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ABSTRACT: Maritime information services supporting European agencies such as the FRONTEX require
European-wide forecast solutions. Following a consistent approach, regional and global forecasts of the sea
surface conditions from Copernicus Marine Service and national met-ocean services are aggregated in space
and time to provide a European-wide forecast service on a common grid for the assistance of Search and Rescue
operations. The best regional oceanographic model solutions are selected in regional seas with seamless
transition to the global products covering the Atlantic Ocean. The regional forecast models cover the Black Sea,
Mediterranean Sea, Baltic Sea, North Sea and combine the North Sea — Baltic Sea at the Danish straits. Two
global models have been added to cover the entire model domain, including the regional models. The
aggregated product is required to have an update frequency of 4 times a day and a forecasting range of 7 days,
which most of the regional models do not provide. Therefore, smooth transition in time, from the shorter time-
range, regional forecast models to the global model with longer forecast range are applied. The set of parameter
required for Search and Rescue operations include sea surface temperature and currents, waves and winds. The
current version of the aggregation method was developed for surface temperature and surface currents but it
will be extended to waves in latter stages. The method relies on the calculation of aggregation weights for
individual models. For sea surface temperature (SST), near real-time satellite data at clear-sky locations for the
past days is used to determine the aggregation weights of individual forecast models.

A more complicated method is to use a weighted multi-model ensemble (MME) approach based on best
forecast features of individual models and possibly including near real time observations. The developed
method explores how satellite observations can be used to assess spatially varying, near real time weights of
different forecasts. The results showed that, although a MME based on multiple forecasts only may improve the
forecast, if the forecasts are unbiased, it is essential to use observations in the MME approach so that proper
weights from different models can be calculated and forecast bias can be corrected. It is also noted that, in some
months, e.g., June in Baltic Sea, even SST was assimilated, the forecast still show quite high error. There are also
visible difference between different Copernicus Marine Environment Monitoring Service (CMEMS) satellite
products, e.g. OSTIA and regional SST products, which can lead different forecast quality if different SST
observation products are assimilated.

1 INTRODUCTION produce forecasts of sea surface information, enabling

the prediction of these conditions. European agencies,
Safety at sea is depends greatly on the sea surface such as FRONTEX, require access to met-ocean
conditions. Oceanographic models are utilized to information for pan-European seas, including the
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Baltic Sea, North Sea, Mediterranean Sea, Black Sea,
Norwegian Sea and parts of Atlantic and Arctic
oceans (see Figure 1), for coordinated maritime
activities such as search and rescue operations and
planning. For the FRONTEX search and rescue
service, the forecast period is required to be seven
days long and updated four times per day. Currently,
none of the community or national forecast services is
able to meet this requirement. Global forecasts
produced by organizations like Copernicus Marine
Environment Monitoring Service (CMEMS), UK Met
Office and CMCC (Euro-Mediterranean Centre for
Climate Change), cover the pan-European seas, but
they are only updated once a day, and their forecast
skills have not been specifically tuned for the
European seas. Regional oceanographic forecasts,
both from national and CMEMS forecast services,
have higher resolution and update frequency but they
typically cover only part of the European seas, and
their forecast ranges sometimes are less than seven
days. Therefore it is necessary to combine different
oceanographic forecasts to generate a European wide,
quality ensured model product that meets all the user
needs. All the important hydrodynamic quantities for
the operations, such as sea surface temperature and
currents, should have seamless transition between the
different seas and oceanographic areas.

There are two ways to make this seamless
European Sea forecast. One is using static weights that
ensure a smooth transition between regional products,
the other is using dynamic weights to aggregate
products from different models to a Multi-Model-
Ensemble (MME) product. The first method uses
smooth, static spatial weighting functions for the
individual forecasts to aggregate them smoothly at
the boundaries of the forecasting area. Since some
forecasts have ranges shorter than seven days, a
temporal smoothing should also be performed. To
generate seamless transition in space and time, only
one forecast is needed for a given region. Hence for
each region and update time, a “best forecast” should
be selected. This approach is referred as simple
aggregation.

