
155

1 INTRODUCTION

The security aspects of robotic research generally
receive much less attention, which can be partly
reflected by the lower number of search results related
to “robotic security” as shown in Table 1. As robotic
systems become more powerful and easily accessible
to the public, the lack of security awareness provides
attackers with growing opportunities to cause massive
damage to lives and properties. The situation is
further exacerbated if we incorporate Robots-as-a-
Service (RaaS) concept and introduce more user types
and complexities to the system. Our work hence
attempts to provide a viable solution that fulfils both
the need for a secure system and the need for online
delivered robotic service.

Table 1. Search terms entered to Google Scholar and the
respective number of returned results. ___
Search terms Number of results in thousands ___
robotics 2150
robotic 1770
robotic system 1520
robotic control 1480
robotic artificial intelligence 440
robotic security 153 ___

Teleoperated UVs have been existing for over half
a century and are traditionally deployed in extreme
environments such as nuclear plants, deep-sea, and in
space [13]. With the latest advancement in capabilities
of UVs, teleoperation is getting more involved in
more diverse use-cases to assist human operators [3,
12]. As the number of scenarios where UVs could be
utilised grows, we envision the emergence of a market
spectrum that offers various kinds of robotic services
to customers [21]. These services will likely be
accessible through the internet via standard browsers
to allow for easy access of a wide range of possible
users [19]. On the other hand, up-scaling these

A Web-oriented Architecture for Deploying Multiple
Unmanned Vehicles as a Service

C.N. Au, C. Delea, V.E. Schneider, J, Oeffner & C. Jahn
Fraunhofer Center for Maritime Logistics and Services, Hamburg, Germany

ABSTRACT: Providing a robotic-assisted service in scenarios involving multiple Unmanned Vehicles (UVs) in
possible beyond-visual-Line-Of-Sight (LoS) operations, safety and security are critical concerns. We develop a
web-oriented, human-in-the-loop infrastructure to explore how the service provider can secure their system,
enforce instant access control over dynamic operator-robot connections, and ensure the integrity, availability,
and traceability of communicated data. Our proposed minimal viable solution requires an authentication server
to verify user identity, a back server with a database to handle user requests and state-transition events, and a
RabbitMQ (RMQ) server to trace the origin of data.

http://www.transnav.eu

the International Journal

on Marine Navigation

and Safety of Sea Transportation

Volume 15

Number 1

March 2021

DOI: 10.12716/1001.15.01.15

156

systems will raise challenges related to performance,
security, and safety regulations [26]. The security
aspect of robotics research is often neglected, giving
attackers chances to take over and potentially cause
physical damage [9]. The Robot Operating System
(ROS), for example, though widely used in robotics
research, is not secure enough to be accessed publicly
unless a series of security hardening is done [10].

As an effort to overcome these problems, we
propose a web-based, service layer that is built upon
mature open-source software. There are currently
multiple implementations still under active
development. An early version of our service layer is
implemented in the Robotic Vessels as-a-Service
(RoboVaaS) project, which aims to create a direct
communication channel between the port customers
and professionals that perform five oceanographic
services, such as quay-wall inspection and
environmental data collection [23]. In the European
Union (EU) project Shipping Contributions to Inland
Pollution Push for the Enforcement of Regulations
(SCIPPER) [24], the service layer is named
Environmental Shipping Monitoring Center (ESMC)
and focuses on collecting data from environmental
sensors and provides a web interface for visualising
emission information. In the Horizon 2020 funded
project SEarch, identificAtion and Collection of
marine Litter with Autonomous Robots (SeaClear),
the service layer interfaces with a team of
heterogeneous robots (air- and waterborne) and
assists with marine litter clean-up operations. In
another EU project Risk-aware Autonomous Port
Inspection Drone (RAPID), the service layer is
officially called Command and Control Center which
instantiates a customer service-request web interface
and the operator mission-support interface. In
general, these implementations are designed to be
working closely as an integrated environment with
managers, engineers, operators, and clients, who
expect to track progress and analyse results of services
involving off-shore electronic or robotic systems
without the need to understand intricate details. On
the other hand, the online delivered robotic services
are not focusing on creating external interfaces for
directly commanding robotic systems.

