
 

International Journal  
on Marine Navigation  
and Safety of Sea Transportation 

Volume 3 
Number 4 

December 2009 
 

423 

1 INTRODUCTION 

There are stochastic and epistemic uncertainties dis-
tinguished. Stochastic also called aleatory uncertain-
ty reflects unknown, usually unpredictable behav-
iour of a system. The system behaves in stochastic 
way when its states are random ones. They can be 
identified based on traditional probability theory. In 
maritime traffic engineering attempt to find devia-
tion from intended track is related to the aleatory un-
certainty.  

Shortage of knowledge or incomplete evidence 
creates another kind of uncertainty. Epistemic or 
subjective uncertainty results from insufficient or 
vague evidence. Question of identity of new spotted 
object refers to this sort of uncertainty. It is quite of-
ten when observer at monitoring station spots new 
radar mark and tries to find out what vessel this 
could be. Usually there is some evidence available, 
for example radar echo signature and estimate of 
speed can be helpful. Modern AIS technology trans-
fers data useful in identification. Problem was dis-
cussed by the author in his previous papers (Filip-
owicz 2007 & Filipowicz 2008).). Navigational aids 
deliver plenty of data used for position fixing. The 
quality of data is different and depends on many fac-
tors. Such imprecise and sometimes incomplete data 
are further combined for position refinement. Quan-
tifying navigational status regarding an obstacle is 
crucial from safety standards point of view. 

In classical probability theory the knowledge of 
probability of an event can be used to calculate like-
lihood of the contrary statement. In this approach if 

one navigational aid indicates position within certain 
area with probability of 0.6, that mean that navigator 
believes that he is outside the area with the probabil-
ity of 0.4. The theory also requires that data regard-
ing probability of all considered events is at dispos-
al. The theory is limited in its ability when dealing 
with epistemic uncertainty. 

Mathematical Theory of Evidence (MTE for 
short) is more flexible in this respect. MTE is a theo-
ry (initiated by Dempster & Shafer) based on belief 
and plausibility functions and scheme of reasoning 
in order to combine separate pieces of evidence to 
calculate the probability of an event. Contrary to 
probability theory it enables modelling knowledge 
and ignorance. Evidence can be combined therefore 
even partial knowledge associated with less mean-
ingful facts may end up in valuable conclusions. 
Combining evidence leads to data enrichment and 
improved probability judgments can be obtained for 
each considered hypothesis. Fundamental for MTE 
is Dempster-Shafer scheme of reasoning initially in-
tended for crisp values. New extensions to cope with 
imprecision are also available since it is often that to 
obtain precise figures is infeasible. Imprecision is 
expressed as interval values or fuzzy figures. In the 
paper and elsewhere fuzzy values are considered as 
a set of intervals given for selected possibility levels. 

Problem of position refinement that involves ep-
istemic uncertainty could be defined as below. 

Given:  
− navigation aids indicating different positions, dif-

ferent distances from an obstacle 
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− each aid has reliability and accuracy characteris-
tic assigned to it  

− linguistic terms referring to close, sufficient and 
safe distances are available as membership func-
tions  
Question:  

− what is credibility that the real distance to the ob-
stacle is safe one? 
First part of the paper is devoted to basic proba-

bility assignment. Then necessity to deal with im-
precision is depicted. Further on interval values are 
introduced and belief structure defined. Short de-
scription of Dempster-Shafer method is also includ-
ed. Last part of the paper deals with identification of 
navigational status referring to an obstacle. Two 
navigational aids are considered. Their indications 
are combined in order to quantify distance from cer-
tain shallow water area. 

2 PROBABILITY ASSIGNMENT 

Frame of discernment in Mathematical Theory of 
Evidence consists of possible events. Events are un-
derstood very widely. Examples of events that are of 
interest in navigation could be: route taken by a 
spotted vessel, position fixing based on an electronic 
aid, attempt to refine unidentified object etc. Events 
are considered as atomic or structured ones. Consid-
ering limited set of objects as a single entity means 
dealing with molecular or structured event. For ex-
ample new spotted object must be large container 
carrier or medium bulk vessel because no other traf-
fic is expected within the area. It is assumed that in 
case of structured event all constituents are equally 
possible. 