A more complicated method is to use a weighted
multi-model ensemble (MME) approach based on best
forecast features of individual models and possibly
including near real time observations. Such kind of
method has been developed in the atmospheric
science [1, 2, 3] showing improved forecasts [4]. For
ocean forecasting, the MME approach has been used
to generate sea level forecast at tide gauge stations in
the Baltic-North Sea. For ocean field forecast, the
MME forecast has applied same weights for different
models, instead of using observations to determine
models’ weights [5].

In this paper, both approaches will be
implemented. The simple aggregation method has
been set-up to perform operational forecasts. The
MME aggregation was developed to replace it, and is
currently available for SST forecasts in the Baltic-
North Seas as well as in Mediterranean Sea and Black
Sea, where it has been implemented, tested and
validated. The developed method explores how
satellite observations can be used to assess spatially
varying, near real time weights of different forecasts.
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The paper is organized as follows: section 2
describes methodology and input data, section 3
analyses results and section 4 is conclusions.

2 METHOD AND INPUT DATA

This study focus on examining feasibility of using
Copernicus Marine Environment Monitoring Service
(CMEMS) and national forecasts, both global and
regional, for making a pan-European Sea aggregated
forecast. The aggregation forecast experiments are
made and assessed for two periods: a 7-month period
during September 3, 2022 — March 15, 2023 including
all forecasts with focusing on the general performance
of the method, and a one year period from May 1,
2021 - April 30, 2022, with focusing on seasonal
variability. However, only CMEMS and DMI forecasts
are used in this period as CMCC global product is not
available for this period.

2.1 Input data

Both multiple forecast products of SST and sea surface
currents and satellite SST observations are used in this
study.

2.1.1 Forecast products

The forecast products used in this study consist of
global forecast from CMEMS and CMCC, and
regional forecast from CMEMS and DMI. A summary
of the products is shown in Table 1.

DMI product DKSS uses sub-domains of higher
resolution in the Danish straits.

There are a few things to note about the different
forecast products that are used in the aggregation.

Data assimilation: All forecasts in Table 1 use SST
data assimilation except for DMI forecast. Therefore,
all the forecast products except DMI's may feature
smaller temperature bias. It should also be noted that
global and regional model systems assimilating
different SST products, for example, CMEMS global
forecast assimilates OSTIA L4 SST while most of
CMEMS regional forecast system assimilates regional
L3S SST. The differences in the OSTIA and regional
SST data will affect the weights of different forecasts
in the MME forecast aggregation.

Currents: all regional forecasts have tides included
in the model, except for the two global forecast
products (CMEMS, CMCC). In order to obtain the
total currents from the global oceanographic products,
separate forecasts of tidal currents are obtained from
CMEMS global product.

Some areas not covered by the CMCC (Euro-
Mediterranean Centre for Climate Change) global
product like inland parts of fjords are excluded also
from CMEMS global forecast. CMEMS
Mediterranean, CMEMS Black Sea and CMCC global
forecasts do not cover Marmara Sea, Azov Sea, the
narrow Dardanelles Strait at the eastern part but they
are still covered by CMEMS global forecast.



Table 1. Individual forecast products used for aggregation forecast (SST and surface currents only)

Area Provider Spatial Temporal Update  Forecast
resolution resolution  time (h) range
48-66N, 4W-30E DMI (Baltic-North Sea) 0.05 deg. Hourly 00, 06, 12, 18 5days
11-73N, 43W-43E CMEMS (Global) 0.083 deg. Hourly 12 10days
46-62.75N, 16W-13E CMEMS (NW Shelf) [6] 0.03 deg. Hourly 12 6 days
26-56N, 19W-5E CMEMS (Bay of Iberian-Biscay-Ireland)0.028 deg. Hourly 12 5 days
53-66N, 9-30E CMEMS (Baltic Sea) 0.018 deg. Hourly 00, 12 6 days
30.18-45.98N, 17.29W-36.30E  CMEMS (Mediterranean Sea) [7] 0.042 deg. Hourly 12 5days
40.5-47.0N, 27.25-41.1E CMEMS (Black Sea) [8] 0.025 deg. Hourly 12 5days
11-73N, 43W-43E CMCC (Global) 0.0625 deg. Hourly 12 6days

