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ABSTRACT: It is explained, in introduction of this paper, why the description of the output signal at an A/D
converter in the form that is presented in such respected textbooks as: a one written by Prandoni and Vetterli,
and another one by van de Plassche is appropriate and correct. Unlike all others, especially those using in it the
so-called comb of Dirac deltas. The latter ones do not lead to getting a correct formula for the spectrum of the
output waveform of an A/D converter, or they yield no formula at all. Using the description of the A/D output
signal in form of a step function (as in the textbooks mentioned above), a new, correct formula for calculating
the spectrum of the sampled signal is derived in this paper. It is a revised version of the formula currently used
in the literature, that is of the so-called Discrete-Time Fourier Transform (DTFT), and it is a product of this
DTFT and a certain correction factor. Finally, some literature items are referred to in which the designers of
integrated circuits (containing A/D converters) point out discrepancies that arise in designs when the
multiplying factor mentioned above is not taken into account.

1 INTRODUCTION A similar scheme as that shown in Fig. 1 (in a block
form) can be also found in a well-known monograph
of van de Plassche (van de Plassche R. 1994; on page
4). (That is in a book specially dedicated to the theory
of A/D and D/A conversions and to the discussion of

integrated circuits that perform these operations.)

The block labeled S/H in Fig. 2 implements the so-
called operation of taking a sample value at a time
instant kT, k=...,-2,-1,0,1,2,... and maintaining it for a
time period T. Such an operation is performed by that
electronic circuit, which is shown in Fig. 1, and which

Using a scheme similar to that one which is shown in
Fig. 1, Prandoni and Vetterli in their book (Prandoni
P. & Vetterli M. 2008; on page 284) explained the
behavior and operation of an A/D converter.
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Figure 1. A basic idea of an A/D converter illustrated with
the use of a FET transistor switch connected to a capacitor
holding the value of an analog input signal taken at the time
of switching.

consists of a FET transistor and a capacitor connected
to its “source” terminal. The FET transistor, controlled
by pulses applied to its “gate” terminal, opens
regularly every T seconds and charges the capacitor to
a current value of the voltage at its "source" terminal.
The task of capacitor is to sustain this voltage value
for a time equal at least to T. The voltage values,
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which change in steps on the capacitor, are subjected
to a quantization process, and further these quantized
values are mapped into numbers.
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Figure 2. A block diagram of an A/D converter consisting of
three blocks: a sample and hold (S/H) unit, an amplitude
quantization unit (Q), and a mapper (coder) of quantized
values to numbers .

It follows from Figs. 1 and 2, and descriptions of
the equivalent circuits of an A/D converter shown in
these figures that its output waveforms (understood
as functions of a continuous time t) have the form of a
slightly disturbed step function presented in Fig. 3.
The shape of actual waveforms at the outputs of A/D
converters is more rich than the step function shown
in Fig. 3 and depends upon the architecture and
technology in which a given converter is
implemented. This shape is characterized by such
parameters as: settling time, acquisition time,
aperture, aperture jitter, hold mode settling time, hold
mode feedthrough, droop; see, for example, (van de
Plassche R. 1994; page 74). However, from the point of
view of a designer of signal processing systems, most
of these parameters are of secondary importance
(which does not mean at all that they are not relevant
to designers of their integrated structures in specific
semiconductor technologies). In the description
visualized in Fig. 3, we restricted ourselves to
pointing out that in each time interval <kT, (k+1)T>, k =
...,-2,-1,0,1,2,... we have its initial segment (the so-
called track part and beginning of the hold part) rich
in changes and the second one (covering the almost
entire hold part) already stabilized on the hold
voltage level of a given time interval. The former
segment is denoted on the waveform of Fig. 3 by a
diagonal dash, while the latter is marked with a
longer dash, parallel to the time axis — at each of the
aforementioned time intervals.
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Figure 3. Sketch illustrating the form of the waveform of an
example sampled signal, denoted by xs(t) and related with
an un-sampled one x(t) (not shown here). (This figure is
based on a one, which was used in discussions presented in
(Borys A. 2022)).

In Fig. 3, [x,(-37)], and [x,(1)] , where the
lower index means the operation of amplitude
quantization, stand for illustration of the quantized
values of the sampled signal xs(t). These values are
assigned to the following instants: -3T and T,
respectively, and worked out in the hold parts of the
corresponding time intervals (mentioned above). In
Fig. 3, it is assumed that the track part (including
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beginning of the hold part, too) lasts t seconds, and
the track and hold parts together last T seconds.

As we know from the literature, the idealized
version of the signal sampling process neglects the
switching time in this process, assuming that the time
T is much smaller than T. In other words, in an ideal
case, T = 0 is assumed. Then the waveform shown in
Fig. 3 takes the form which is visualized in Fig. 4.