 
Figure 1. Intended route forecast problem involves three 
events: taking route r1, taking r2 and joint r1 or r2 

 
Let us consider example on reasoning which of 

possible and treated as equivalent routes r1 or r2 will 
be taken by the vessel shown at figure 1. The frame 
of discernment embraces three events Ω = ({r1}, 
{r2}, {r1, r2}). First event is related to route r1 as 
possibly taken by the vessel, selecting route r2 

means occurrence of the second event. Third molec-
ular event expresses uncertainty, it constituents r1 or 
r2 are assumed to be equally possible. 

Some evidence supporting reasoning on intended 
ship’s itinerary is assumed. Recorded cases with 
southwest bound vessels of similar tonnage were ex-
amined. For all n stored cases x out of the all have 
chosen route r1. Appropriate masses related to each 
of the events can be calculated according to formula 
(1). Assuming that data stored in traffic related data-
base gives x=24 and n=39 masses of likelihood that 
this time particular route is taken should be assigned 
as shown in formula (1) 
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It is easy to find out that all masses sum up to one so 
probability requirement is satisfied. The theory also 
requires that: m({r1, r2})= 1 - m({r1})- m({r2}). Note 
that set {r1, r2} expresses some sort of uncertainty 
since it reflects that both available routes can be tak-
en with the same credibility level. 

Let us again consider example on guessing which 
of routes r1 or r2 will be taken by the vessel. This 
time we assume different evidence supporting rea-
soning on intended ship’s itinerary. We assume that 
various samples of recorded cases are available. 
Registered routes for similar ships referred to differ-
ent weather conditions. Number of records in the 
samples varied within range of [20, 50]. Data anal-
yses discovered that number of southwest bound 
ships that have chosen route r1 was around 70% of 
all stored cases. The percentage never fell below 
60% and did not exceed 80% of the total number. 
Under these assumptions one is not able to calculate 
masses of evidence using before presented way of 
reasoning. The task is seemingly unsolved due to 
limitation imposed by crisp values. Interval values 
are to be used instead. Counting all pros and cons 
and numbers of records in the samples interval-
valued masses presents formula (2). 
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In this case all masses cannot sum up to one so basic 
probability requirement cannot be satisfied. The ap-
proach stipulates that exists a set of sub ranges with-

r2 

Island 

r1 
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in defined intervals within which summation to one 
is observed. More formally conditions 1 and 2 in 
definition (1) are to be true. Definition (1) refers to 
interval-valued probability assignment that is also 
called as interval-valued belief structure. 
 

Definition (1): 
Interval-valued masses attributed to respective el-

ements of the frame of discernment, namely: [m-
1, 

m+
1], [m-

2, m+
2],… , [m-

n, m+
n] define adequate 

probability assignment if there is a set m such that 
for m∈m following are satisfied: 
− within each interval there is a value: m-

i ≤ mi ≤ 
m+

i, for each i∈{1, … , n} 
− for all such values: 1

1
=∑

=

n

i
im  

For example three interval-valued masses the set 
of legal probability assignment is shown as two di-
mensional shape in figure 2. Procedure of establish-
ing such shape can also lead to tightening interval 
bounds since some values may appear as unreacha-
ble. 

 
Figure 2. Graphical presentation of the set of valid probability 
assignment in interval-valued belief structure 

 
We again consider above example on guessing 

which of routes r1 or r2 will be taken by the vessel 
using fuzzy approach. We assume that it is experi-
enced radar observer who reasons on intended ship’s 
itinerary. His subjective way of thinking is like this: 
the vessel is a medium one, visibility is rather good, 
wind moderate so to his best knowledge it is “likely” 
the vessel will take route r1. He also observed quite 
many similar vessels have taken route r2 so it is 
“fairly likely” that this route will be chosen this 
time. Judging from his experience uncertainty of his 
opinion is very low. Formal expression of the above 
statement requires introduction of meaning terms: 
“likely”, “fairly likely” and “very low”. All of them 
are linguistic terms referring to fuzzy reasoning. 

