
fractional calculus are a special case of fractional 
derivatives, equation (4) can be written as: 
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where v>0. 

In order to determine the pressure in the 
transducer chamber, the definition of Riemann-
Liouville differ-integral of non-integer order was 
used, defined by a following formula (9): 
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where: 
α – the order of integration within bounds (a, t) of the 
function f(t), k-1≤a≤k and α  R+ and Γ - Euler's 
gamma function.  

The Laplace transform for a fractional derivative 
defined by Riemann-Liouville takes the form: 
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where j-1≤α≤j  N. 

The practical application of the formula 
determining the Laplace transform of a Riemann-
Liouville fractional derivative faces some difficulties 
related to the lack of physical interpretation of the 
initial values of successive derivatives of fractional 
orders. Assuming zero initial conditions, the 
difficulties associated with their physical 
interpretation will be eliminated. 

Using the Laplace transform to equation (8), for 
zero initial conditions, we obtain: 
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Thus the transfer function of non-integer order of 
the analysed pneumatic system is obtained: 
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Transfer function denominator of non-integer 
order has two complex roots as the system damping is 
ξ < 1.  

3 IMPULSE RESPONSE TO THE MEMBRANE 
PRESSURE TRANSDUCER 

By transforming expression (12), we obtain 
G(v)(s)=p(s)/p0(s) such that [12, 13]: 

( ) ( )
2

0

22

00

2

0

1

2
1

2

v

v v

v v

G s
s s

s s







= 
+

+
+

 (13) 

Using the properties of the geometric series, we 
obtain: 
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Conducting elementary transformations, we 
obtain: 
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Using the formula: 
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we obtain: 
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where: 

( ) ( )

( )
,

0

!

!

n
k

n

n k t
E

n n k
 

  



=

+
=

 + +
  (18) 

The simulation of the pressure impulse response in 
the transducer chamber required a program to be 
written in the MATLAB environment. The program 
for the given parameters and derivative orders 
calculates the function values and draws out their 
impulse response. We present, for comparison, the 
graphs of the function obtained for the classic solution 
(v=1) and for several fractional orders. 

 

Figure 2. Impulse response of a pneumatic transducer 
described with an integer and non-integer order: F0,5 for 
v=0.5, F0,7 for v=0.7, F0,9 for v=0.9, F1,0 for v=1, C2 - classical 
model (integer order). 

In Figure 2, the impulse response of the analysed 
pneumatic transducer was determined by simulating 
equation (17) for the selected parameter values: F0,5 for 
v=0.5, F0,7 for v=0.7, F0,9 for v=0.9 and F1,0 for v=1. 

The impulse response (characteristics C2 in the 
above figure) was also presented, by simulating a 
computer equation (5) which is a mathematical model 
of the analysed pneumatic system, with the use of a 
classical differential calculus (described by ordinary 
differential equation). It is worth noting that while 
reducing the row, it reduces the response time, which 
is desirable in measuring transducers. 
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4 STEP RESPONSE OF THE MEMBRANE 
PRESSURE TRANSDUCER 

The step response of the tested transducer is defined 
by the relationship: 
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Using the properties of geometric series, we obtain  
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Conducting elementary transformations, we 
obtain: 
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Using the formula (16), we obtain: 
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in which ( )
,

k
E 

 is the Mittag-Leffler function defined 
by the equation (18). 

 

Figure 3. The step response of the pneumatic system: F0,5 for 
v=0.5, F0,7 for v=0.7, F0,9 for v=0.9, F1,0 for v=1, C2 - classical 
model (integer order). 

Running a simulation of a pneumatic transducer, a 
unit step signal was applied and the received step 
response is shown in Figure 3. 

The model described by equation (17) and (22) 
correctly reproduces the amplitude of the input signal 
as the classical model - the graphs coincide (graph F1,0 
- the parameter v=1 coincides with C2 – the classical 
model). This confirms the correctness of the method 
and that the differential calculus with derivatives of 

integer orders is a special case of fractional calculus. 
The step response (Figure 3) shows that regardless of 
the differential order, the amplitude of the signal is 
constant. The smaller the order of the derivative leads 
to the faster the reaction of the system to the unit step. 