2 APPORACH

We adopted a microservice architecture and split the
whole system into several computational components
which communicate with each other through a set of
well-defined and transparent Application
Programming Interfaces (APIs) over Hypertext
Transfer Protocol (HTTP) protocol. In this way, each
microservice can focus on its core functionalities and
offload computation to other responsible services. For
example, the encryption and decryption of
authentication token are handled solely by the
authentication server. When the back server processes
a user request, it can simply call the decode API of the
auth server to retrieve the user’s identity information
from the token, without the need to implement
another authentication algorithm. Moreover, as
explained in [8], by decoupling the overall system in
microservices, various cloud-based services can be

exploited to fulfil the requirements of the different
users involved in operating complex robotic systems.
The reliability overall is also enhanced since the crash
of a particular microservice does not result in a
complete system meltdown.

We use a centralised approach to manage overall
system states and access control policies of data
channels. Although peer-to-peer communications in a
decentralised setup have less overhead and fewer
dependencies, we believe the service provider should
possess ownership of data channels and have the
power to immediately alter the system state in case of
malicious activities or emergencies. By accessing the
broker services the service provider can also verify the
source and time of any communicated data.

To reduce duplication of effort, we strive to reuse
as much mature and open-sourced technologies as
possible. For example, service logic is mainly written
in Javascript and run in NodeJS servers. User data and
state information are stored in a PostgreSQL database.
This approach allows us to focus on tackling logic that
addresses problems specific to a particular use case.

Interfacing the service layer with other robotic
systems requires services to translate data. For
example, Rosbridge [6] is required to convert data
between the ROS message format and the AMQP or
WebRTC protocols. Another issue associated with
ROS middle-ware or Data Distribution Service (DDS)
is that they do not offer mechanisms to force an
established communication to hang up. Due to these
incompatibilities, our approach is to create a bridge
node and treat it as a single monolithic vehicle.

3 SYSTEM FEATURES

The aspired service layer serves to provide business
logic and to handle data according to a large set of
different use-cases for various sectors and
applications. Our implementation supports the
following functionalities or features:
− Accessibility through internet: The service layer

acts as the frontier facing end-users (or clients) and
should be publicly accessible as a website. It
should follow the latest security standards while
leveraging the capabilities of modern browsers.
For example, communication channels should
conform to secure protocols such as Transport
Layer Security (TLS) and Datagram Transport
Layer Security (DTLS), to prevent eavesdropping
of network packets and to ensure the integrity of
data. To mitigate vulnerabilities related to Cross-
Origin Resource Sharing (CORS), we deploy a
front server that is in essence an Nginx-based
reverse proxy server, to tunnel communications
between client and servers. In this way, the front
server acts as a single point of contact (SPOC) and
requests intended for the back server and
authentication server are distinguished by
different Uniform Resource Locator (URL)
prefixes.

− Optimised resources allocation: When the number
of users, UVs, and operators increase, efficient
allocation of resources becomes a complex task. To
resolve potential conflicts, tools such as mission

157

planners or booking systems have to be made
available. While these tools could propose optimal
solutions to users, the back server always has the
final say on whether to proceed with a request.

− Distinguish stakeholders: While a typical robotic
system mainly focuses on interfacing with
operators and robots, the service layer also
interacts with external users such as clients, guests,
and authorities. Such a big variance of audience
results in vastly different data needs and should be
addressed accordingly. The data is traced to the
producer by checking the binding status of RMQ’s
queues and exchanges.

− Horizontally Scaled: The architecture should be
able to scale up to support a large number of
customers, operators, robots, and ongoing
missions simultaneously. It should include
mechanisms to enable switching of robot control
from one operator to another, so to maximise the
up-time and flexibility of the service. In our
implementation, the RMQ service supports
expansion into a node cluster to support heavier
traffic. Similarly, the NodeJS back server can be
duplicated so that all requests are load-balanced
through the front server. The database act as a
single source of truth (SSOT) and is responsible to
resolve any conflicts resulting from multiple
concurrent transactions.