Eastern part of Atlantic Ocean is covered by
CMEMS regional Iberian-Biscay-Ireland (IBI) model.
It is not yet implemented in the operational
aggregated forecast product, but it is included in SST
validation results in order to estimate whether to
include it in updated operational aggregation.

2.1.2 Satellite SST

Regional SST satellite observations of Level 3 from
CMEMS are preferred for forecast aggregation in
regional seas, ie. Baltic Sea, North Sea,
Mediterranean Sea and Black Sea. This includes North
Sea/Baltic Sea - Sea Surface Temperature Analysis L3S
product, Mediterranean Sea - High Resolution and
Ultra High Resolution L3S Sea Surface Temperature
product [9], Black Sea - High Resolution and Ultra
High Resolution L3S Sea Surface Temperature
product [9], and CMEMS global Level 3 product. In
the areas where Level 3 SST is not available in
CMEMS, e.g., in the Arctic Ocean and Atlantic open
sea, Level 4 SST from CMEMS SST Thematic
Assembly Center (TAC) is used. As a consequence,
CMEMS Arctic Level 4 [10] product is well suited for
the Arctic area.

Modelled SST as well as surface currents depends
on the thickness of upper layer used in the model. In
general, regional models have higher vertical
resolution and thus SST could be resolved better.
Observed SST of weather satellites often relates to
near surface part of the sea surface and is typically at
lower depth than the first layer depth of a forecast
model. Some of CMEMS SST Level 3 observation
products have both SST and adjusted SST as
Mediterranean Sea, Black Sea and global ocean
products. Adjusted SST observations have a lower
influence from daily SST variations and are used for
validation of the individual models here. SST satellite
observations are often stated as daily average value
but depend on exact timing of pathing satellites in
their orbits. Therefore, SST observations come with its
natural deviations which are typically lower than 1
degree of temperature.

Satellite Sea surface temperature products are used
for the calculation of dynamic and static MME
aggregation weights. Sea surface temperature is one
of the best products that satellite monitoring can
deliver for the oceanographic conditions. Existing
regional SST satellite observations are better
parametrized for corresponding seas: North Sea,
Baltic Sea, Mediterranean Sea, Black Sea and Arctic
Ocean. Therefore, global SST observations are used
only in areas outside the regional ones. CMEMS SST
observations of Level 3 type are used everywhere
except the Arctic where Level 4 satellite observations

are used. Level 4 observations in Arctic Ocean are
filtered in such a way that only observations with
standard deviation between 0.001 K and 0.2 K are
selected, that approximately corresponds to valid
Level 3 observations. Observations with existing ice
mask are excluded as these SST observations may be
less accurate in this situation than the modelled result.

2.2 Simple agqregation method

To obtain an aggregated forecast, the simple
aggregation method is used to smoothly merge
multiple forecasts with different spatiotemporal
resolutions and coverages into a wunified grid,
coverage and forecast range. This aggregation
involves several stages.

First, spatial and temporal grid is constructed to
cover the forecast area (11° N - 73° N, 43° W - 43° E)
with the requested resolution of 0.1 degree, and a 7-
day forecast period with an hourly interval. That grid
acts as the basis for the aggregation method, and the
aggregated product with the specified grid is
delivered to FRONTEX users.