Such terms are characterized by membership func-
tions. 

2.1 Theoretical membership functions 
Set with elements like: “very unlikely”, “unlikely”, 
“fairly likely”, “likely”, “very likely” and “certain” 
consists of linguistic terms which human beings use 
for estimated reasoning. To evaluate uncertainty one 
can use “very low”, “low”, “medium”, “high”, “very 
high” and “totally uncertain” as the highest term. 
Both sets contain six elements and membership 
functions can be used interchangeably depending on 
the context.  

Counting elements from 0 up to nc-1 one can use 
formula (3) to calculate normalized and regular 
fuzzy membership functions. Trapezoid shapes ob-
tained for wT=0.8 are presented in figure 3 and tri-
angular ones for wT=0 in figure 4. 
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where:  
− 

1
1
−

=
cn

w  
− nc - is a number of selected terms  
− wT ∈ [0, 1]– is the shape parameter, wT = 0 

means that membership function is a triangular 
one and wT = 1 means rectangular shape. 
Formula (4) defines trapezoid fuzzy-valued mass-

es assignment for the third discussed case of proba-
bility assignment on expected route taken by the 
spotted craft. The formula contains membership 
functions for terms respectively “likely” (k=3), “fair-
ly likely” (k=2) and “very low” (k=0). Functions are 
quads calculated with formula (1) for listed above k 
value. Membership functions are also presented as 
intervals for three selected possibility levels α = 0, 
0.5 and 1. Possibility equal to zero denotes support 
of a fuzzy value. Possibility equal to one refers to 
the core of imprecise value. 

 
Figure 3. Trapezoid membership functions (wT=0.8) 



426 

 
Figure 4. Triangular membership functions expressing six lin-
guistic terms (wT=0) 
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3 COMBINATION OF TWO BELIEF 
STRUCTURES 

Probability assignments that examples are showed 
above can be combined in order to increase result in-
formation context. Probability assignment to events 
from frame of discernment at hand is called as belief 
structure. Belief structures are supposed to verify 
certain constraints (see for example definition (1)). 
Depending on type of assigned masses basic, inter-
val-valued and fuzzy-valued structures are distin-
guished. It is said that combination of belief struc-
tures creates new assignment characterized by 
enrichment of engaged data. To take benefit of this 
enrichment other sources of data are to be available. 
In the above interval-valued example on guessing 
which of routes r1 or r2 will be taken by the vessel 
single source of data was assumed. Let us consider 
yet another archive that contains different sets of 
recorded cases. Registered routes for similar ships 
referred to similar weather conditions were ana-
lyzed. Number of records in the samples varied 
within range of [40, 60]. Data analyses revealed that 
number of southwest bound ships that have chosen 
route r1 never fell below 50% and did not exceed 
65% of the total number. Masses attributed to each 
event are shown in formula (5). 
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Combination procedure for ranges and fuzzy val-

ues extends original Dempster-Shafer method initial-
ly proposed for crisp masses in basic belief struc-
tures. Comprehensive way of two sources 
combinations is summarized below. The scheme was 
further used for example combination of the two 
discussed sources results are shown in table 1. 

Dempster-Shafer rules of combination: 
1 Create table with rows that refer to events em-

braced in second source.  
Columns refer to the events of first source.  
Each event has mass of evidence (fuzzy or inter-
val-valued) that is assigned to it 

2 For each intersection of a row and a column 
product of masses involved is calculate and at-
tributed to a common, for the two sets, event.  
In case of crisp events inconsistency occurs if the 
two sets have empty intersection. Therefore, for 
particular cell, the product of masses of evidence 
is assigned to an empty set  
In case of fuzzy events conjunctive operator is 
applied and search for minimum values on mem-
bership functions involved carried out  

