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1 INTRODUCTION 

The security aspects of robotic research generally 
receive much less attention, which can be partly 
reflected by the lower number of search results related 
to “robotic security” as shown in Table 1. As robotic 
systems become more powerful and easily accessible 
to the public, the lack of security awareness provides 
attackers with growing opportunities to cause massive 
damage to lives and properties. The situation is 
further exacerbated if we incorporate Robots-as-a-
Service (RaaS) concept and introduce more user types 
and complexities to the system. Our work hence 
attempts to provide a viable solution that fulfils both 
the need for a secure system and the need for online 
delivered robotic service. 

 

 

 

 

Table 1. Search terms entered to Google Scholar and the 
respective number of returned results. _______________________________________________ 
Search terms     Number of results in thousands _______________________________________________ 
robotics         2150 
robotic         1770 
robotic system      1520 
robotic control      1480 
robotic artificial intelligence  440 
robotic security      153 _______________________________________________ 
 

Teleoperated UVs have been existing for over half 
a century and are traditionally deployed in extreme 
environments such as nuclear plants, deep-sea, and in 
space [13]. With the latest advancement in capabilities 
of UVs, teleoperation is getting more involved in 
more diverse use-cases to assist human operators [3, 
12]. As the number of scenarios where UVs could be 
utilised grows, we envision the emergence of a market 
spectrum that offers various kinds of robotic services 
to customers [21]. These services will likely be 
accessible through the internet via standard browsers 
to allow for easy access of a wide range of possible 
users [19]. On the other hand, up-scaling these 
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systems will raise challenges related to performance, 
security, and safety regulations [26]. The security 
aspect of robotics research is often neglected, giving 
attackers chances to take over and potentially cause 
physical damage [9]. The Robot Operating System 
(ROS), for example, though widely used in robotics 
research, is not secure enough to be accessed publicly 
unless a series of security hardening is done [10]. 

As an effort to overcome these problems, we 
propose a web-based, service layer that is built upon 
mature open-source software. There are currently 
multiple implementations still under active 
development. An early version of our service layer is 
implemented in the Robotic Vessels as-a-Service 
(RoboVaaS) project, which aims to create a direct 
communication channel between the port customers 
and professionals that perform five oceanographic 
services, such as quay-wall inspection and 
environmental data collection [23]. In the European 
Union (EU) project Shipping Contributions to Inland 
Pollution Push for the Enforcement of Regulations 
(SCIPPER) [24], the service layer is named 
Environmental Shipping Monitoring Center (ESMC) 
and focuses on collecting data from environmental 
sensors and provides a web interface for visualising 
emission information. In the Horizon 2020 funded 
project SEarch, identificAtion and Collection of 
marine Litter with Autonomous Robots (SeaClear), 
the service layer interfaces with a team of 
heterogeneous robots (air- and waterborne) and 
assists with marine litter clean-up operations. In 
another EU project Risk-aware Autonomous Port 
Inspection Drone (RAPID), the service layer is 
officially called Command and Control Center which 
instantiates a customer service-request web interface 
and the operator mission-support interface. In 
general, these implementations are designed to be 
working closely as an integrated environment with 
managers, engineers, operators, and clients, who 
expect to track progress and analyse results of services 
involving off-shore electronic or robotic systems 
without the need to understand intricate details. On 
the other hand, the online delivered robotic services 
are not focusing on creating external interfaces for 
directly commanding robotic systems. 

2 APPORACH 

We adopted a microservice architecture and split the 
whole system into several computational components 
which communicate with each other through a set of 
well-defined and transparent Application 
Programming Interfaces (APIs) over Hypertext 
Transfer Protocol (HTTP) protocol. In this way, each 
microservice can focus on its core functionalities and 
offload computation to other responsible services. For 
example, the encryption and decryption of 
authentication token are handled solely by the 
authentication server. When the back server processes 
a user request, it can simply call the decode API of the 
auth server to retrieve the user’s identity information 
from the token, without the need to implement 
another authentication algorithm. Moreover, as 
explained in [8], by decoupling the overall system in 
microservices, various cloud-based services can be 

exploited to fulfil the requirements of the different 
users involved in operating complex robotic systems. 
The reliability overall is also enhanced since the crash 
of a particular microservice does not result in a 
complete system meltdown. 