5 FREQUENCY RESPONSE OF THE MEMBRANE 
PRESSURE TRANSDUCER 

In order to determine the relationships describing the 
frequency response, the spectral transfer function of 
the tested transducer was determined [6, 9]. 
Substituting (23): 
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to the formula (12), the spectral transfer function of 
the transducer is obtained: 
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By making elementary transformations, the real 
and imaginary part of the spectral transfer function 
was calculated: 
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Knowing the real and imaginary part of the 
spectral transfer function of the transducer, one can 
determine the equation describing the logarithmic 
amplitude characteristic: 
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and the equation describing the logarithmic phase 
step: 
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In order to verify the relationships describing 
logarithmic steps of amplitude (27) and phase (28) of 
the tested transducer, the pneumatic pressure 
transducer was modelled in the MATLAB 
environment, described by means of ordinary 
differential equation and differential equation with 
derivatives of non-integer order. Describing the 
transducer with the use of a differential equation of 
non-integer orders, the parameter v=1 was assumed 
and the obtained logarithmic amplitude and phase 
steps were compared to the logarithmic amplitude 
and phase steps obtained from the transducer 
description by means of the ordinary differential 
equation. 

The transfer function of the pneumatic pressure 
transducer, calculated from the ordinary differential 
equation, has the form: 
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By performing the simulation of equation (29) 
which presents the dynamics of the phenomena 
occurring in the analysed pneumatic system, in the 
MATLAB programming environment, the frequency 
response presented in Figure 4 was obtained: 

 

Figure 4. Logarithmic frequency response of the transducer 
described by the ordinary differential equation 

When simulating equations (27) and (28) in the 
MATLAB environment which describe a pneumatic 
pressure transmitter by means of a differential 
equation of non-integer order, assuming a coefficient 
v=1 for damping ξ=0.8, the response shown in Figure 
5 was obtained: 

 

Figure 5. Logarithmic frequency response of a pneumatic 
transducer described by means of a differential equation 
with non-integer order for v=1 (equation 27 and 28) 

Logarithmic frequency response of amplitude and 
phase presented by the simulation of ordinary 
differential equation (Figure 4), coincide with 
frequency response obtained by the simulation of the 
equations describing logarithmic response of 
amplitude (27) and phase (28), obtained from the 
equation of the transducer described with the help of 
non-integer orders (figure 5) for the parameter v=1. 

In order to obtain a Bode plot, the equations (27) 
and (28) were simulated by writing an appropriate 
program in the MATLAB environment. Written in the 
MATLAB environment, the program allows analysing 
the transducer for different orders of derivatives, with 
any step, because the order was given as a parameter. 
The simulation results for the selected values of 
parameter v are shown in Figure 6 and Figure 7. 

 

Figure 6. Logarithmic amplitude response of a pneumatic 
transducer described by means of differential equation with 
fractional derivatives of non-integer orders in the range (0.8-
1.2) 
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Figure 7. Logarithmic phase response of a pneumatic 
transducer described by means of differential equation with 
fractional derivatives of non-integer orders in the range (0.8-
1.2) 

The analysis of the responses shows that for the 
parameter v<1, the logarithmic amplitude responses 
(Figure 6) are monotonically decreasing functions. For 
the parameter v>1, the logarithmic amplitude 
responses have a maximum depending on the order of 
the differential. The maximum is achieved with 
resonant frequency ωR=110rad/s. 

Increasing the order of derivative, the frequency 
responses acquire the character of a second-order 
oscillatory element, and while decreasing the order of 
the derivative, the responses acquire the character of 
the first order inertial element. 

Decreasing the order of the derivative causes the 
transducer to become more linear, which allows the 
scope of work to be increased. 

Increasing the parameter v above one results in 
resonance, although it should not be visible in the 
response, because the simulation was carried out for 
the damping ξ=0.8. The model then does not reflect 
the real system. 

6 LABORATORY TESTS OF THE PRESSURE 
TRANSDUCER 

In order to identify the dynamics of the pressure 
transducer, the measuring system was constructed as 
it is shown in Figure 8. 

The AVL single-cylinder automatic ignition engine 
was used for testing [6, 13]. It is an internal 
combustion engine with a capacity of 511cm3, cylinder 
diameter 85.01mm and a piston stroke of 90mm. The 
measurements were made in the inlet air system to the 
engine. The air supply was provided by an additional 
system consisting of a rotary screw compressor. 
Thanks to this system it was possible to regulate the 
air pressure in the intake system. 

