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1 INTRODUCTION 

A free gyro positioning system (FPS), which deter-
mines the position of a vehicle by using two free gy-
ros, was first suggested by Park & Jeong(2004). It is 
originally an active positioning system like an iner-
tial navigation system (INS) in view of obtaining a 
position without external source. However, a FPS is 
to determine its own position by using the angle be-
tween the vertical axis of local geodetic frame and 
the axis of free gyro (hereinafter called ‘nadir an-
gle’), while an INS is to do so by measuring its ac-
celeration. 

The errors in the FPS were investigated broadly 
by Jeong(2005). And the algorithmic designs of a 
free gyroscopic compass and FPS were suggested by 
measuring the earth’s rotation rate on the basis of a 
free gyroscope (Jeong & Park, 2006;Jeong & Park, 
2007).  

This paper is to explain how to measure the nadir 
angle by using the earth’s rotation rate. Firstly, the 
determination of the position on or near the earth is 
briefed. The motion rate of the spin axis caused by 
the earth’s rotation rate is to be transformed into the 
platform frame and then into the local geodetic 
frame, i.e. the NED(north-east-down) navigation 
frame. Finally the nadir angle is to be obtained by 
using the rotation rate of the horizontal component 
on the NED navigation frame. And also, a free gyro-
scopic compass is explained by measuring the 

earth’s rotation rate on the basis of a free gyroscope. 

2 DETERMINATION OF VEHICLE’S POSITION 
BY NED NAVIGATION FRAME 

First consider the transformation matrix n
iC  (Rogers 

R M, 2000) from the inertial frame to the navigation 
frame which is simply given by Eq. (1). 
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Here, ωe is the (presumably uniform) rate of 
Earth rotation, λ is the geodetic longitude, φ is the 
geodetic latitude and t denotes time. This transfor-
mation matrix n

iC  denotes the transformation from 
the unit vectors of axes in the inertial frame to those 
in the navigation frame. Consid-
er an arbitrary gyro vector  
which is unit vector in the inertial frame. We obtain 
easily the gyro vector transformed in 
the navigation frame,  as Eq. (2). 
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Fig.1 Measurement quantities in the navigation frame 

 
As shown in Fig. 1, the azimuth angle of a gyro 

vector, α, and the nadir angle, θ, can be obtained re-
spectively as Eq. (3) and Eq. (4), noting that 
 |gv| = 1. 
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If we use two free gyros whose gyro vectors in 
Eq. (3) are 

T
azayax

i
va uuug ],,[=  and 

T
bzbybx

i
vb uuug ],,[=  

respectively, we can determine the position (φ, λ) of 
a vehicle at the given nadir angles θa, θb. Once de-
termining the position, we can also obtain the azi-
muth of a gyro vector by using Eq. (4). Park and 
Jeong(2004) already suggested the algorithm of how 
to determine a position. 

3 SHIP’S HEADING, AZIMUTH AND NADIR 
ANGLE OF GYRO VECTOR 

3.1 Relation between ship’s heading and azimuth of 
gyro vector  

As Jeong & Park(2006) mentioned, let’s consider 
the earth's rate eϖ . Then its north component 
is φϖ cose , whereφ depicts the geodetic latitude of an 
arbitary position. Fig. 2 shows that the angular ve-
locities of the fore-aft and the athwartship compo-
nents are given by Eq.(5) (Titterson, et al., 2004), 
where ψ is ship's heading. And it also shows that ς  
is the azimuth of a gyro vector from ship’s head. 

ψφϖω
ψφϖω

sincos
coscos

ey

ex

−=
=  (5) 

 

 
Fig. 2 Relation between ship’s heading and azimuth of a gyro  

vector 

 
By taking the ratio of the two independent gyro-

scopic measurement, the heading,ψ , is computed by 
Eq. (6). 

x

y

ω
ω

ψ arctan=  (6) 

Meanwhile assuming that a gyro vector is ς away 
from ship’s head, its azimuth from North is 
represented by Eq. (7). Therefore the angular 
velocity of the horizontal axis of a gyro (hereinafter 
called ‘ Hϖ ’) is given by Eq. (8) on the navigation 
frame or local geodetic frame. 

