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ABSTRACT: Altimetric measurements indicate that the global sea level rises about 3 mm/year, however, in 
various papers different data spans are adopted to estimate this value. The minimum time span of 
TOPEX/Poseidon (T/P) and Jason-1 (J-1) global sea level anomalies (SLA) data required to detect a statisti-
cally significant trend in sea level change was estimated. Seeking the trend in the global SLA data was per-
formed by means of the Cox-Stuart statistical test. This test was supported by the stepwise procedure to make 
the results independent of the starting data epoch. The probabilities of detecting a statistically significant trend 
within SLA data were computed in the relation with data spans and significance levels of the above-
mentioned test. It is shown that for the standard significance level of 0.05 approximately 5.5 years of the SLA 
data are required to detect a trend with the probability close to 1. If the seasonal oscillations are removed from 
the combined T/P and J-1 SLA data, 4.3 years are required to detect a statistically significant trend with a 
probability close to 1. The estimated minimum time spans required to detect a trend in sea level rise are ad-
dressed to the problem of SLA data predictions. In what follows, the above-mentioned estimate is assumed to 
be minimum data span to compute the representative sample of SLA data predictions. The forecasts of global 
mean SLA data are shown and their mean prediction errors are discussed.

1 INTRODUCTION 

Climate change studies are usually associated with 
seeking variation rates of various elements of the 
environment. Among others, the sea level rise 
reflects current global climatic changes as it is 
caused by complex interactions between the solid 
Earth, atmosphere, oceans, hydrosphere and 
cryosphere. Thus, the rate of sea level rise may be 
used as an indicator of the global environmental 
changes and can be extrapolated in order to build 
future scenarios. 

Sea level rises as a result of several natural 
processes acting in the global environment, which 
can be classified into three main groups: geological, 
eustatic and steric effects (e.g. Dobrovolski 2000). 
The first group concerns the processes, which make 
the ocean basins and the coasts change their 

parameters. The main changes of this type are 
associated with orogenic movements, spreading, 
sedimentation, tectonics, subsidence of the sea floor 
and the post-glacial rebound. The second group of 
processes is connected to the climate itself as being 
forced by the increase of water mass of the oceans. 
In fact, the eustatic changes are mainly derived from 
melting the ice-sheets and glaciers. Finally, the steric 
effect is connected to the increase in the water 
volume without the change in its mass. This is 
largely caused by the thermal expansion of the water 
in the oceans as a result of the increase in the global 
sea surface temperature. 

The considerable number studies focus on the 
determination of the rate of sea level change and these 
estimates differ due to the wide spectrum of methods 
and data sets applied. The trends are being usually 
fitted by the least-squares or the robust techniques. 
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The data on the sea surface topography may be 
measured both relatively to the Earth crust (tide 
gauges) or absolutely (satellite altimetry). For 
instance, Douglas (1991) analysed the tide gauge 
data and found that a good approximation of the rate 
in question is of 1.8 ± 0.38 mm/year. In contrast, 
Leuliette et al. (2004) used the recent and precise sea 
level anomaly (SLA) time series obtained from the 
satellite altimetry TOPEX/Poseidon (T/P) and Jason-1 
(J-1) and argued that the rate of sea level change was 
of 2.8 ±0.4 mm/year. If no Jason-1 date is 
considered, the discussed trend computed by a robust 
procedure is equal to 1.46 mm/year (Kosek 2001).  

Various data sets on the sea level variation are 
usually of dissimilar lengths and hence may be sparse. 
The vast majority of the estimates in question is based 
upon fitting a trend without much concern whether it 
is statistically significant. Hence, there is a need to 
reverse the problem and not to estimate the trend itself 
but, in turn, to estimate the data span which is 
required to detect a statistically significant trend. The 
practical usage of such estimates follows from the 
SLA prediction studies. In what follows, in order to 
construct the representative sample of SLA forecasts, 
one needs to fix arbitrarily the first starting prediction 
epoch. If one knows the minimum time span of the 
SLA data to detect a statistically significant trend in 
them (which is the main and the most straightforward 
component for extrapolation), it is assumed to be the 
first starting prediction epoch.  

The method for seeking the above-mentioned es-
timates was proposed by Niedzielski & Kosek 
(2006) and presented first at the General Assembly 
of the European Geosciences Union in Vienna in 
April 2006. The results gained using this simulation-
based statistical technique (Niedzielski & Kosek, 
submitted) are applied in this article to support the 
evaluation of the prediction results obtained by dif-
ferent forecasting techniques. Thus, this paper aims 
to combine the SLA predictions with the detailed 
analysis of the rate of sea level rise.  