We use a centralised approach to manage overall 
system states and access control policies of data 
channels. Although peer-to-peer communications in a 
decentralised setup have less overhead and fewer 
dependencies, we believe the service provider should 
possess ownership of data channels and have the 
power to immediately alter the system state in case of 
malicious activities or emergencies. By accessing the 
broker services the service provider can also verify the 
source and time of any communicated data. 

To reduce duplication of effort, we strive to reuse 
as much mature and open-sourced technologies as 
possible. For example, service logic is mainly written 
in Javascript and run in NodeJS servers. User data and 
state information are stored in a PostgreSQL database. 
This approach allows us to focus on tackling logic that 
addresses problems specific to a particular use case. 

Interfacing the service layer with other robotic 
systems requires services to translate data. For 
example, Rosbridge [6] is required to convert data 
between the ROS message format and the AMQP or 
WebRTC protocols. Another issue associated with 
ROS middle-ware or Data Distribution Service (DDS) 
is that they do not offer mechanisms to force an 
established communication to hang up. Due to these 
incompatibilities, our approach is to create a bridge 
node and treat it as a single monolithic vehicle. 

3 SYSTEM FEATURES 

The aspired service layer serves to provide business 
logic and to handle data according to a large set of 
different use-cases for various sectors and 
applications. Our implementation supports the 
following functionalities or features: 
− Accessibility through internet: The service layer 

acts as the frontier facing end-users (or clients) and 
should be publicly accessible as a website. It 
should follow the latest security standards while 
leveraging the capabilities of modern browsers. 
For example, communication channels should 
conform to secure protocols such as Transport 
Layer Security (TLS) and Datagram Transport 
Layer Security (DTLS), to prevent eavesdropping 
of network packets and to ensure the integrity of 
data. To mitigate vulnerabilities related to Cross-
Origin Resource Sharing (CORS), we deploy a 
front server that is in essence an Nginx-based 
reverse proxy server, to tunnel communications 
between client and servers. In this way, the front 
server acts as a single point of contact (SPOC) and 
requests intended for the back server and 
authentication server are distinguished by 
different Uniform Resource Locator (URL) 
prefixes. 

− Optimised resources allocation: When the number 
of users, UVs, and operators increase, efficient 
allocation of resources becomes a complex task. To 
resolve potential conflicts, tools such as mission 
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planners or booking systems have to be made 
available. While these tools could propose optimal 
solutions to users, the back server always has the 
final say on whether to proceed with a request. 

− Distinguish stakeholders: While a typical robotic 
system mainly focuses on interfacing with 
operators and robots, the service layer also 
interacts with external users such as clients, guests, 
and authorities. Such a big variance of audience 
results in vastly different data needs and should be 
addressed accordingly. The data is traced to the 
producer by checking the binding status of RMQ’s 
queues and exchanges. 

− Horizontally Scaled: The architecture should be 
able to scale up to support a large number of 
customers, operators, robots, and ongoing 
missions simultaneously. It should include 
mechanisms to enable switching of robot control 
from one operator to another, so to maximise the 
up-time and flexibility of the service. In our 
implementation, the RMQ service supports 
expansion into a node cluster to support heavier 
traffic. Similarly, the NodeJS back server can be 
duplicated so that all requests are load-balanced 
through the front server. The database act as a 
single source of truth (SSOT) and is responsible to 
resolve any conflicts resulting from multiple 
concurrent transactions. 

− Supplying lean information: Following the 
principles of Lean Product Development [16], the 
service layer should eliminate unnecessary data 
transfer and focus on delivering data that the user 
values. This is especially important given the high 
cost of bandwidth when operating across the web. 
A responsive interface and smooth user experience 
should be achieved through data post-processing 
techniques such as filtering, indexing, sub-
sampling, and compressing. 

− Reporting live data: Live data, such as robotic 
system position and video footage from on-board 
cameras not only enhance transparency and user 
experience but also provides managers and 
regulatory bodies with timely information 
necessary for monitoring and decision making in 
case of exceptional or hazardous events. 

− Supports human in the loop: Although UVs are 
increasing their level of autonomy, human 
judgment is still necessary to perform some safety-
critical procedures or to deal with situations when 
the necessary context is difficult to be captured and 
reasoned by a computer [5]. For instance, the 
service layer should prompt the responsible user 
for responses when processing safety procedures 
such as risk assessments, flight plan modifications, 
and traffic rerouting. 