− Supplying lean information: Following the
principles of Lean Product Development [16], the
service layer should eliminate unnecessary data
transfer and focus on delivering data that the user
values. This is especially important given the high
cost of bandwidth when operating across the web.
A responsive interface and smooth user experience
should be achieved through data post-processing
techniques such as filtering, indexing, sub-
sampling, and compressing.

− Reporting live data: Live data, such as robotic
system position and video footage from on-board
cameras not only enhance transparency and user
experience but also provides managers and
regulatory bodies with timely information
necessary for monitoring and decision making in
case of exceptional or hazardous events.

− Supports human in the loop: Although UVs are
increasing their level of autonomy, human
judgment is still necessary to perform some safety-
critical procedures or to deal with situations when
the necessary context is difficult to be captured and
reasoned by a computer [5]. For instance, the
service layer should prompt the responsible user
for responses when processing safety procedures
such as risk assessments, flight plan modifications,
and traffic rerouting.

− Complements teleoperation: Modern browsers are
capable of utilising sensors of mobile devices and
interact with the human in complex ways. With an
abundant supply of JavaScript libraries and their
native support for WebRTC protocol, browsers are
becoming an attractive choice to be used as an
operator interface. Such an interface can be directly
incorporated into the service layer as a tool for
remote operators.

4 SYSTEM DESCRIPTION

The service layer is a bundle of components that can
be tailored to handle a wide range of use cases. By
using Service-Orientated Architecture (SOA) the
native software solutions of the electronic and robotic
systems can conveniently report their operations and
leverage the data analyses to dedicated services.
Following the Separation of Concern Principle [7], the
service layer is separated into modules of distinct
functionalities to enhance maintainability and
readability. This section walks through the roles of
these components and how they can be incorporated
into a complete system.

4.1 Component Overview

The core of the service layer comprises a mission
management system and a user management system.
Whereas user management is handled by the
authentication server, the logic concerning state
changes and mission management is implemented in
the back server. To communicate data among the
robotic systems and various stakeholders, data
brokers such as RMQ and Janus Gateway [1] are used.
Network logs are dumped into a data lake for future
analysis. The major components are summarised in
Table 2.

Table 2. A list of typical system components in the service
layer. ___
Component Description ___
Database Structured file systems that support SQL
 query and store important information
 such as the current system state, post-
 processed mission data, and metadata of
 compressed binary files.
Authentication A server that provides REST API related
server to user management such as user creation
 and verification of single-sign-on tokens.
Back server A server that handles high-level requests
 from users and authorizes the subsequent
 system state transitions.
Front server A proxy server that accepts all external
 requests and forwards them to the target
 servers. This mitigates vulnerabilities
 related to Cross-Origin Resource Sharing
 (CORS).
File server A server that stores and serves files
 encoded in binary formats.
Data brokers Servers that handle many-to-many
 communications by relaying data between
 users.
Browsers Provides graphic-user-interfaces to enable
 user interacting with front-server.
Data-lake Directories which store unstructured raw
 records such as network logs and sensor
 dumps. ___

4.2 System Integration

The service layer can be integrated with a robotic
system, as depicted in Figure 1. This system is
proposed to handle situations where a swarm of UVs
needs to perform inspection work in an off-shore
situation. The whole system can be classified into
three parts that are spatially distinct from each other:
Off-shore, on-shore, and remote. In the off-shore
network, a team of UVs shares a local wireless

158

network with local operators. While the
communication within the local network is stable,
internet access becomes limited and unstable. The
service layer resides in the on-shore network and can
interact with off-shore machines. The off-shore system
and the service layer can interface at a bridge node
that translates information to achieve compatibility.
The remote network usually contains users whose
presence is not critical to the ongoing mission, such as
the client and authorities. If the infrastructure
supports enough bandwidth, it is also possible for an
operator to command a vehicle remotely.