2 METHODS  

2.1 Estimation of minimum data span for prediction  
According to Niedzielski & Kosek (submitted), the 
minimum time span of SLA data required to detect a 
statistically significant trend in sea level rise can be 
estimated using the statistical simulation based upon 
the Cox-Stuart test (McCuen 2003). This statistical 
test is designed to test for the existence of an upward 
and/or downward trend within the time series. For 
the analysis of sea level change it is straightforward 
to focus only on upward trends. If the latter applies, 
the null hypothesis assumes that there does not exist 

a trend in the time series, whereas the alternative hy-
pothesis assumes an upward trend in the underlying 
data. In general, the idea behind the Cox-Stuart tech-
nique is simple. It is based on subdividing the time 
series xt of size n (even number) into two smaller 
data sets. The first one is comprised of the first n/2 
data and the second one consists of the remaining 
n/2 elements of the initial time series. If n is an odd 
number, the middle data point is excluded from the 
study and hence n should be replaced by n-1. The 
objective of the subsequent statistical analysis is to 
compare these two data sets using the 0-1 random 
variable defined by  
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where at =(x1,…, xk), bt =(xm,…, xn) and k = n/2 and 
m =(n/2) +1 (if n is an even number); k =(n – 1)/2 
and m =(n + 3)/2 (if n is an odd number). Hence, the 
random variable 

∑= iNT  (2) 

counts the number of elements of the second time 
series bt being greater than the corresponding ele-
ments in the first data set at. The probability law of T 
is binomial b(l,p), where l is a number of at (or 
equivalently bt) elements. The null hypothesis stated 
before may be expressed in terms of Ni as the equal 
amount of zeros and ones. Thus, under the null hy-
pothesis the probability distribution of T is b(l,1/2). 
Testing the hypothesis of no trend in sea level rise is 
based upon T values and hence – as a result of the al-
ternative hypothesis definition (upward trend) – the 
upper tail of the probability distribution is consid-
ered.  

In order to make the analysis independent of the 
specific starting data epoch it is convenient to apply 
the simulation (Niedzielski & Kosek, submitted). In 
what follows, one ought to test the above-mentioned 
hypothesis for various subsets of a given SLA time 
series. To do this, one fixes the small positive inte-
ger t and defines the data block of size t. Subse-
quently, one moves the block forward and applies 
the Cox-Stuart test for the new subset of data of size 
t. The procedure should be repeated N–t + 1 times. 
This allows the computation of the probability of de-
tecting the trend after the time t as  
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where pt(j) is a p-value of the Cox-Stuart test for the 
j-th location of the block of size t within the entire 
time series and s is a significance level. The subse-
quent analysis is based on the stepwise algorithm 
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that performs the above-mentioned analysis by in-
creasing t in each step.  

Thus, the required time to detect a trend in sea 
level rise is a minimum t for which the probability 
given by the equation (3) is close to 1. This time may 
support forecasting SLA data as t can be assumed to 
be a minimum number of data points.  

2.2 Prediction techniques  
The variety of forecasting methods is big and hence 
one may consider both uni- and multivariate predic-
tion techniques of linear and non-linear structures. In 
this paper we apply the most straightforward time 
series tools, i.e. fitting and extrapolating the 
harmonic-polynomial deterministic model (LS), 
autoregressive stochastic modelling and prediction 
(AR) and multivariate autoregressive stochastic 
modelling and prediction (MAR). The LS approach 
is used as a preprocessing tool and thus it estimates 
and subsequently extrapolates well-known oscillations 
and trends. The residuals from the fitted LS models 
are being modelled and predicted using the above-
mentioned stochastic approaches.  

The LS model can be denoted as  
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where A1,…, As, B and φ1,…, φs, γ have to be esti-
mated by least-squares algorithm and ω1,…, ωs are 
known frequencies. There are two objectives of LS 
modelling. First, the LS model can be extrapolated 
to obtain the deterministic prediction. Second, the 
LS model may be applied to calculate the residuals, 
which can be subsequently modelled and predicted 
by stochastic methods.  