3 Calculate masses for each resulting set of events 
4 Calculate belief functions (and if required plausi-

bility) values 
 
Definition (2):  
There are two sets of interval-valued masses at-

tributed to elements of the same frame of discern-
ment, namely: m1, m2. Each of them embraces cer-
tain set of events referred to as: F(m1) and F(m2). 
Their combination defines probability assignment as 
a set m such that for m∈m appropriate limits (Deno-
eux 1999) are given by formula (6). 
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Table 1. Combination of two sources of crisp data  
__________________________________________________ 
             Source I 
       m1({s1})   m1({s2})   m1({s1, s2}) 
      [0.571, 0.784][0.196, 0.381] [0.020, 0.048] __________________________________________________ 
 m2({s1})  m1-2({s1})   m1-2({∅})   m1-2({s1})  
[0.488, 0.639] [0.488, 0.639] [0.096, 0.243] [0.010, 0.031] 
 m2({s2})  m1-2({∅})   m1-2({s2})   m1-2({s2})  
[0.341, 0.492] [0.195, 0.386] [0.067, 0.187] [0.007, 0.024] 
 m2({s1, s2}) m1-2({s1})   m1-2({s2})   m1-2({s1, s2}) 
[0.016, 0.024] [0.009, 0.019] [0.003, 0.009] [0.000, 0.001] __________________________________________________ 
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Using formula (6) one can obtain limits of joint 
masses that are as follows:  
− m-

1-2({s1}) = 0.279 + 0.009 + 0.01  = 0.298  
− m+

1-2({s1}) = 0.501 + 0.019 + 0.031  = 0.551  
− m-

1-2({s2}) = 0.067 + 0.003 + 0.007  = 0.077  
− m+

1-2({s2}) = 0.187 + 0.009 + 0.024  = 0.220  
− m-

1-2({s1, s2}) = 0.0003  
− m+

1-2({s1, s2}) = 0.0012 
Since in two cases there were empty intersections 

therefore inconsistency occurred. Limits of the emp-
ty set are as below:  
− m-(∅) = 0.096 + 0.195 = 0.291  
− m+(∅) = 0.386 + 0.243 = 0.529 

 
Result belief structure with its interval-valued 

probability assignment enables determination of evi-
dential functions. Lower and upper limits of belief 
function can be calculated with formula (7). 
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Taking into account limits of empty sets obtained 
during combination ranges of believes for each of 
the events are as shown in table 2. 

 
Table 2. Joint masses, belief function values and tighten 
bounds 
__________________________________________________ 
 Event  Joint masses  Interval-valued   Tighten  
             beliefs    intervals __________________________________________________ 
 {s1}  [0.298, 0.551]  [0.298, 0.551] [0.313, 0.529] 
 {s2}  [0.077, 0.220]  [0.077, 0.220] [0.078, 0.219] 
 {s1, s2} [0.0003, 0.0012]  [0.471, 0.709] [0.0003, 0.0012] __________________________________________________ 

 
MTE defines belief function in terms of the mass 

of evidence assigned to each event and its constitu-
ents, if available. Thus in order to obtain total belief 
committed to the set, masses of evidence associated 
with all the sets that are subsets of the given set must 
be added. Consequently beliefs of atomic event re-
main unchanged and equal to combined values. Joint 
events increase their belief values according to con-
stituents masses (see last row in table 2). 

3.1 Evidence combination as optimization problem 
Presented procedure is an extension of initial Demp-
ster proposal intended for structures with crisp 
events as well as crisp masses assigned to the events. 
Extension of the approach substitute crisp values 
with interval-valued probabilities. Subsequently 
principles of adequate mathematics are to be ap-
plied.  

Unfortunately such direct modification can lead 
to results that are too broad. The new approach to-
ward data association is to be considered since its re-
sults are to be tightened. Problem of combination of 
interval-valued structures can be introduced as fol-
lowing optimization task (Denoeux 1999). 

Search for lower and upper limits of combined 
structure: 
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Under constraints: 
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Adequate optimization problem was solved using 
available software and results are shown in the 
rightmost part of table 2. It is seen that optimization 
leads to results falling within limits established with 
previous method. All further results of combination 
presented in the paper were obtained using software 
available at website: 

http://www.hds.utc.fr/~tdenoeux/. 
The software implements procedures solving 

above defined optimization problem. 