− Complements teleoperation: Modern browsers are 
capable of utilising sensors of mobile devices and 
interact with the human in complex ways. With an 
abundant supply of JavaScript libraries and their 
native support for WebRTC protocol, browsers are 
becoming an attractive choice to be used as an 
operator interface. Such an interface can be directly 
incorporated into the service layer as a tool for 
remote operators. 

4 SYSTEM DESCRIPTION 

The service layer is a bundle of components that can 
be tailored to handle a wide range of use cases. By 
using Service-Orientated Architecture (SOA) the 
native software solutions of the electronic and robotic 
systems can conveniently report their operations and 
leverage the data analyses to dedicated services. 
Following the Separation of Concern Principle [7], the 
service layer is separated into modules of distinct 
functionalities to enhance maintainability and 
readability. This section walks through the roles of 
these components and how they can be incorporated 
into a complete system. 

4.1 Component Overview 

The core of the service layer comprises a mission 
management system and a user management system. 
Whereas user management is handled by the 
authentication server, the logic concerning state 
changes and mission management is implemented in 
the back server. To communicate data among the 
robotic systems and various stakeholders, data 
brokers such as RMQ and Janus Gateway [1] are used. 
Network logs are dumped into a data lake for future 
analysis. The major components are summarised in 
Table 2. 

Table 2. A list of typical system components in the service 
layer. _______________________________________________ 
Component  Description _______________________________________________ 
Database   Structured file systems that support SQL  
      query and store important information  
      such as the current system state, post- 
      processed mission data, and metadata of  
      compressed binary files. 
Authentication A server that provides REST API related  
server     to user management such as user creation  
      and verification of single-sign-on tokens. 
Back server  A server that handles high-level requests  
      from users and authorizes the subsequent  
      system state transitions. 
Front server  A proxy server that accepts all external  
      requests and forwards them to the target  
      servers. This mitigates vulnerabilities  
      related to Cross-Origin Resource Sharing  
      (CORS). 
File server   A server that stores and serves files  
      encoded in binary formats. 
Data brokers  Servers that handle many-to-many  
      communications by relaying data between  
      users. 
Browsers   Provides graphic-user-interfaces to enable  
      user interacting with front-server. 
Data-lake   Directories which store unstructured raw  
      records such as network logs and sensor  
      dumps. _______________________________________________ 

4.2 System Integration 

The service layer can be integrated with a robotic 
system, as depicted in Figure 1. This system is 
proposed to handle situations where a swarm of UVs 
needs to perform inspection work in an off-shore 
situation. The whole system can be classified into 
three parts that are spatially distinct from each other: 
Off-shore, on-shore, and remote. In the off-shore 
network, a team of UVs shares a local wireless 
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network with local operators. While the 
communication within the local network is stable, 
internet access becomes limited and unstable. The 
service layer resides in the on-shore network and can 
interact with off-shore machines. The off-shore system 
and the service layer can interface at a bridge node 
that translates information to achieve compatibility. 
The remote network usually contains users whose 
presence is not critical to the ongoing mission, such as 
the client and authorities. If the infrastructure 
supports enough bandwidth, it is also possible for an 
operator to command a vehicle remotely. 

 

Figure 1. An example layout where the UVs perform a 
bridge inspection mission while the service layer is 
deployed on-shore. Note that a robotic network is deployed 
on a USV (Unmanned surface vehicle) offshore and can 
directly be accessed by operators in close vicinity even 
when the connection to the service layer is lost. Only 
essential data is exchanged between the offshore and 
onshore network, such as requests to create the mission, 
beacon signal and front camera video from UVs, and 
requests to be permitted by air traffic control authorities. 

4.3 User Management 

As an indispensable part of the service layer, the user 
management system implements a simple role-based 
access control mechanism [22] to enable proper 
sharing of resources among all users. The service layer 
provides a representational state transfer (REST) API 
and a web-based graphical interface to handle 
requests from all users. To access the system, users 
must first register themselves and obtain an assigned 
role from the administrator. All subsequent requests 
will then be handled according to the user role of the 
requester. A user always has one of the following 
roles: 
− Admin: Administrative users who can edit the user 

role and approved use-cases for all other users. 
− Client: End users who request services. They can 

view and comment on missions created by them. 
− Planner: Users, who can assign missions to 

supervisors and plans the itinerary of a mission. 
− Supervisor: Users who conduct a mission and are 

responsible to authorise and manage connections 
between operators and UVs. They can oversee the 
status of robots during the mission and can modify 
itineraries when necessary. 