The AR technique is a simple stochastic method 
used to build a model for stationary residuals. The 
AR approach is based upon the following equation  

,tptpt YcYcY ε+++= −− 111  (5) 

where Yt is the residual time series obtained as the 
difference between the data and the LS model; p is 
the order of the autoregressive process; c1,…, cp are 
the autoregressive coefficients; and εt is the white 
noise (e.g. Brockwell & Davis 1996). The order p is 
being usually chosen by the Akaike Information Cri-
terion (AIC) and the autoregressive coefficients are 
estimated using the combination of Yule-Walker and 
maximum likelihood methods.  

The MAR method is a multivariate extension of 
the AR technique. The MAR process is defined by 
the following equation  

Yt = M1Yt–1 +…+ MpYt–p + Et, (6) 
where Yt is a vector of stationary residuals computed 
at each axis as the difference between the data and 
the corresponding LS model; p is the order of the 
multivariate autoregressive process; M1,…Mp are 
the coefficient matrices for multivariate autoregres-
sion; and Et is the white noise vector with mean 0 
and covariance matrix C (e.g. Reinsel 1997). The 
common method for order selection is a Schwarz 
Bayesian Criterion (SBC). The estimation of the co-
efficient matrices is performed by the stepwise LS 
algorithm (Neumaier & Schneider 2001).  

For the prediction equations we relate to 
Brockwell & Davis (1996) and Reinsel (1997) or 
more specifically in the field of satellite geodesy to 
Niedzielski & Kosek (2005). Three prediction 
approaches are used, i.e. LS – extrapolation of the 
LS deterministic polynomial-harmonic model; 
LS+AR – combination of the LS extrapolation and 
the AR prediction of residuals; LS+MAR – 
combination of the LS extrapolation and the MAR 
prediction of vector residuals.     

The verification of the computed predictions is 
performed by the analysis of root mean square error 
(RMSE) defined as 
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where Xt(i)+L are the data at the time t(i)+L, PXt(i)+L is 
the L-step prediction of the data.  

3 DATA  

The modelling and prediction is based upon the two 
data sets. The first one is the global mean SLA data 
and hence corresponds to the sea level change. The 
second time series is a mean global sea surface tem-
perature (SST) and corresponds to the physical de-
scription of the steric effect.  

The SLA data are obtained from T/P and J-1 
satellite altimetry. In fact, the SLA itself is the 
difference between sea surface height (SSH) 
computed in respect to the reference ellipsoid and 
the mean sea level computed in respect to the geoid 
JGM-3. Altimetric measurements are absolute, i.e. 
the sea level fluctuations are not mixed with vertical 
land movements. The T/P and J-1 satellites are 
providing the data on SSH every 1 cycle which is 
equal to 9.9140625 days. In this study we use the 
T/P global mean SLA time series measured in the 
period 01.01.1993 – 01.08.2002, which corresponds 
to the T/P cycles No 12-364. As regards J-1 global 
mean SLA data, the period 04.02.2002 – 14.07.2003 
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is chosen, i.e. the J-1 cycles No 3-56 are considered. 
In this study, both 10-day and monthly global mean 
SLA are analysed. As the T/P and J-1 time series 
overlap in time, both data sets are combined and bias 
correction between the two is introduced. The com-
bined T/P and J-1 data set exhibits an upward trend. 
The most energetic oscillations in the data are annual 
and semi-annual seasonal components.  

The SST data are NOAA OI.v2 SST monthly 
fields derived by the weakly optimum interpolation. 
These gridded fields are averaged over the entire 
ocean in order to obtain the global mean SST data. 
The analysed time period coincides with the time pe-
riod of the analysed SLA data, i.e. 01.01.1993 – 
14.07.2003. The most energetic oscillations in the 
global mean SST data are – similarly to the global 
mean SLA data – annual and semi-annual compo-
nents. However, the strength of the semi-annual os-
cillation in global mean SST data is relatively greater 
than the strength of the semi-annual seasonality in 
the global mean SLA data. Besides, there is no trend 
within global mean SST time series.  