ςψα +=  (7) 

αφϖω sincoseH −=  (8) 

Eq.(8) shows that if the North component of the 
earth’s rotation rate can be known on the navigation 
frame, the nadir angle of a gyro vector,θ ,is obtained 
by Eq.(9), by integrating Eq. (8) incrementally over 
a time interval. 

 

∫= 2

1

t

t H dtϖθ  (9) 

3.2 Representation of the motion rate of the spin 
axis in the frames 

3.2.1 The motion rate of the spin axis 
Let the motion rate of the spin axis in the gyro 

frame, 
T

gzgy
g

gi ]0[/ ωωω = , where we denote: 
g

gi /ϖ  = 
the motion rate of the gyro frame(g) relative to the 
inertial frame(i), with coordinates in the gyro 
frame(g), and hereafter the same notation of the an-
gular velocity is applied. In fact this angular velocity 
is all you can get from a free gyro and has to be 
transformed into the local geodetic frame through 
the platform frame or the body frame (Jeong & Park, 
2006).   
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First, the motion rate of the spin axis in the gyro 
frame, 

g
gi /ϖ , is transformed into that in the platform 

frame, 
p

gi /ϖ , as follows. 
g

gi
p
g

p
gi C // ϖω =  (10) 
Next, the motion rate of the spin axis in the plat-

form frame, 
p

gi /ϖ , is also transformed into that in the 
navigation frame, 

n
gi /ϖ , as Eq. (11). 

p
gi

n
p

n
gi C // ϖω =  (11) 
By the way assuming that there is no error in the 

free gyro and rate sensors, the motion rate of the 
spin axis in the local geodetic frame, 

n
gi /ϖ (hereinafter 

called ‘ Lϖ ’), is equal to the angular velocity on the 
navigation frame, 

n
ni /ϖ , which is composed of “earth” 

and “transport” rates and rewritten in Eq. 
(13)(Rogers,2003). Considering that the earth’s rota-
tion rate, 

n
ei /ϖ , is shown in Eq,(14), it is represented 

by Eq. (13). Therefore the north component of the 
earth’s rotation rate is computed by using the meas-
ured horizontal components, i.e. the fore-aft and 
athwartship ones. 
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The transport rate, 
n

ne /ϖ , is shown in Eq. (15). In 
Eq. (15) λ  denotes the time rate of change of the 
longitude while φ  is the time rate of change of the 
latitude. And Ev  is the east velocity, Nv  is the north 
velocity, R  is the radius of the earth and h  is the 
height above ground. 
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Meanwhile the ship’s heading, ψ , can be com-
puted by using Eq. (13) and given by Eq. (16). Of 
course Eq. (15) has to be transformed by multiplying 
the transformation matrix, 

H
nC , which changes from 

the NE frame to the fore-aft and rightward one. 

Nx

Ny

ϖ
ϖ

ψ arctan=  (16) 

The azimuth of the gyro vector from the ship’s 
head, ς , can be obtained by integrating the vertical 
component of the motion rate of the spin axis, i.e. 
Eq. (12) and given by Eq. (17). 

∫= 2

1

t

t Lzdtϖς   (17) 

The northward angular velocity of the local geo-
detic frame, LHϖ , which is determined by the sum of 
the rates the earth’s rotation and the ship’s transport, 
is represented by Eq. (18). 

22
LyLxLH ϖϖϖ +=  (18) 

And the horizontal component of the motion rate 
of the free gyro, Hϖ , can be obtained by Eq. (19). It 
is evident that the azimuth of the gyro vector,α , is 
given by the sum of the ship’s heading ψ  and the 
azimuth of the gyro vector from the ship’s head ς . 