Next, a common land-sea mask is constructed on
the base grid to ensure the same representation for all
forecast products. Disconnected small water bodies in
the base grid are removed, and most of inland fjords
are also removed as they are represented only in one
or two forecast products. The CMEMS global product,
with a spatial resolution of 0.083 degree and the best
spatial and time coverage, is used as the basis for the
land-sea mask in order to ensure that all grid points
are represented for the entire forecast period.

Then, a weighting function is constructed for each
forecast source on the base grid to ensure smooth
transition in space and time. Space and time variables
are separated in the weighting function for each
forecast source i:

w, (lat,lon,l) =g (lat,lon)-h[ (t) (1)

where lat is latitude and lon is longitude, and ¢ is time.
The spatial function gi(lat,lon) has a transition zone
around the boarders where regional and global
forecasts overlap. This ensures continuous spatial
transition from a regional solution to a global one. A
scaling coefficient ai is added to put a higher weight
on a regional forecast source:

The next step is to perform a linear interpolation of
source forecast fields from their model grids to the
base grid. Each variable (SST and components of
surface currents) of each model source results in
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separate  interpolated field. However, linear
interpolation does not work at coastal locations, so a
nearest neighbour method is used, and if it fails to get
a value, then a moving average is selected with a
window size not exceeding 0.3 degrees. After that, the
common land-sea mask is applied to cut off
unnecessary points, and NAN (not any number)
values are used outside the area covered by a source
forecast.

Then, a weighting function is constructed for each
source on the base grid to ensure smooth transition in
space and time. Space and time variables are
separated in the weighting function for each forecast
source i:

W, (lat,lon,t) =g, (lat,lon)-h; (1) 2)

where lat is latitude and lon is longitude, ¢ is time.
Weighting function is not normalized at this stage.
The final weights are derived when all the sources are
considered. The spatial function gi(lat,lon) has a buffer
zone in open waters for the regional forecast sources
to ensure continuous spatial transition from a regional
solution to the global one. A constant scaling
coefficient ai is added to put a higher weight on a
regional source:

g; (lat,lon) = a; -, (at,lon) (3)

where weighting function ni(lat,lon) of forecast i
changes from 0 to 1, see Figure 1. If it is 0, the source is
disregarded at the given location, and if it is 1, then
there is maximal effect of the corresponding source on
the aggregated product at the given location.
Coefficients ai are chosen according to validation
results which are typically better for regional forecast
sources with higher resolution.

i i i i i i i i i
-40 <30 -20 -10 0 10 20 30 40

Figure 1. Blue rectangle - area of aggregation. Shaded
rectangles: unit weighting function ni(lat,lon) for regional
model areas (Northwest Shelf Sea, Baltic Sea, Mediterranean
Sea, Black Sea)

Most of the sources have a forecast period of less
than seven days. Therefore, time function hi(t) is
constructed, which is 1 when the corresponding hour
is covered in the source forecast and 0 when it is not.
However, this would result in step-like jump in time.
Hence, function hi(t) is chosen in such a way that it
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continuously changes from 1 to 0 at the final day of
the period covered by forecast source i.

If a specific forecast source may not be available, it
is disregarded by setting its weighting coefficient ai to
zero. Finally, a value V(lat,lon,t) in aggregated forecast
product is obtained from combined values vi(lat,lon,t)
of weighted sources on the base grid:

Zivi (lat,lon,t) w; (lat,lon,t)

Z w; (lat,lon,t)

V(lat,lon,t): 8i (lat,lon)-hl-(t) @)

where summation occurs over sources with non-NAN
values. The V value can represent any scalar value,
e.g., SST or components of the surface currents.

2.3 Multi-Model-Ensemble (MME) aggregation method

SST forecasts are typically accompanied with daily
satellite SST observations from the preceding days,
allowing for the minimization of forecast bias.
Furthermore, multiple forecasts are available for a
given region, such as global and regional forecasts
from CMEMS and national services. This presents the
potential to improve SST forecast beyond the simple
aggregation method by using a MME aggregation.
Satellite SST observations enable to the determination
of optimal weights for individual forecasts in the
aggregated product. In such a case, one would often
expect that regional oceanographic forecasts will
outperform the global ones. As a result, higher
weights are assigned to the regional products. The
MME aggregation will not be applied to locations
with ice masks.