4 BELIEF STRUCTURES IN MARITIME 
NAVIGATION 

Previously presented case of guessing which route 
will be taken by unknown vessel, although interest-
ing, is not very much representative for maritime 
navigation. Its typical problems are related to posi-
tion fixing. The aim of the position interpretation is 
to find out what the distance from nearest obstacle 
could be. The distance given as crisp value is not of 
primary importance instead it subjective assessment 
really matters. Subjectivity should embrace local 
condition. Confined water distance of 4Nm must be 
differently perceived than the same distance in the 
open sea. Nevertheless safe or sufficient distance 
value is to be maintained everywhere and all the 
time. Example of the set of fuzzy-valued subjective 
distances is shown in figure 5. 
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very close 

sufficient 
close 

safe 

very safe 
 

Figure 5. Distances from an obstacle expressed as fuzzy values 

Fixing can be directly transferred into appropriate 
state referring to the obstacle. Being within the state 
can be treated as an event in MTE terminology. 
From figure 5 it is also clear that limits of a state are 
imprecise values therefore event is not crisp any 
longer. In figure 5 circle around position cross re-
flects error, standard deviation attributed to particu-
lar system. Marked spot is somewhere in between 
“close” and “sufficient” distance if proposed limits 
are assumed. Instead of establishing borders one can 
ask experts what they think about, for example, 4Nm 
off the buoy. They are to use scale that covers five 
terms from “very close” to “very safe”. Table 3 con-
tains results of the inquiry with 16 unity intervals 
scale. Each linguistic term covers four adjacent unity 
intervals. Extreme interval is assumed to be shared 
with neighbour term.  

 
Table 3. Meaning of 4Nm off safe water buoy in the given area 
__________________________________________________ 
      very close   sufficient   very safe 
         close     safe 
Expert    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 __________________________________________________ 
  1             + + +     
 2            + + + +     
 3          + + + +       
 4            + + +      
 5            + +       
frequency        0.2 0.8 0.6  
            0.2 1.0 0.4  __________________________________________________ 

 
Last two rows of the table 3 embrace relative fre-

quencies of answers for non-zero unity intervals. Set 
of these figures creates irregular membership func-
tion that will be written as: 

µd1(xi) = {0.2/6, 0.2/7, 0.8/8, 1/9, 0.6/10, 0.4/11} 
Unlike theoretical membership functions these 

similar to presented in table 3 are called empirical 
membership functions. 

Accuracy of distance measured by a navigational 
aid depends on method and appliance involved. Dif-
ferent credibility is attributed to various aids. To 
conclude reasoning regarding measured distance one 
has to attribute mass of credibility to engaged sys-
tem. Let us assume that example system’s credibility 
is high. In this case using suggested 6-grade scale 

and formula 3 factor k will be assumed as equal to 4 
(trapezoid regular membership function with wT=0.8 
are further used). Doubtfulness regarding proper 
functionality of the aid and outcome of expert opin-
ions is rather low (k=1). 

Above statements define following belief struc-
ture.  

Measured distance to the obstacle expressed sub-
jectively:  

µd1(xi) = (0.2/6, 0.2/7, 0.8/8, 1/9, 0.6/10, 0.4/11) 
Mass of credibility attributed to navigational aid 

and quality of expert opinions:  
m1(d1) = (0.8, 0.84, 0.96, 1) 
The last can be approximately expressed as: 
     α = 1   [0.84,  0.96] 
m1(d1)≈  α =0.5  [0.82,  0.98] 
      α =0.0  [0.80,  1] 
 
Mass of uncertainty attributed to navigational aid 

and to quality of expert opinions:  
m1(any) = (0, 0.04, 0.36, 0.4) 
This can be equivalent to: 
      α = 1  [0.04,  0.36] 
m1(any)≈  α =0.5  [0.02,  0.38] 
       α =0.0  [0,   0.40] 
The latest reflects statement that contradicts 

membership function shown in table 5. It expresses 
conclusion that engaged system might not work 
properly and indicates wrong data. Consequently 
every distance is equally possible. Membership 
function attached to such uncertainty consists of all 
one:  

µany(xi) = (1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 
1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16). 

Assuming approximation of fuzzy values by in-
terval values at selected possibility levels conditions 
of definition 1 are observed for all levels thus the 
above assignment is appropriate belief structure. 