Figure 1. An example layout where the UVs perform a
bridge inspection mission while the service layer is
deployed on-shore. Note that a robotic network is deployed
on a USV (Unmanned surface vehicle) offshore and can
directly be accessed by operators in close vicinity even
when the connection to the service layer is lost. Only
essential data is exchanged between the offshore and
onshore network, such as requests to create the mission,
beacon signal and front camera video from UVs, and
requests to be permitted by air traffic control authorities.

4.3 User Management

As an indispensable part of the service layer, the user
management system implements a simple role-based
access control mechanism [22] to enable proper
sharing of resources among all users. The service layer
provides a representational state transfer (REST) API
and a web-based graphical interface to handle
requests from all users. To access the system, users
must first register themselves and obtain an assigned
role from the administrator. All subsequent requests
will then be handled according to the user role of the
requester. A user always has one of the following
roles:
− Admin: Administrative users who can edit the user

role and approved use-cases for all other users.
− Client: End users who request services. They can

view and comment on missions created by them.
− Planner: Users, who can assign missions to

supervisors and plans the itinerary of a mission.
− Supervisor: Users who conduct a mission and are

responsible to authorise and manage connections
between operators and UVs. They can oversee the
status of robots during the mission and can modify
itineraries when necessary.

− Operator: Users who have direct control over
robots.

− Robot: Accounts that represent robots. Only
registered and approved robots can access and
interact with the service layer.

− Guest: Users with limited read-access to specific
missions.

− Inactive: The default role of a new account. No
interactions are allowed.

Apart from the essential admin, client, operator,
and robot roles, the rest of the list should be
customised to suit different project needs. As the
system consists of many separate modules whose
logic requires authentication, an authentication server
is used to issue and verify SSO tokens [20]. Users only
need to input a password once to obtain a secret
token, and then attach this token to all subsequent
requests. Modules handling the requests then ask the
authentication server to decode the token.

4.4 Mission System

The service layer encapsulates and presents
information to users in terms of mission IDs. Each
mission usually contains meta-information listed in
Table 3.

Table 3. The information a mission usually contains. ___
Item Description ___
Use-case The business use-case requested by the client.
Geofence A single connected space that all UVs should
 stay within.
Points-of- Objects or locations of end-user's interest.
interest
Itinerary A list of tasks that specifies the time, location
 and actions to be carried out.
Risk Details on risk assessment.
assessment
Sensor data Collected sensor data.All sensor data of
 business value must reference a unique and
 immutable mission ID.
Mission state A mission must always be in one and only
 one of the states specified. ___

The life-cycle of each mission is captured by the
mission state, which also provides users with a clear
insight into the overall progress. The possible mission
states are as follows:
− Planning: The initial state after creation.
− Filed: The risk assessment is submitted.
− Approved: The mission is ready to proceed to

operation.
− In-progress: The supervisor checked in the

mission.
− Interrupted: Some unplanned events occurred or

extra action is required, e.g. beacon signals lost,
traffic collision warning.

− Reviewing: All operators have checked out the
mission.

− Closed: The client accepted or rejected the results
of a service.

The list could be different for different use-cases
and should ideally be presented as a finite state
machine for more robust planning. For instance, in the
RoboVaaS project, the mission system does not have a
filed, approved, and interrupted state, since the
system does not include Unmanned Aerial Vehicles
(UAVs) and has more relaxed safety procedures.

159

4.5 Data Brokers

To enforce a dynamic access control policy on all data
links, robots and operators are ideally bridged via
centralised data brokers [18]. For example, in the
RoboVaaS project, we use RMQ as the sole data
broker that relays sensor data and command signals
between operators and Unmanned Surface Vehicles
(USVs) [23]. Changes of data link are invoked by
channel change events. For example, to access the
USV operators first issues a mount request to the
service layer, which will then establish a
communication link only if both the operator and
USV are not booked in another mission or service.
Mounted operators can then check in a mission so that
the service layer associates the sensor data with the
specified mission ID. As the broker is centrally
managed by the service layer, it provides the
possibility for a supervisor to force changes on
communication channels to handle undesired
situations, such as when a connection is dropped from
a remote operator.