− Operator: Users who have direct control over 
robots. 

− Robot: Accounts that represent robots. Only 
registered and approved robots can access and 
interact with the service layer. 

− Guest: Users with limited read-access to specific 
missions. 

− Inactive: The default role of a new account. No 
interactions are allowed. 

Apart from the essential admin, client, operator, 
and robot roles, the rest of the list should be 
customised to suit different project needs. As the 
system consists of many separate modules whose 
logic requires authentication, an authentication server 
is used to issue and verify SSO tokens [20]. Users only 
need to input a password once to obtain a secret 
token, and then attach this token to all subsequent 
requests. Modules handling the requests then ask the 
authentication server to decode the token. 

4.4 Mission System 

The service layer encapsulates and presents 
information to users in terms of mission IDs. Each 
mission usually contains meta-information listed in 
Table 3. 

Table 3. The information a mission usually contains. _______________________________________________ 
Item    Description _______________________________________________ 
Use-case  The business use-case requested by the client. 
Geofence  A single connected space that all UVs should  
     stay within. 
Points-of-  Objects or locations of end-user's interest. 
interest 
Itinerary  A list of tasks that specifies the time, location  
     and actions to be carried out. 
Risk    Details on risk assessment. 
assessment 
Sensor data Collected sensor data.All sensor data of  
     business value must reference a unique and  
     immutable mission ID. 
Mission state A mission must always be in one and only  
     one of the states specified. _______________________________________________ 
 

The life-cycle of each mission is captured by the 
mission state, which also provides users with a clear 
insight into the overall progress. The possible mission 
states are as follows: 
− Planning: The initial state after creation. 
− Filed: The risk assessment is submitted. 
− Approved: The mission is ready to proceed to 

operation. 
− In-progress: The supervisor checked in the 

mission. 
− Interrupted: Some unplanned events occurred or 

extra action is required, e.g. beacon signals lost, 
traffic collision warning. 

− Reviewing: All operators have checked out the 
mission. 

− Closed: The client accepted or rejected the results 
of a service. 

The list could be different for different use-cases 
and should ideally be presented as a finite state 
machine for more robust planning. For instance, in the 
RoboVaaS project, the mission system does not have a 
filed, approved, and interrupted state, since the 
system does not include Unmanned Aerial Vehicles 
(UAVs) and has more relaxed safety procedures. 
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4.5 Data Brokers 

To enforce a dynamic access control policy on all data 
links, robots and operators are ideally bridged via 
centralised data brokers [18]. For example, in the 
RoboVaaS project, we use RMQ as the sole data 
broker that relays sensor data and command signals 
between operators and Unmanned Surface Vehicles 
(USVs) [23]. Changes of data link are invoked by 
channel change events. For example, to access the 
USV operators first issues a mount request to the 
service layer, which will then establish a 
communication link only if both the operator and 
USV are not booked in another mission or service. 
Mounted operators can then check in a mission so that 
the service layer associates the sensor data with the 
specified mission ID. As the broker is centrally 
managed by the service layer, it provides the 
possibility for a supervisor to force changes on 
communication channels to handle undesired 
situations, such as when a connection is dropped from 
a remote operator. 

To ensure data traceability and integrity, we set up 
the RMQ server in a way that users can only access 
exchanges and queues beginning with their 
usernames. Therefore an operator cannot access the 
robot without first asking permission from the service 
layer. After a channel is established, the back server 
can trace sensor data back to the operator and UV by 
checking the binding status. This mechanism provides 
two advantages. Firstly the UV does not need to 
bother including their user ID in each sensor data, and 
secondly, attackers cannot spoof their identity by 
sending false user ID. 

Since the web layer can be deployed on the public 
network, the Advanced Message Queuing Protocol 
(AMQP) is used to handle TCP traffic also due to its 
strong security features [17]. For UDP-based packet, 
Janus Gateway [1] will be used to relay WebRTC-
based [14] traffic between browsers and the service 
layer. 

The events that cause a change of routing of data 
are channel change events. These events should be 
handled with extra caution as they affect the data 
broker, hence ultimately who can control a UV. The 
two types of common events are: 
− Mount and Unmount events: These events cause 

the creation or destruction of communication 
between an operator and a UV. 

− Check-in and Check-out events: These events cause 
the creation or destruction of communication 
between a UV and the database. 