For the MME aggregation, the first step is to obtain
the forecast error statistics. Then the forecast error is
used to calculate the weights for different forecast
products and finally the MME aggregated forecast is
obtained as a linear, weighted sum of the individual
forecasts. SST deviation at location-time (x,t) of a
forecast i is:

AT, (x,0) =T; (x,t) =Ty (x.1) (5)

where To(x,t) is satellite SST at each grid point x=(lat,
lon) and time moment f. Ti(x,t) is modelled SST value
of the forecast model i.

In the same way, squared temperature difference is
treated. Mean square difference at location-time (x,t)
of forecast i is:

AT, (x,0) = (T, (x+ Ax,1 + At) ~ Ty (x+ Ax, 0+ Ar)) (6)

In order to have spatially and temporally smooth
squared error distribution, rolling mean value is used
at each grid point x and time #:

AT, (xt) =+ i (T, (x+ Ayt + Af) =Ty (x+ Ax, 1+ Ar)) (7)

Ax,At

where, in practice, Ax runs through 5 x 5 spatial grid
points of latitude and longitude centred on grid point
x; At runs through 7 days: -3 days, -2 days, ...., 3 days



centred on current day f; m =5 x 5 x 7 = 175. Points
with no data values at location-time x+Ax,t+At are
excluded from averaging.

Using multi model ensemble, local weighting
factor for each source i is obtained by:

2 —4
o () (AT2,,/ (x.0)) . "
Z(AT2 ol (x,t))

J

The 4™ power is used here, in order to have higher
weight for the best product. For the same reason, bias
is not subtracted at this stage. The resulting deviation
at (x,t) of multi-model ensemble is

AT (x,t) = Zwi,ml (x,1)- AT (x,1) )

where summation occurs over all forecast sources i in
the area. The resulting centred Root Mean Square
Error (cCRMSE) at (x,t) of multi-model ensemble is

cRMSE (x,1) = \/Z(Wi’ml (x,)-AT?, (x,z)) —AT?(x,1) (10)

These formulas yield quantitative estimations of
quality of each forecast source and resulting effect on
the aggregated product.

Figure 2. Left: Count of Level 3 observations from regional
and global CMEMS sources at each location on 0.1x0.1 grid
in September 3, 2022 to March 15, 2023. Right: bias of
weighted product (9) of 3 forecast models: CMEMS global,
CMCC global and CMEMS regional.

Figure 3. Left: weight of CMEMS regional product (Black
Sea, Mediterranean Sea, Baltic Sea, North West Shelf, Iberia
Biscay Ireland) with respect to the set of 3 forecast models:
CMEMS global, CMCC global and CMEMS regional. Right:
weight of CMCC global product in the same configuration

Figure 4. Left: central RMSE of combined set of 3 forecast
models: CMEMS global, CMCC global and CMEMS
regional (Black Sea, Mediterranean Sea, Baltic Sea, North
West Shelf, Iberia-Biscay-Ireland). Right: central RMSE of
only CMEMS regional product in respective areas

3 RESULTS

Results of the Multi-Model-Ensemble (MME)
aggregation method of have been analysed for 2
periods covering different data products. The first
experiment 09/22-03/23 includes all regional and
global data sets, but does not cover an entire year. The
second experiment 2021-2022 includes all regional,
but only one global data set, the Copernicus Marine
Environment Monitoring Service (CMEMS) global
product and covers one full year. It can therefore be
used for the assessment of the seasonal variations of
the MME aggregation method. Finally, the
operational implementation of the simple aggregation
method using static weights is discussed as well.