In order to enrich knowledge and reduce uncer-
tainty regarding distance from the obstacle we as-
sume that there is another navigational aid that indi-
cates different distance and the aid is also reputed in 
different way. Another belief structure is as follows.  

Measured distance to the obstacle expressed in 
subjective way:  

µd2(xi) = (0.2/5, 0.4/6, 0.6/7, 1/8, 0.6/9, 0.2/10) 
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Mass of credibility attributed to another naviga-
tional aid and quality of new expert opinions as-
sumed as trapezoid fuzzy value (k = 3 and wT = 0.8):  

m2(d2) = (0.4, 0.44, 0.76, 0.8) 
     α = 1   [0.44,  0.76] 
m2(d2)≈  α =0.5  [0.42,  0.78] 
      α =0.0  [0.40,  0.80] 
Mass of uncertainty attributed to this positioning 

system and quality of other expert opinions ex-
pressed as trapezoid fuzzy value with k = 3 and wT = 
0.8):  

m2(any) = (0.2, 0.24, 0.56, 0.6) 
      α = 1   [0.24,  0.56] 
m2(any)≈  α =0.5  [0.22,  0.58] 
       α =0.0  [0.20,  0.60] 
Same as before fuzzy values were approximated 

by interval values at three selected possibility levels. 
Conditions of definition 1 are observed for each of 
the levels thus the second assignment is also correct 
belief structure. 

Indications coming from two sources were asso-
ciated using extended Dempster-Shafer scheme and 
optimization approach. Obtained results are shown 
in table 4. 

 
Table 4. Combination of two navigational aids 
__________________________________________________ 
            m1(µd1)    m1(any)  
        α = 1  [0.84,  0.96]  [0.04,  0.36] 
        α =0.5  [0.82,  0.98]  [0.02,  0.38] 
        α =0.0  [0.80,   1]  [0,   0.40] __________________________________________________ 
           m1-2(µd1∧µd2)   m1-2(µd2) 
   α = 1  [0.44,  0.76] [0.37, 0.73]  [0.018, 0.27] 
m2(µd2) α =0.5  [0.42,  0.78] [0.34, 0.76]  [0.008 0.30] 
   α =0.0  [0.40,  0.80] [0.32, 0.80]  [0.0,  0.32] 
 
            m1-2(µd1)   m1-2(any) 
   α = 1  [0.24,  0.56] [0.20, 0.54]  [0.01, 0.20] 
m2(any) α =0.5  [0.22,  0.58] [0.18, 0.57]  [0.004 0.22] 
   α =0.0  [0.20,  0.60] [0.16, 0.60]  [0.0  0.24] __________________________________________________ 

 
In table 4 there is expression m1-2(µd1∧µd2) that 

remains to be explained. It is at the intersection of 
m2(µd2) row and m1(µd1) column and mean joint con-
fidence regarding distances to the same obstacle 
measured by different navigational aid. In case of 
crisp events the mass would be assigned to empty set 
(∅). In case when events are fuzzy the expression 
should be written as m1-2(µd1(xi)∧µd2(xi)) and inter-
preted as a mass of confidence attributed to conjunc-
tion of two fuzzy values respectively µd1(xi) and 
µd2(xi). In this case µd1(xi)∧µd2(xi) =(0/5, 0.2/6, 
0.2/7, 0.8/8, 1/9, 0.6/10, 0.4/11)∧(0.2/5, 0.4/6, 0.6/7, 
1/8, 0.6/9, 0.2/10, 0/11) = (0/5, 0.2/6, 0.2/7, 0.8/8, 

0.6/9, 0.2/10, 0/11). Note that conjunction ∧ means 
minimum operation in the two sets. As a result of 
combination of fuzzy events apart from initial sets 
appear yet another membership functions. The more 
sources are combined the more numerous count of 
such extra events. Note that such events bring some 
support for certain classes of fuzzy events. 

Seemingly this phenomenon makes the approach 
vague. To some extent the statement is true. At the 
other hand result of combination could be treated as 
an encoded knowledge base. Having such database 
one is supposed to ask questions and get answers. As 
a matter of fact this is main advantage of the ap-
proach. 