Upon processing mount and check-in events the 
back server should make sure the resource requested 
is available, the requester has sufficient rights and the 
changes are correctly executed. 

4.6 Software Stack 

By using mature software libraries shown in Table 4 
we could focus on implementing the logic related to 
specific use-cases and take advantage of the latest 
security features. For example, the load balancing 
feature of Nginx facilitates horizontal scaling in case 
we want to add more NodeJS servers to support more 

concurrent users [4]; OpenLayers draws dynamic and 
interactive maps on webpages [11]; The D3.js library 
provides a range of tools for visualising big data [2]. 
To ensure good code readabilities and to keep the 
development time short, the back server and 
authentication server are implemented using NodeJS. 
Unit-tests and end-to-end tests are written in Python 
and conducted by the Selenium Webdriver. We use 
PostgreSQL as the database to memorise user data, all 
system states, and sub-sampled sensor data. 
Concerning video data, the Gstreamer library [25] is 
used to build a pipeline, in which video data streams 
are encoded on the client-side using the H.264 
compression standard [15] and then sent to the Janus 
Gateway server. 

Table 4. List of major software used. _______________________________________________ 
Component    Technology _______________________________________________ 
Auth server    NodeJS 
Front server    Nginx 
Back server    NodeJS 
Database     PostgreSQL 
TCP-based broker  RabbitMQ 
UDP-based broker  Janus Gateway 
Browser      ReactJS, HTML5 
Robot      Linux, Gstreamer _______________________________________________ 

4.7 Graphical User Interface 

The graphical user interface (GUI) is web-based and 
can be loaded to modern browsers as a web page. The 
interface allows user to navigate around and interact 
with the following elements: 
− Login Page: Where the user authenticates by 

providing the username and password. As shown 
in Figure 2, the login page should stay as minimal 
as possible so sensitive information does not easily 
leak to unintended users. 

 

Figure 2. An example login page. 

− Dashboard: This section acts as the main page and 
appears right after a successful login. It should 
provide the user with a clear and succinct 
overview of overall progress. In the example 
dashboard for operator shown in Figure 3, a list of 
active missions, the robot currently mounted, and 
the credentials for accessing the RMQ server, are 
shown. 
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Figure 3. An example dashboard. 

− Accounts Page: All the user information is 
displayed here. By default, all users can view their 
account information. Besides, some account types 
can view other accounts. For example, the accounts 
page seen by an admin user is shown in Figure 4. 
The page not only displays all other registered 
accounts but also allows the admin to further edit 
the user roles and allowed use-cases. A supervisor, 
on the other hand, can only see the information of 
all registered robots. 

 

Figure 4. An example accounts page. 

− New Mission Page: To create a mission, a client 
should first fill in details such as the desired use-
case, points of interest, and geofence, on the new 
mission page. Then a summary page is displayed 
and the user can confirm and submit the request 
officially. 

− Mission List: The mission list is a table containing 
basic information of missions accessible by a user, 
such as the name of the author and current mission 
state. 

− Mission Detail Page: All the detailed mission 
information such as sensor data, live video stream, 
and discussion histories, is displayed on this page. 
In the example shown in Figure 5, some 
bathymetric sensor data collected during a 
RoboVaaS mission is visualised on a 2D map. The 
data is clustered and color encoded for easier 
perception. This page is also supposed to 
incorporate advanced functions such as report 
generation, file management, and data analysis. 

 

Figure 5. An example mission detail page. 

5 PROGRAM FLOW 

This section describes the communication flow 
between system components. Figure 6 illustrates how 
the front server act as a proxy and relays an 
authentication request between a user and the auth 
server. As the returned token is only decryptable by 
the auth server, other servers need to ask the auth 
server to verify a user’s identity when they receive a 
new request containing a token. 

 

Figure 6. SSO sequence diagram. An example user sends to 
the front server an HTTP request, which has a JSON-
formatted body with the credential. The front server then 
proxies the request to the auth server, which verifies the 
credentials against the record in the database. If it is valid, 
the auth server creates a payload, encrypts it into a token, 
and sends them back to the user. 

Figure 7 illustrates how the service layer can be 
coupled with a data broker. Data brokers usually have 
their own ecosystems and hence an independent user 
management systems. To reduce the overhead for 
users having to manage two accounts, most account 
management is performed by the service layer on 



161 

behalf of the user. Take RMQ as an example, the 
username of the data broker account is always 
identical with the service layer’s username. The 
password of the RMQ account is randomly generated 
by the service layer, stored in the database, and is sent 
to users when they successfully authenticate. To avoid 
a user tampering with resources, by default they can 
only influence exchanges and queues whose names 
start with the username. 