3.1 Experiment during 09/22-03/23

The first experiment studies the spatial pattern of the
MME aggregation on European scale. It covers a
limited time frame of 7 months (September 2022 to
March 2023), because CMCC (Euro-Mediterranean
Centre for Climate Change) global data was not
available for the period prior to 09/23. Figure 2 shows
the number of observations in the considered period
September 2022 to March 2023. The highest number of
clear-sky days with valid SST observations occurs in
Mediterranean Sea, Red Sea, at latitudes of around
250N. CMEMS regional SST observations in North
Sea, Baltic Sea and Arctic Ocean provide higher
number of days with valid observations. Lowest
number of observations occurs in Atlantics at latitude
of 50 degrees due to the specific positioning of the
satellite orbits. Also, Arctic coastline has lower
number of observations due to ice mask in winter
time.

Figures 3-4 show derived weight of CMEMS
regional or CMCC global forecasts (Figure 3) and
central Root Mean Square Error (cRMSE, Figure 4)
when 3 forecasts are involved: CMEMS global, CMCC
global and CMEMS regional. CMEMS regional
forecast model corresponds either to Black Sea,
Mediterranean Sea, Baltic Sea, North West Shelf
(NWS) or Iberia-Biscay-Ireland model. Iberia-Biscay-
Ireland model is not yet included in operational
aggregation but included in validation results. Bias of
weighted product (9) is well within half a degree
range, see Figure 2 right. That bias is easily removable
from the final product.

537



CMEMS regional models clearly dominate the
weights in the aggregation in the North West Shelf
and Black Sea, see Figure 3. Actually, some of the
models like North West Shelf (NWS) model benefit
from the fact that it uses best-estimate products for
the days prior to the analysis that incorporate also sea
surface temperature (SST) observations. These data
are then stored in historical CMEMS database that are
used for validation. For this reason, the real
operational NWS forecast product from CMEMS is
not as accurate as the historical NWS dataset archived
at CMEMS. Henceforth, the calculated MME weights
that use historical data do not necessary reflect the
quality of the forecast data (Figure 3).

Regional Baltic Sea model has good performance
in SST, but may slightly over-predict upwelling
events which are rather tricky to model in Baltic Sea,
see Figure 5. Also, locations with upwelling events
may promote creation of low altitude clouds meaning
that usable satellite SST observations may not be
available. Mediterranean and Iberia-Biscay-Ireland
regional models show approximately the same quality
with respect to SST observations. Mediterranean and
Black Sea models use 3DVAR scheme of OceanVar
[11] that assimilates data predominantly in weekly
basis. Different assimilation scheme can lead to that
SST performance sometimes falls behind CMCC
global oceanographic model as in the given time
period of 7 months.

Figure 4 shows that cRMSE of the weighted SST
product of the mentioned 2 global models and 1
regional model in the respective sea. The result is
better in North West Shelf and Black Sea where the
weight of regional product dominate. The first one
may benefit from hindcasting nature of North West
Shelf archived data in CMEMS database. Both of the
global modelling products are less effective in Black
Sea that leads to dominance of the regional Black Sea
product. Some larger deviations occur at Gibraltar.
Also the Mediterranean and West African coastlines
have a lower combined accuracy that may result from
ability of Nemo oceanographic model to handle
shallower waters. There is strong gain of using MME
in Mediterranean Sea and Baltic Sea rather than using
the CMEMS regional product alone, compare Figure 4
left and right.

The quality of the aggregated product deteriorates
as the forecast becomes longer. It is because there is
lower number of models for the final days and the
performance of the models decreases with increasing
forecast length in general. Validation results in [12]
suggest that relatively good results are obtained for
the first 3-4 days of the forecast. The final days of the
forecast can be used only as initial estimate of what
conditions are expected without a remarkable
accuracy. Longer forecasts of SST are generally more
accurate than that of the currents, because
temperature is essentially a cumulative quantity of
resulting from previous conditions.
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Figure 5. Example of SST time series of 3 different forecast
models and observations in Baltic Sea near Swedish coast at
latitude=58.4° and longitude=17.3°