ςψα
αϖϖ

+=
−= sinLHH  (19) 

Therefore the nadir angle of the gyro vector, θ , 
can be obtained by integrating Eq. (19). 

∫= 2

1

t

t H dtϖθ  (20) 

3.2.2 Coordinate transformation from gyro frame 
to platform frame 

In Fig. 3 the gyro frame refers to free gyro itself 
on the platform, whose axes are defined along the 
spin( gx ), horizontal( gy ), and downward( gz ) direc-
tions. The platform frame refers to the vehicle to be 
navigated, whose axes are defined along the for-
ward( px ), right( py ), and through-the floor( pz ) direc-
tions. 

The angle ξ  is a rotation angle about the down-
ward axis pz  and is positive in the counterclockwise 
sense as viewed along the axis toward the origin , 
while the angle η  is a rotation angle about the hori-
zontal axis( py ) and is positive in the same manner as 
above. Here the transformation matrix 

p
gC  from the 

gyro frame to platform frame is given by Eq.(21), 
using Euler angles and direction cosines. 
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Fig. 3 Gyro and platform frames 

3.2.3 Coordinate transformation into the NED nav-
igation frame 

With respect to the NED navigation frame whose 
axes are defined as the first axis points the north, the 
second axis points east and the third axis is aligned 
with the ellipsoidal normal at a point, in the down-
ward direction. Let's consider the platform frame ax-
es point forward, to the right, and down as shown in 
the above. Euler angles define the transformation, 
that is, they are the roll( R ), pitch( P ), and yaw(Y ) 
relative to the NED axes as shown in Fig. 4. Then 

the transformation matrix 
n
pC  is given by Eq. (22). 

 

 
Fig. 4 Platform frame relative to NED frame  
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3.2.4 Determination of transformation matrices 
First, for transformation matrix p

gC  we have to 
know the rotation angles of the gyro frame, ξ  and η . 
They are obtained by integrating the respective 
components of the spin motion rate. In doing so we 
can get the transformation matrix by solving the fol-
lowing first order linear differential equation (23) as 
Jeong & Park(2006) suggested. 

g
p

g
gp

g
p C

dt
dC

/Ω−=  (23) 

Here g
gp /Ω  is a skew-symmetric matrix and we 

assume it is constant over the sampling interval. The 
solution is given by Eq. (24). 
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Here 0ttt −=∆ , 0t  is the initial time and 

ia  is each 
component of rotation angle. Once the transfor-
mation matrix p

gC is obtained, the inverse matrix of 
it, g

pC  , is immediately calculated by doing the trans-
pose of it since it is an orthogonal matrix. The rela-
tion between them is given by Eq. (25). 
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 (25) 
Secondly, for transformation matrix n

pC , we have 
to know the rotation angles of the platform frame P 
and R. They are obtained by integrating the 
respective components of the motion rate of the spin 
axis as shown in the above. We can also get the 
transformation matrix by solving the following first 
order linear differential equation (26). 

p
n

p
pn

p
n C

dt
dC

/Ω−=  (26) 

Here p
pn /Ω is a skew-symmetric matrix too and 

we assume it is constant over the sampling interval. 
The solution is given by Eq. (27). 
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Here 0ttt −=∆ , 0t  is the initial time and ib  is each 
component of rotation angle. Once the transfor-
mation matrix 

p
nC is obtained, the inverse matrix of 

it, 
n
pC  , is immediately calculated by doing the trans-

pose of it since it is an orthogonal matrix. 