 

Figure 7. Sequence diagram to illustrate steps to broadcast 
live data via RMQ service. Unlike the service layer token 
that expires, The sensor module and user can always access 
RMQ service as long as they remember their RMQ 
credentials. In this example we defined an RMQ exchange 
called “beacon” to broadcast live sensor data from 
everyone. To emit a beacon message, the sensor simply 
publish a message with RMQ header 
“{‘type’:‘beacon’,‘codename’:‘sensor name’}”. To avoid 
spoofing, messages without a conforming header will be 
discarded. 

Figure 8 depicts a minimal example of how users 
collaborate on a mission. If the service requires, extra 
steps and more users might be involved. For instance, 
RoboVaaS requires a broker user to assign an operator 
to a mission before the operator could view and check 
in to this mission. If more than one UAV are involved 
in a mission, the mission can only be listed after 
receiving permission from an approver. 

 

Figure 8. Sequence diagram to illustrate steps to store sensor 
data from a drone to database. First, a mission id is 
generated when a client requests a service. Depending on 
the service, concerning parties can view the mission and 
edit it accordingly. An operator can access and control the 
robot once they obtained mount permission from the back 
server, but the generated data is still not associated with any 
mission before a check-in event. After the operator 
successfully checked in a specific mission, the back server 

starts to read sensor values and store them under the 
mission id. The client who owns the mission will also 
receive data via the broker. 

6 EXPERIMENTAL RESULTS 

The service layer is deployed and tested with real and 
simulation data. The simulation environment is used 
to simulate the multi-body dynamics of the UVs used 
in project RoboVaaS and to connect the higher-level 
control system to the business logic enforced by the 
service layer. The output generated by the partner 
applications that command the UVs is sent over 
Transmission Control Protocol (TCP)-based 
connections over RMQ broker. The operation 
frequency is 10 Hz, the size of control messages not 
exceeding 9.6 kbit, while the video stream consumed 
up to 5 Mbit/s. 

To transmit simulated data an internally wired 
network was used, while a wireless network was 
deployed for connecting the robotic system to shore. 
The service layer was deployed on a Dell Latitude 
5411 laptop running Ubuntu 18.04 (Desktop). Besides 
handling the live data for the web-browser clients, the 
service layer needed to enforce the business logic 
needed for the operators to safely reserve and 
command an USV. 

The service layer is capable of handling multiple 
actors (operators and UVs) as long as each one has a 
unique user and follows the handshake procedures 
explained in the previous sections. The design of the 
control system for commanding multiple UVs is out 
of this work’s scope, but complying with the logic 
doesn’t influence the robotic system’s performance, as 
the handshake can be implemented in the higher-level 
control sequences and solely impacting the 
parameters of the external interfaces. 

7 CONCLUSIONS AND FUTURE WORK 

While measuring the overall performance of a web-
based application relative to the classical standalone 
approach towards real-time systems is non-trivial, this 
work reveals the main components, workflow, and 
test results of a prototype solution. The results of the 
sea trials for the overall system confirm reaching 
Technology Readiness Level (TRL) 5-6. For reaching 
TRL 6-7, further tests in industrial and/or equipment 
are needed. 

To make robotic services more readily available to 
the public in a user-friendly way, we introduced the 
design of a web- based service architecture to handle 
user interactions, manage mission life cycles, and 
administer communication channels between multiple 
operators and UVs. We also showed various use-cases 
in which the web layer can be deployed to provide 
on-demand services. With the promising results in 
terms of scalability, future works will try to 
encompass more diverse use cases that need various 
types of data, especially the ones that have a higher 
payload, such as point-cloud data. 
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Secondly, because the service layer is system-
agnostic, multiple robotic systems with different 
control systems will be added. The main focus will 
remain on waterborne systems, but the service layer 
will encompass UAVs. A web-based solution over 
multi-agent systems developed with the extremely 
popular robotics framework ROS is envisioned for 
proving the capabilities of the service layer. 

Lastly, the interaction of the web-browser clients 
will be enhanced by more features that will allow 
even more actions to be performed from the remote. 
We envision online data analysis and more dynamic 
user-operator interaction for enhancing the quality of 
the delivered service and the collected data. 
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