3.2 Experiment in 2021-2022 (Seasonal validation of
SST)

Sea surface temperature features a strong seasonality
at northern latitudes. In winter, the SST is close to
zero degrees with very small day to day changes as
well as small diurnal variations, whereas in summer,
SST features strong day to day variations with distinct
diurnal cycle. Figure 6 shows monthly cRMSE of the
aggregated MME forecast. It is noted that there are
exceptionally high forecast errors in June and July,
which is originated from all the individual forecast
(Figure 7). Consequently, optimal weight of each
source model in the aggregation could depend on the
season. For example, monthly weight of CMEMS
Baltic Sea model is dominant in spring-summer but
less dominant in autumn, see Figures 6-7. The main
reason why CMEMS regional Baltic Sea model has
less accuracy in autumn months is a slight over-
prediction of upwelling events resulting in a high
penalty. Also in Mediterranean Sea, the CMEMS
regional product is better in summer and spring, but
it provides less accuracy in autumn, see Figure 7.

.
T

sl | B8 |

Figure 6. Monthly weighted cRMSE in Baltic Sea in period
from May 2021 to April 2022. The included forecast models
are CMEMS global, DMI DKSS and CMEMS Baltic Sea
model.



———

Figure 7. Monthly averaged RMSE of SST in regional seas of
CMEMS regional (North Sea, Baltic Sea, Mediterranean Sea,
Black Sea) model, DMI DKSS model for North Sea-Baltic Sea
(upper row) and CMEMS global ocean model and the
weighted model. RMSE and cRMSE represent weighted
values of aggregated product.

Figure 7 shows monthly RMSE in regional seas. In
general, it is less than half a degree. It is slightly less
in winter when typical variations of temperature are
lower. The CMEMS regional products clearly
dominate here. Use of MME still improves the final
result, especially in Mediterranean Sea. CMEMS
regional product in Mediterranean Sea has larger
deviations in months of autumn. Figure 7 also shows
that the aggregated MME product features the lowest
RMSE values in all regions.

bias North Sea bias Baltic Sea

L PC I
S e

Figure 8. Seasonal bias (in degrees) of SST regional seas:
North West Shelf, Baltic Sea, Mediterranean Sea and Black
Sea. The included models are CMEMS global model,
CMEMS regional model in respective area and DMI DKSS
model in North Sea — Baltic Sea. The blue line is bias of the
weighted product (9).

Figure 8 shows seasonal bias in regional seas.
Negative bias is typical in North West Shelf and Baltic
Sea. The CMEMS regional products clearly dominate
here, too, as they extensively use SST assimilation
scheme. They have most negative bias in winter when
the number of clear-sky days is lowest and there is a
smaller amount of satellite SST data available for
assimilation. The DKSS model is not using SST data

assimilation. For this reason, the SST bias of the DKSS
model is higher. Thus, the bias of the aggregated
product is very close to CMEMS regional product,
which is having a larger weight. CMEMS regional
product in Mediterranean Sea has monthly bias with
amplitude less than 0.1 degree that results from the
fact that a larger amount of satellite SST data is
available for data assimilation (Fig. 2). CMEMS
regional product in Black Sea uses similar model
parameterisation as in Mediterranean Sea but has
pronounced positive bias in summer.

3.3 SST bias correction in agqregated forecasts

The validation results showed that resulting bias of
SST taking into account several models is usually less
than a degree in regional seas. The weighted bias of
aggregated product shown in Figure 2 right and
Figure 8 can be subtracted from the final result. It
means that SST observations can be used to correct
the biases of the model data. However, the near real
time SST observations and model forecasts do not
overlap in time. Therefore, aggregated forecast data
are archived for the past 3 days which are then
compared to SST observations of the same days. This
yields an initial estimation of the location dependent
bias correction function Ao(x) for the start of the
forecast. Because, it is unclear how the bias could
change on the forecast then the amplitude of initial
bias is gradually set to fade for the final days of the
forecast. The time dependent fading factor is set to
have an exponential decrease

A(x,t)=A,(x)e™" (11)

where 7 is 3 days. Bias correction is set to zero in
locations masked as cloudy or with an ice mask.
Moving average method is used to obtain a smooth

bias correction function A.(x) with spatial window of
0.5 degrees.