 

Figure 8. View of measuring station: 1 - measuring chamber, 
2 - intake manifold, 3-input pressure transducer, 4 - output 
pressure transducer 

In the air intake system leading into the measuring 
chamber, the first pressure transducer was installed. 
The second transducer was installed inside the 
measuring chamber, at the outlet of the air into the 
combustion chamber. Kulite pressure transducers, 
type ETL-189- 190M-10 BARA were used. Two 
identical pressure transducers were used in the 
system. 

The tests were performed with Concerto and Puma 
software, whose interfaces are shown in Figure 9. 

The presented measuring system allows studying 
the dynamic properties of the pressure transducer. 
The studies refer to the time and frequency analysis of 
the investigated pressure transducer described with 
integer and non-integer order. 

 

Figure 9. Interfaces of the programs for motor control and 
recording fast-changing parameters: 1 - Concerto program 
window for fast variable parameters recording (monitor 1), 
2 - Puma program window for controlling and archiving 
engine parameters (monitor 2), 3 - Puma program window 
for controlling and archiving engine parameters (monitor 3) 

In the measuring system, computers with Concerto 
and Puma software were used. The Concerto program 
allows recording fast-changing system parameters 
and recording them in time and numeric format. The 
Puma program was used to control the engine. The air 
supplied into the measuring system is provided by a 
rotary screw compressor. The engine draws air into 
the combustion chamber from the measuring system 
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by opening the valve located at the exit of the 
measuring chamber. The valve opens and closes every 
two turns of the engine crankshaft. Cyclical opening 
of the valve caused the same effect as supplying the 
system with a pneumatic rectangular signal generator, 
which allowed experimental evaluation of the step 
response of the measuring system. The step response 
of the system was determined using the Concerto 
program, and its graphic representation is shown in 
Figure 10. 

 

Figure 10. The step response of the measuring system in the 
measuring chamber and inlet tube obtained experimentally. 

The obtained graph is a step response of a typical 
oscillating element with frequency ω0 and damping 
ratio ξ. In order to identify the dynamic properties of 
the tested pneumatic system it is convenient to 
determine its transfer function. 

Knowing the dependency (30): 
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Figure 10: 
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allows determining the transfer function of non-
integer order of the analysed pneumatic system. The 
pulsatance and the damping ratio of the tested system 
can be determined directly from the obtained step 
response. The transfer function of non-integer order of 
the tested system presents the following dependence 
(32): 
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we obtain a relationship describing the step response 
of non-integer order of the analysed pneumatic 
system:  
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The equation (34) was simulated with the 
MATLAB software and as a result the step response of 
the non-integer order of the tested pneumatic system 
inside the measuring chamber was obtained, the 
graph of which is shown in Figure 11. 

 

Figure 11. The step response of the measuring system in the 
transducer measuring chamber  

The step response shown in Figure 11, resulting 
from the simulation of equation (35), for the 
parameter v=1 (F_1) coincides with the graph 
determined by means of the differential equation of 
integer order (C_1) and the graph of the step response 
obtained experimentally. This means that the model 
has been correctly designated. Decreasing the order of 
the derivative causes a decrease in the amplitude of 
the step response. 
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The spectral transfer function of non-integer order 
of the tested transducer was obtained by using the 
experimentally determined values (31a) and (31b) in 
equations (36a) and (36b), which is the real and 
imaginary part of the spectral transfer function (35). 
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The equation describing the logarithmic amplitude 
characteristic can be determined from the equation 
(27): 
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The equation describing the logarithmic phase 
characteristic is given by the dependence (38): 
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After simulating equation (37), with the use of 
equation (36a), a logarithmic amplitude response of 
the non-integer order of the tested measurement 
system was obtained for different values of the 
parameter v, which is shown in Figure 12. 
Logarithmic phase response (Figure 12) was obtained 
by simulating equation (36b). Against the response 
obtained by means of simulation of the mathematical 
model in which the actual parameters of the tested 
transducer were applied, the transducer response 
obtained experimentally was presented. 

 

Figure 12. Logarithmic amplitude response determined 
experimentally and theoretically for different values of the 
parameter v: red – laboratory results. 

 

Figure 13. Logarithmic phase response determined 
experimentally and for different values of the parameter v: 
red – laboratory results. 