In addition, the other methods to solve the differ-
ential equations (23) and (26) are also represented 
by the integration of four quaternions or three rota-
tion vectors, the integration of three Euler angle 
equations, and etc. Such equations suggested in the 
above are developed by referring to and using Far-
rell et al(1999), Jekeli(2001), and Rogers(2003).  
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4 ALGORITHMIC DESIGN OF FREE GYRO 
POSITIONING & DIRECTIONAL SYSTEM 

Fig. 5 and Fig. 6 show the algorithmic design of free 
gyros positioning system mechanization. First, let’s 
look into the ship’s heading (Fig.5). In this mechani-
zation two sensors for sensing the motion rate of the 
spin axis are mounted in the free gyro. Three sensors 
for sensing the motion rate of the platform are 
mounted in orthogonal triad. From the sensors in the 
gyro frame, the spin motion rate, 

g
gi /ϖ , is obtained 

and from the ones in the platform frame, 
p

pi /ϖ , is de-
tected. By using the sum, 

g
gp /ϖ , of the rates from the 

free gyro and the ones detected from the platform 
sensors, the transformation matrix 

g
pC  is calculated 

and its inverse is determined. Therefore the spin mo-
tion rate, 

g
gi /ϖ , sensed from the free gyro is trans-

formed into 
p

gi /ϖ by using the inverse matrix, 
p
gC . 

Meanwhile the rate of the earth's rotation 
n

ei /ϖ and 
the rate of the vehicle movement 

n
ne /ϖ are summed 

and transformed into 
n

ni /ϖ . It is subtracted from the 
sensed rate from the platform, 

p
pi /ϖ . As a result, 

p
pn /ϖ

is generated. By using this, the transformation ma-
trix, 

p
nC , is calculated and the inverse of it, 

n
pC , is ob-

tained. And the rate 
p

gi /ϖ is transformed into 
n

gi /ϖ by 
using the transformation matrix, 

n
pC . By using Eq. 

(13), the spin motion rate in the NED frame, Nϖ , is 
obtained from the rate, 

n
gi /ϖ . Finally, the ship's head-

ing is calculated by using the components of the spin 
motion rate according to Eq. (13) and Eq. (16). 

Next let’s look into the nadir angle (Fig.6). Be-
cause the motion rate of the spin axis in the local ge-
odetic frame, 

n
gi /ϖ  is represented by Lϖ , The azimuth 

of the gyro vector from the ship’s head, ς , can be 
obtained by using Eq. (17). Then the azimuth of the 
gyro vector from the North,α , can be easily taken 
by Eq. (19). 

The northward angular velocity of the local geo-
detic frame, LHϖ , is represented by Eq. (18). And 
the horizontal component of the motion rate of the 
free gyro, Hϖ , can be obtained by Eq. (19). As a re-
sult the nadir angle of the gyro vector, θ , can be ob-
tained by Eq. (20). 

 
Fig. 5 Free gyro positioning system mechanization (1) 

 

 
Fig. 6 Free gyro positioning system mechanization (2) 

5 RESULTS AND DISCUSSIONS 

This paper investigated and developed the algorithm 
regarding free gyro positioning system theoretically 
and analytically. As a result conclusions are the fol-
lowing. 
1 Once the spin motion rate of free gyro is known, 

the ship's heading is determined by using Eq. 
(16). 

2 The azimuth of the gyro vector from the ship’s 
head, ς , can be obtained by Eq. (17). And the 
northward angular velocity of the local geodetic 
frame, LHϖ , can be given by Eq. (18). 

3 The horizontal component of the motion rate of 
the free gyro, Hϖ , can be obtained by Eq. (19). 
Finally the nadir angle of the gyro vector, θ , can 
be obtained by Eq. (20). 

4 In order to transform the spin motion rate of the 
gyro frame into the one of the NED navigation 
frame, the differential equations of Eq. (23) and 
Eq. (26) are solved by using Eq. (24) and Eq. (27) 
and the transformation matrices are obtained re-
spectively. 
This paper ascertained the feasibility to set a 

stepping stone to the development of the free gyro 
positioning system. However, several problems re-
main unsolved in the aspect of the following. Firstly 
a two-degree-of-freedom gyro is very expensive and 
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is commercially disadvantageous in practice. Sec-
ondly the inherent errors caused by many elements 
complicated. Errors caused by free gyro itself, sen-
sors of the platform, sensors of the free gyro, sam-
pling time and etc. will be dealt with in the next 
study. 
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