Regarding optimal weight maps for the
operational forecasts, we cannot use a detailed time-
dependent weight maps as in Figure 4 because there
are no SST observations in forecast period. Instead,
optimal set of weights of individual model sources are
derived from validation results of historical data.

3.4 Operational implementation

The core procedure of aggregation is carried out in a
Python script using Xarray module to work with
gridded NetCDF or Grib data. The script has been
running operationally four times a day since
November 2021 at Danish Meteorological Institute
(DMI). The performance of the operational production
is monitored in real time using an automatic
monitoring tool. If there are errors in downloading
and aggregation, a warning will be sent to assigned
forecasters with an error report. An example of
aggregated SST is shown in Figure 9. As can be seen,
seamless spatial transition from regional solutions to
global ones is well represented. Also transitions in
time are smooth.
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Figure 9. Example of operationally aggregated SST at
2023.04.11 00:00:00 using MME. Left is SST at the start of the
forecast, right is SST development in time at selected
locations shown by latitude, longitude values in legend.

4 CONCLUSIONS AND DISCUSSIONS

In this study, aggregating met-ocean forecast for pan-
European seas is implemented and validated by
integrating CMEMS and national global and regional
forecasts, using both a static-weight deterministic
method and a MME-based dynamic weight method.
In the static-weight method, continuous transition in
space and time between different models is made
using spatial weighting functions with gradual
transitions in space in order to produce a four times a
day, pan-European sea 7-day forecast. In order to test
the performance of aggregated forecast, validation of
SST is used. In the MME-based method, the SST error
statistics are used to generate optimal weights of each
individual forecast model. Based on one year
verification results, regional oceanographic models
outperform the global ones as they have a higher
native resolution. It should be noted that some of the
regional models use a strong hindcasting nature of
archived data in CMEMS database, e.g, CMEMS
North West Shelf model that leads to very good
performance for historical dataset but not necessary
for the forecast. CMEMS Baltic Sea model uses SST
assimilation, but slightly overestimates upwelling
events near coastline in autumn. Similarly, CMEMS
Mediterranean model has a good performance with
respect to SST through almost all of the year except
autumn, when CMCC global oceanographic model
provides better validation results. It may result from
assimilation scheme in CMEMS Mediterranean model
which is running on a weekly basis rather than daily
one. In order to obtain smooth weighting function, a
moving average error analysis is made with small
special window. That yields a weight map showing
the strong and weak areas for each of the forecast
model. That is used to estimate the weights in the
operational version. MME approach yields notable
benefits over simple aggregation method. It is
especially notable in areas where a single model is not
dominating as in Mediterranean Sea. The same
principles of aggregation will be used also for
aggregation of other fields as surface currents and
waves.

It was found that, in the Baltic-North Sea,
individual models have very high errors in June and
July even if SST has been assimilated. The situation
can be improved by using MME based aggregation
but still give high errors.

540

The aggregation method of forecasts should be
robust and work even if some of the forecast models
are missing at the time of aggregation. Therefore,
multi-model ensemble is essential to replace a missing
model with the other ones. Moreover, some forecast
models may be outdated at the time of aggregation.
These situations are handled by proper selection of
dynamic weights of the individual models in the
aggregation method.

Major differences of these models with respect to
observations occur in autumn and winter when the
skies are cloudier and the amount of data and data
quality are both low. Moreover, upwelling events
have generally lower forecast accuracy and are more
characteristic in autumn. Therefore, it is expected that
there could be major deviations of modelled SST in
autumn and winter months.
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