The test stand facilitates changing the rotation 
speed of the rotor and positioning it so as to take 
measurements. The speed change allows setting the 
opening frequency of the valve and thus changing the 
air pressure in the measuring chamber. The regulation 
of the opening speed of the valve gives the same effect 
as feeding the system with a pneumatic generator 

with adjustable frequency, which facilitates obtaining 
logarithmic frequency response. 

Changes in the pressure values in the measuring 
chamber were recorded for different rotor speed 
values in the range (100rpm-3200rpm), which 
corresponds to the frequency ω(104.717[rad/s]-
335.093[rad/s]).  

The input signal is the pressure in the intake pipe 
p0, the output signal is the pressure in the transducer 
chamber (Figure 1). Logarithmic phase response was 
determined by measuring the phase shift between the 
output and input signal for each set motor shaft 
speed. 

The minimum rotation speed of the internal 
combustion engine used in the tests is 1000rpm. This 
limitation made it impossible to obtain experimentally 
the full frequency response shown in Figures 12 and 
13. The obtained responses were made from 
frequency ω=104.717[rad/s] to ω=335.093 [rad/s]. 

By comparing the obtained responses with the 
responses of non-integer order for the parameter v=1, 
it can be stated that the tested transducer is of a 
slightly smaller order than the second order 
oscillating element. Experientially determined 
frequency responses are included between the 
simulated frequency response for parameter v=0.98 
and v=1. This means that the transducer should be 
modelled with the equations of non-integer order. It 
can therefore be concluded that the description with 
the classical method would be inaccurate. 

The presented simulation studies were performed in the 
MATLAB development environment (manufacturer: The 
MathWorks). The authors of the paper declare that, using 
the above mentioned trademark, they did so only with 
reference to this publication and with such an intention 
that it would be for the benefit of the trademark holders but 
without the intention of infringing the trademark. 

7 CONCLUSIONS 

The pneumatic system, analysed in the paper in the 
part on simulation, represents the second order 
damping oscillator with damping ratio ξ<1, which 
means that the characteristic equation of the model 
does not have real solutions. Therefore, the authors 
were required to develop the original method for 
determining the relationships describing the time and 
frequency responses for dynamic systems described 
with fractional calculus. In the construction of the 
mathematical model of the analyzed dynamic system, 
the definition of Riemann-Liouville differ-integral (of 
fractional order) was used. 

The paper presents the results of the laboratory 
tests of the pressure transducer, which was described 
with a mathematical model. The analysis of the 
dynamic properties of the model in terms of time and 
frequency was conducted. The parameters of the 
tested pressure transducer were determined 
experimentally - the damping ratio ξ and the 
frequency ω0, which were used to determine the 
transfer function of integer and non-integer order. 
Having the knowledge of transfer function, the step 
response was determined as well as logarithmic 
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amplitude response and phase response of integer 
and non-integer order. It was found out that the time 
response obtained experimentally, coincides with the 
response determined by the developed model of non-
integer order of the transducer for the parameter v=1. 
This confirms the correctness of the designated model. 

Frequency responses obtained experimentally 
differ slightly from the responses obtained in 
computer simulation. The logarithmic amplitude 
response and phase response obtained experimentally 
are of the order of the oscillating element for the 
parameter v of the interval 0.98<v<1.  

In the real system shown in the paper, the pressure 
in the transducer chamber was measured at the outlet 
of the air into the combustion chamber, where, at the 
moment of aspiration of air through the engine, the air 
reaches the speed of sound. Such conditions may 
account for a slight decrease in the order of the 
oscillating element under testing. 

The analysis of the logarithmic amplitude response 
of the models presented in the paper shows that the 
local maximum present in these characteristics is 
dependent on the order of the derivative and the 
bigger the amplitude, the higher the order of the 
derivative. For the parameter v=1 (classical model) the 
amplitude reaches the maximum at the resonant 
frequency for damping ξ<1. With the decreasing order 
of the derivative, the increase in the resonant 
frequency of the circuit can be observed. 

Fractional calculus is particularly useful in 
building dynamic models of mathematical systems 
working in conditions that cannot be described with 
differential equations of integer orders. This can be 
deduced by analyzing systems such as the long 
electric line of infinitely large length or the 
supercapacitor of a few thousand Farads, which are 
now also described with fractional calculus. 
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