To ensure data traceability and integrity, we set up
the RMQ server in a way that users can only access
exchanges and queues beginning with their
usernames. Therefore an operator cannot access the
robot without first asking permission from the service
layer. After a channel is established, the back server
can trace sensor data back to the operator and UV by
checking the binding status. This mechanism provides
two advantages. Firstly the UV does not need to
bother including their user ID in each sensor data, and
secondly, attackers cannot spoof their identity by
sending false user ID.

Since the web layer can be deployed on the public
network, the Advanced Message Queuing Protocol
(AMQP) is used to handle TCP traffic also due to its
strong security features [17]. For UDP-based packet,
Janus Gateway [1] will be used to relay WebRTC-
based [14] traffic between browsers and the service
layer.

The events that cause a change of routing of data
are channel change events. These events should be
handled with extra caution as they affect the data
broker, hence ultimately who can control a UV. The
two types of common events are:
− Mount and Unmount events: These events cause

the creation or destruction of communication
between an operator and a UV.

− Check-in and Check-out events: These events cause
the creation or destruction of communication
between a UV and the database.

Upon processing mount and check-in events the
back server should make sure the resource requested
is available, the requester has sufficient rights and the
changes are correctly executed.

4.6 Software Stack

By using mature software libraries shown in Table 4
we could focus on implementing the logic related to
specific use-cases and take advantage of the latest
security features. For example, the load balancing
feature of Nginx facilitates horizontal scaling in case
we want to add more NodeJS servers to support more

concurrent users [4]; OpenLayers draws dynamic and
interactive maps on webpages [11]; The D3.js library
provides a range of tools for visualising big data [2].
To ensure good code readabilities and to keep the
development time short, the back server and
authentication server are implemented using NodeJS.
Unit-tests and end-to-end tests are written in Python
and conducted by the Selenium Webdriver. We use
PostgreSQL as the database to memorise user data, all
system states, and sub-sampled sensor data.
Concerning video data, the Gstreamer library [25] is
used to build a pipeline, in which video data streams
are encoded on the client-side using the H.264
compression standard [15] and then sent to the Janus
Gateway server.

Table 4. List of major software used. ___
Component Technology ___
Auth server NodeJS
Front server Nginx
Back server NodeJS
Database PostgreSQL
TCP-based broker RabbitMQ
UDP-based broker Janus Gateway
Browser ReactJS, HTML5
Robot Linux, Gstreamer ___

4.7 Graphical User Interface

The graphical user interface (GUI) is web-based and
can be loaded to modern browsers as a web page. The
interface allows user to navigate around and interact
with the following elements:
− Login Page: Where the user authenticates by

providing the username and password. As shown
in Figure 2, the login page should stay as minimal
as possible so sensitive information does not easily
leak to unintended users.

Figure 2. An example login page.

− Dashboard: This section acts as the main page and
appears right after a successful login. It should
provide the user with a clear and succinct
overview of overall progress. In the example
dashboard for operator shown in Figure 3, a list of
active missions, the robot currently mounted, and
the credentials for accessing the RMQ server, are
shown.

160

Figure 3. An example dashboard.

− Accounts Page: All the user information is
displayed here. By default, all users can view their
account information. Besides, some account types
can view other accounts. For example, the accounts
page seen by an admin user is shown in Figure 4.
The page not only displays all other registered
accounts but also allows the admin to further edit
the user roles and allowed use-cases. A supervisor,
on the other hand, can only see the information of
all registered robots.

Figure 4. An example accounts page.

− New Mission Page: To create a mission, a client
should first fill in details such as the desired use-
case, points of interest, and geofence, on the new
mission page. Then a summary page is displayed
and the user can confirm and submit the request
officially.

− Mission List: The mission list is a table containing
basic information of missions accessible by a user,
such as the name of the author and current mission
state.

− Mission Detail Page: All the detailed mission
information such as sensor data, live video stream,
and discussion histories, is displayed on this page.
In the example shown in Figure 5, some
bathymetric sensor data collected during a
RoboVaaS mission is visualised on a 2D map. The
data is clustered and color encoded for easier
perception. This page is also supposed to
incorporate advanced functions such as report
generation, file management, and data analysis.