Kind of questions that can be submitted to the 
knowledge base depend on the problem at hand. In 
discussed case it could be interesting to know sup-
port for a statement that the distance from the obsta-
cle is safe or sufficient one. Table 5 contains interval 
values of belief functions for different regular fuzzy 
functions related to considered scale of distances. 

 

 
Figure 6. Bundle of benchmark membership functions 

Benchmark membership functions used in table 5 
are regular trapezoid ones presented in figure 6. 
They are based on sixteen unity interval scale as pre-
sented in table 3. First of the functions reflects term 
“safe”, second one is shifted left (closer to the obsta-
cle) by 1 unit and so on. In this way fourth function 
is related to sufficient distance and seventh to close 
condition.  

Fuzzy belief functions values are given as α-cuts 
for α=1, 0.5 and 0 in top to bottom order. 

Figure 7 shows diagrams of three belief values 
marked with asterisk in table 5. They represent in-
terval-valued beliefs that the distance is close, suffi-
cient and safe, for the highest possibility level. The 
highest credibility with upper limit approaching 0.74 
receives sufficient distance.  

 
Table 5. Fuzzy beliefs for obtained combination results and se-
lected fuzzy distances 
__________________________________________________ 
  Pattern fuzzy value       Belief function __________________________________________________ 
             α = 1  [0.074, 0.146]* 
1 (0.5/10, 1/11, 1/12, 0.5/13) safe α =0.5 [0.069, 0.153] 
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              α =0.0 [0.064, 0.160] 
             α = 1  [0.114, 0.195] 
2 (0.5/9, 1/10, 1/11, 0.5/12)   α =0.5 [0.105, 0.197] 
              α =0.0 [0.096, 0.200] 
              α = 1  [0.376, 0.493] 
3 (0.5/8, 1/9, 1/10, 0.5/11)    α =0.5 [0.364, 0.497] 
             α =0.0 [0.352, 0.500] 
              α = 1  [0.510, 0.714]* 
4 (0.5/7, 1/8, 1/9, 0.5/10) sufficient α =0.5 [0.493, 0.727] 
             α =0.0 [0.476, 0.740] 
              α = 1  [0.358, 0.475] 
5 (0.5/6, 1/7, 1/8, 0.5/9)      α =0.5 [0.347, 0.480] 
             α =0.0 [0.336, 0.484] 
              α = 1  [0.155, 0.315] 
6 (0.5/5, 1/6, 1/7, 0.5/8)      α =0.5 [0.141, 0.326] 
             α =0.0 [0.128, 0.336] 
             α = 1  [0.074, 0.146]* 
7 (0.5/4, 1/5, 1/6, 0.5/7)   close  α =0.5 [0.069, 0.153] 
             α =0.0 [0.064, 0.160] __________________________________________________ 

 

 
Figure 7. Belief intervals for close, sufficient and safe distances 

5 CONCLUSIONS 

Bridge officer has to use different navigational aids 
in order to refine position of the vessel. To combine 
various sources he uses his common sense or relies 

on traditional way of data association. So far Kal-
man filter proved to be most famous method of data 
integration. Mathematical Theory of Evidence deliv-
ers new ability. It can be used for data combination 
that results in their enrichment. Dempster-Shafer 
scheme initially designed for crisp data association 
now is widely used to cope with imprecision, which 
is expressed by intervals or fuzzy values. Assign-
ment of masses of evidence to each of events at hand 
creates belief structure. Crisp, interval-valued and 
fuzzy-valued belief structures are distinguished. 

In the paper interval-valued belief structure is de-
fined. It is also shown that transition from interval to 
fuzzy-valued structure is straightforward. Example 
of such structures for position fixing was presented. 
The structures were then combined and results dis-
cussed. The most important conclusion that can be 
drawn from included example is that with help of 
MTE quantification of imprecise statement is possi-
ble. With at least two navigational aids engaged 
credibility that the distance from an obstacle is safe 
receives its unique, although interval or fuzzy-
valued belief. 
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