4 RESULTS  

4.1 Estimates of the minimum data time span  
Following Niedzielski & Kosek (submitted), seeking 
the minimum time span to detect the statistically 
significant trend in sea level rise may be subdivided 
into two parts. First, the global mean SLA data are 
being processed. Second, the non-seasonal global 
mean SLA data are considered. If the latter applies, 
the global mean SLA time series should be pre-
processed by removing annual and semi-annual 
components. The removal of these oscillations al-
lows the analysis of the linear trend itself and sto-
chastic fluctuations. Figure 1 shows the probability 
of detecting the statistically significant trend in both 
seasonal and non-seasonal global mean SLA data. 
The probability is dependent on time. Hence, the 
time for which the probability reaches 1 is assumed 
to be the minimum required data span. For the stan-
dard significance level of 0.05 the estimates are 
equal to 5.5 years (the analysis for seasonal global 
mean SLA data) or 4.3 years (for non-seasonal 
global mean SLA time series). As noted earlier, the 
trend belongs to the key deterministic components 
within the studied data and hence – in order to ex-
trapolate it – one needs to know the data span which 
guarantees the statistical significance of the model. 
Thus, considering the minimum data time span of 
4.39 years we assume the cycles No 162 and No 53 
(for SLA data with 1 cycle and 1 month sampling in-
terval, respectively) to be the first starting prediction 
points.  

 

 
Fig. 1. The probability of detecting the trend in sea level rise as 
a function of time (T/P and J-1 cycles) for a standard signifi-
cance level of 0.05 

4.2 Prediction of global mean sea level anomalies  
In accordance with the above-mentioned prediction 
methods we apply LS, LS+AR and LS+MAR predic-
tion procedures. In the LS and LS+AR cases, the 
predictions are based on the past of global mean 
SLA data. However, the MAR approach is applied to 
combine both global mean SLA data with global 
mean SST data in order to consider the contribution 
from the steric effect as the explanatory variable. 
The deterministic LS modelling of the data is based 
on the equation (4) in the following way: for the 
global mean SLA data we model annual, semiannual 
oscillations and the trend, whereas for the global 
mean SST data we consider annual and semiannual 
oscillations. As the SST data are monthly, the 
LS+MAR analysis is only performed for the data 
with the sampling interval of 1-month.  

 

Table 1. Basic statistics (in cm) for the LS predictions of global 
mean SLA data.  
Statistics Length of prediction 

2-month 6-month 1-year 1.5-year  
For data in cycles      

Maximum  1.829  1.752  1.803  2.000  
RMSE  0.485  0.503  0.589  0.704  

For data in months      
Maximum  0.960  1.179  1.123  1.118  
RMSE  0.338  0.403  0.459  0.577  

 
Tables 1-3 present both (1) maximum absolute 

values of the difference between global mean SLA 
data and their predictions, (2) values of RMSE. In 
general, the comparison of the values of these statis-
tics shows that the predictions of monthly SLA data 
are significantly more accurate than the predictions 
of the SLA data with the sampling interval of 1 cy-
cle. The interpretation is straightforward and follows 
form smoothing of time series. Indeed, the monthly 
data are essentially smoothed relatively to the data in 
cycles due to the time-averaging procedure. Thus, 
the extremes which exist within the time series re-
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corded in cycles are eliminated (or lessened) in the 
process of smoothing. In fact, predicting the ex-
tremes is usually difficult and introduces the consid-
erable error. In the case of absence of the extremes, 
the predictions often work well.  

Table 2. Basic statistics (in cm) for the LS+AR predictions of 
global mean SLA data.  
Statistics Length of prediction 

2-month 6-month 1-year 1.5-year  
For data in cycles      

Maximum  1.953 1.827 1.807 2.002 
RMSE  0.496 0.524 0.608 0.707 

For data in 
months  

    

Maximum  0.901 1.229 1.030 1.121 
RMSE  0.340 0.441 0.476 0.580 

 
It is difficult to address the issue of comparison of 

the calculated predictions. In fact, the analysis of 
maximum absolute values of the difference between 
the data and their predictions and RMSE indicate 
that all selected procedures lead to the forecasts of 
similar accuracy (Tab. 1-3).  

Table 3. Basic statistics (in cm) for the LS+MAR predictions of 
global mean SLA data.  
Statistics Length of prediction 

2-month 6-month 1-year 1.5-year 
For data in months      

Maximum  1.147 1.122 1.079 1.044 

RMSE  0.371 0.411 0.451 0.531 

 
One should suspect that the application of multi-

variate time series analysis would improve the pre-
dictions. This is true only for the long-term (1.5year) 
forecasts. In this case the improvement is of order 
0.5 mm RMSE and hence is rather insignificant.  

5 CONCLUSIONS  

The required time span of global mean SLA data to 
detect a statistically significant trend in them is 
found to be 4.3 years. This estimate is utilized in this 
paper to find the minimum data span for forecasting 
these data. The comparison results in the conclusion 
that the performances of these three approaches are 
similar.  
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