Figure 5. An example mission detail page.

5 PROGRAM FLOW

This section describes the communication flow
between system components. Figure 6 illustrates how
the front server act as a proxy and relays an
authentication request between a user and the auth
server. As the returned token is only decryptable by
the auth server, other servers need to ask the auth
server to verify a user’s identity when they receive a
new request containing a token.

Figure 6. SSO sequence diagram. An example user sends to
the front server an HTTP request, which has a JSON-
formatted body with the credential. The front server then
proxies the request to the auth server, which verifies the
credentials against the record in the database. If it is valid,
the auth server creates a payload, encrypts it into a token,
and sends them back to the user.

Figure 7 illustrates how the service layer can be
coupled with a data broker. Data brokers usually have
their own ecosystems and hence an independent user
management systems. To reduce the overhead for
users having to manage two accounts, most account
management is performed by the service layer on

161

behalf of the user. Take RMQ as an example, the
username of the data broker account is always
identical with the service layer’s username. The
password of the RMQ account is randomly generated
by the service layer, stored in the database, and is sent
to users when they successfully authenticate. To avoid
a user tampering with resources, by default they can
only influence exchanges and queues whose names
start with the username.

Figure 7. Sequence diagram to illustrate steps to broadcast
live data via RMQ service. Unlike the service layer token
that expires, The sensor module and user can always access
RMQ service as long as they remember their RMQ
credentials. In this example we defined an RMQ exchange
called “beacon” to broadcast live sensor data from
everyone. To emit a beacon message, the sensor simply
publish a message with RMQ header
“{‘type’:‘beacon’,‘codename’:‘sensor name’}”. To avoid
spoofing, messages without a conforming header will be
discarded.

Figure 8 depicts a minimal example of how users
collaborate on a mission. If the service requires, extra
steps and more users might be involved. For instance,
RoboVaaS requires a broker user to assign an operator
to a mission before the operator could view and check
in to this mission. If more than one UAV are involved
in a mission, the mission can only be listed after
receiving permission from an approver.

Figure 8. Sequence diagram to illustrate steps to store sensor
data from a drone to database. First, a mission id is
generated when a client requests a service. Depending on
the service, concerning parties can view the mission and
edit it accordingly. An operator can access and control the
robot once they obtained mount permission from the back
server, but the generated data is still not associated with any
mission before a check-in event. After the operator
successfully checked in a specific mission, the back server

starts to read sensor values and store them under the
mission id. The client who owns the mission will also
receive data via the broker.

6 EXPERIMENTAL RESULTS

The service layer is deployed and tested with real and
simulation data. The simulation environment is used
to simulate the multi-body dynamics of the UVs used
in project RoboVaaS and to connect the higher-level
control system to the business logic enforced by the
service layer. The output generated by the partner
applications that command the UVs is sent over
Transmission Control Protocol (TCP)-based
connections over RMQ broker. The operation
frequency is 10 Hz, the size of control messages not
exceeding 9.6 kbit, while the video stream consumed
up to 5 Mbit/s.

To transmit simulated data an internally wired
network was used, while a wireless network was
deployed for connecting the robotic system to shore.
The service layer was deployed on a Dell Latitude
5411 laptop running Ubuntu 18.04 (Desktop). Besides
handling the live data for the web-browser clients, the
service layer needed to enforce the business logic
needed for the operators to safely reserve and
command an USV.

The service layer is capable of handling multiple
actors (operators and UVs) as long as each one has a
unique user and follows the handshake procedures
explained in the previous sections. The design of the
control system for commanding multiple UVs is out
of this work’s scope, but complying with the logic
doesn’t influence the robotic system’s performance, as
the handshake can be implemented in the higher-level
control sequences and solely impacting the
parameters of the external interfaces.

7 CONCLUSIONS AND FUTURE WORK

While measuring the overall performance of a web-
based application relative to the classical standalone
approach towards real-time systems is non-trivial, this
work reveals the main components, workflow, and
test results of a prototype solution. The results of the
sea trials for the overall system confirm reaching
Technology Readiness Level (TRL) 5-6. For reaching
TRL 6-7, further tests in industrial and/or equipment
are needed.

To make robotic services more readily available to
the public in a user-friendly way, we introduced the
design of a web- based service architecture to handle
user interactions, manage mission life cycles, and
administer communication channels between multiple
operators and UVs. We also showed various use-cases
in which the web layer can be deployed to provide
on-demand services. With the promising results in
terms of scalability, future works will try to
encompass more diverse use cases that need various
types of data, especially the ones that have a higher
payload, such as point-cloud data.

162

Secondly, because the service layer is system-
agnostic, multiple robotic systems with different
control systems will be added. The main focus will
remain on waterborne systems, but the service layer
will encompass UAVs. A web-based solution over
multi-agent systems developed with the extremely
popular robotics framework ROS is envisioned for
proving the capabilities of the service layer.

Lastly, the interaction of the web-browser clients
will be enhanced by more features that will allow
even more actions to be performed from the remote.
We envision online data analysis and more dynamic
user-operator interaction for enhancing the quality of
the delivered service and the collected data.

ACKNOWLEDGEMENT

The tool was developed as part of the RoboVaaS and
SCIPPER project. The RoboVaaS project received funding
from the German Federal Ministry of Economic Affairs and
Energy under support code 03SX463A, Universities and
Research (MIUR), and ERA-NET Cofund MarTERA
(contract 728053). The SCIPPER project has received
funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement Nr.814893

REFERENCES

1. Amirante, A., Castaldi, T., Miniero, L., Romano, S.P.:
Janus: a general purpose WebRTC gateway. In:
Proceedings of the Conference on Principles, Systems
and Applications of IP Telecommunications. pp. 1–8
(2014).

2. Bao, F., Chen, J.: Visual framework for big data in d3. js.
In: 2014 Ieee Workshop on Electronics, Computer and
Applications. pp. 47–50 IEEE (2014).
https://doi.org/10.1109/IWECA.2014.6845553.

3. Castillejo-Calle, A., Millan-Romera, J.A., Perez-Leon, H.,
Andrade-Pineda, J.L., Maza, I., Ollero, A.: A multi-UAS
system for the inspection of photovoltaic plants based on
the ROS-MAGNA framework. In: 2019 Workshop on
Research, Education and Development of Unmanned
Aerial Systems (RED UAS). pp. 266–270 IEEE (2019).
https://doi.org/10.1109/REDUAS47371.2019.8999697.

4. Chi, X., Liu, B., Niu, Q., Wu, Q.: Web load balance and
cache optimization design based nginx under high-
concurrency environment. In: 2012 Third International
Conference on Digital Manufacturing & Automation. pp.
1029–1032 IEEE (2012).
https://doi.org/10.1109/ICDMA.2012.241.

5. Cranor, L.F.: A framework for reasoning about the
human in the loop. Presented at the Usability,
Psychology, and Security , San Francisco, CA, USA April
14 (2008).

6. Crick, C., Jay, G., Osentoski, S., Pitzer, B., Jenkins, O.C.:
Rosbridge: ROS for Non-ROS Users. In: Christensen, H.I.
and Khatib, O. (eds.) Robotics Research : The 15th
International Symposium ISRR. pp. 493–504 Springer
International Publishing, Cham (2017).
https://doi.org/10.1007/978-3-319-29363-9_28.

7. De Win, B., Piessens, F., Joosen, W., Verhanneman, T.:
On the importance of the separation-of-concerns
principle in secure software engineering. In: Workshop
on the Application of Engineering Principles to System
Security Design. pp. 1–10 Citeseer (2002).

8. Delea, C., Coccolo, E., Covarrubias, S.F., Campagnaro,
F., Favaro, F., Francescon, R., Schneider, V., Oeffner, J.,

Zorzi, M.: Communication Infrastructure and Cloud
Computing in Robotic Vessel as-a-Service Application.
In: Global Oceans 2020: Singapore – U.S. Gulf Coast. pp.
1–7 (2020).
https://doi.org/10.1109/IEEECONF38699.2020.9389285.

9. DeMarinis, N., Tellex, S., Kemerlis, V.P., Konidaris, G.,
Fonseca, R.: Scanning the Internet for ROS: A View of
Security in Robotics Research. In: 2019 International
Conference on Robotics and Automation (ICRA). pp.
8514–8521 (2019).
https://doi.org/10.1109/ICRA.2019.8794451.

10. Dieber, B., Breiling, B., Taurer, S., Kacianka, S., Rass, S.,
Schartner, P.: Security for the Robot Operating System.
Robotics and Autonomous Systems. 98, 192–203 (2017).
https://doi.org/10.1016/j.robot.2017.09.017.

11. Gratier, T., Spencer, P., Hazzard, E.: OpenLayers 3:
Beginner’s Guide. Packt Publishing Ltd (2015).

12. Kiribayashi, S., Yakushigawa, K., Nagatani, K.: Design
and development of tether-powered multirotor micro
unmanned aerial vehicle system for remote-controlled
construction machine. In: Field and Service Robotics. pp.
637–648 Springer (2018). https://doi.org/10.1007/978-3-
319-67361-5_41.

13. Lichiardopol, S.: A survey on teleoperation. Technische
Universitat Eindhoven, DCT report. 20, 40–60 (2007).

14. Loreto, S., Romano, S.P.: Real-time communication with
WebRTC: peer-to-peer in the browser. O’Reilly Media,
Inc. (2014).

15. Marpe, D., Wiegand, T., Sullivan, G.J.: The H.
264/MPEG4 advanced video coding standard and its
applications. IEEE communications magazine. 44, 8,
134–143 (2006).
https://doi.org/10.1109/MCOM.2006.1678121.

16. Morgan, J., Liker, J.K.: The Toyota product development
system: integrating people, process, and technology.
CRC Press (2020).

17. Naik, N.: Choice of effective messaging protocols for IoT
systems: MQTT, CoAP, AMQP and HTTP. In: 2017 IEEE
international systems engineering symposium (ISSE).
pp. 1–7 IEEE (2017).
https://doi.org/10.1109/SysEng.2017.8088251.

18. Oeffner, J.: A modular testbed using centralised data
exchange for Autonomous Navigation Systems.
Fraunhofer IML (2016).

19. O’reilly, T.: What is Web 2.0: Design patterns and
business models for the next generation of software.
Communications & strategies. 1, 17 (2007).

20. Radha, V., Reddy, D.H.: A survey on single sign-on
techniques. Procedia Technology. 4, 134–139 (2012).
https://doi.org/10.1016/j.protcy.2012.05.019.

21. Rappa, M.A.: The utility business model and the future
of computing services. IBM systems journal. 43, 1, 32–42
(2004). https://doi.org/10.1147/sj.431.0032.

22. Sandhu, R.S.: Role-based access control. In: Advances in
computers. pp. 237–286 Elsevier (1998).

23. Schneider, V.E., Delea, C., Oeffner, J., Sarpong, B.,
Burmeister, H.-C., Jahn, C.: Robotic service concepts for
the port of tomorrow: Developed via a small-scale
demonstration testbed. In: 2020 European Navigation
Conference (ENC). pp. 1–8 IEEE (2020).
https://doi.org/10.23919/ENC48637.2020.9317486.

24. Simonen, P., Dal Maso, M., Kangasniemi, O.: THE
SCIPPER PROJECT: Shipping Contributions to Inland
Pollution Push for the Enforcement of Regulations.
(2020).

25. Taymans, W., Baker, S., Wingo, A., Bultje, R.S., Kost, S.:
Gstreamer application development manual (1.2. 3).
Publicado en la Web. (2013).

26. Zhang, X., Liu, Y., Zhang, Y., Guan, X., Delahaye, D.,
Tang, L.: Safety assessment and risk estimation for
unmanned aerial vehicles operating in national airspace
system. Journal of Advanced Transportation. 2018,
(2018). https://doi.org/10.1155/2018/4731585.