A xn.(f)
["; H (*3”]9

— ] =0 .

i e

37 2T -T 0 T 27 3T 4T 5T ¢
Figure 4. Sketch illustrating an idealized version of the
waveform shown in Fig. 3; it is denoted here by xs(t). (This

figure is based on a one, which was used in discussions
presented in (Borys A. 2022)).
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Furthermore, note that the coder of quantized
values shown in Fig. 2 plays, in addition to
performing the conversion of these values into
numbers, a role of an element that holds a number it
generated at a given instant, as an encoder, for exactly
T seconds — before feeding it further into a signal
processor or a signal processor buffer. Therefore, the
waveform at the output of the decoder is exactly the
same as the one shown in Fig. 4 (in this idealized
version), except that the quantized values are now
"scaled" to numbers. For completeness of the picture
of what appears as the final result at the output of an
A/D converter, the waveform in Fig. 4 is redrawn to a
“scaled” one shown in Fig. 5.
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Figure 5. Sketch illustrating an idealized version of the
waveform shown in Fig. 3 after performing amplitude
quantization and coding into numbers; it is denoted here by
xsie(t). (This figure is based on a one, which was used in
discussions presented in (Borys A. 2022)).

In Fig. 5, I:XS,H 3T )} . and [X&H (T)] " where the
lower index QC méans performing both the
operations: amplitude quantization and coding (one
after the other), are example values of the quantized
and coded signal x (t).

In order to make further comparisons of the ideal
descriptions of the sampled signal presented above,
let us also add to them the one describing the sampled
signal immediately before performing the amplitude
quantization on it. But we give up here a graphical
illustration of it since a waveform in the figure would
have the same form as that one shown in Fig. 4, with
the only difference in that the values of the "stair
steps” on it would differ slightly from the
corresponding ones in Fig. 4. Furthermore, these



values would belong to the set of real numbers.
Finally, let us call this waveform as x, (t) -

Now, using the above signal and notation, we see
that the signal determining the quantization error eq(t)
can be expressed according to the following equation
(Oppenheim A. V., Schafer R. W., Buck J. R. 1998):

X (1) = X (1) +& (1) - (1)
That is we get from (1a)
e, (1) =g (t) = xgq (1) - ()

Note that in our considerations presented here the
signal x(t) could be also interpreted otherwise. For
example, as a one with the values averaged in each of
the time intervals <kT, (k+1)T>, k = ...,-2,-1,0,1,2,... —
over a part or in the whole time interval (of the length
T). Such a proposal was made, for instance, by Vetterli
M., Kovacevic J., and Goyal V. K. in their book
(Vetterli M., Kovacevic J., Goyal V. K. 2014; on page
45). Further, note that there are also other possible
interpretations of the signal denoted here as x,(t).

But we see here clearly that all of them differ or
would differ, more or less, in values of the voltage
levels on the corresponding "stair steps" of a step
function that describes their shape. That is like such a
function as the one visualized in Fig. 4 but before
quantization operation. So we can characterize all of
them through the following equation:

& (t): Xsiq (t)_xsiﬁ (Lt/TJT)’ )

where ei(f) stands for an error related with the
sampling process (as it has been depicted here). And
|-| means the floor function in (3).

Eq. (3) can be rewritten in the form
X (1) = Xgq (L/T |T)+e. (1), (4)

which allows us to say that all the descriptions of the
sampled operation immediately before performing
the amplitude quantization, mentioned just above,
differ from each other only in the error function es(t).

(Because  all the values x,(|t/T|T) for these
functions are the same.)

Introducing (4) into (1) gives
Xg (1) = Xgq (LU/T |T)+e (1) +€, (1) (5)

And this result shows us that the sampled signal,
before performing its coding, is subject to two errors:
es(t) and e4(t) both related with the uncertainty in
amplitude.

Obviously, in the process of sampling a signal, we
have also to do with uncertainty in determining the
sampling time instants. This, however, has no
significant impact on the shape of the x(t) waveforms.
At most, they are shifted on the time axis by a
constant value, and with a small time jitter the

changes of widths of “stair steps” of a step function
(as, for example, of the one in Fig. 4) can be neglected.

2 CALCULATION OF THE SAMPLED SIGNAL
SPECTRUM

Discussion of the cases presented in the previous
section showed that the most appropriate description
of the waveform at the output of an A/D converter is a
step function - independently whether we
understand by it the signal immediately before
performing the quantization operation or the already
quantized one, or the coded latter one (locally, at each
of the "stair steps” of this function). And, as already
recognized, the cases mentioned above differ from
each other only by small deviations in the values of
the voltage levels of the corresponding "stair steps" of
their step functions. However, this is irrelevant to the
problem considered in this paper. What is important
here is the staircase character of the function, which
describes what happens at the output of an A/D
converter. And this allows us to describe all of these
cases analytically through a single (generic) formula,
as follows:

X, (t)=x, (KT) for KT <t<(k+1)T

. , (6)
and with k =|t/T |

where x,(t) stands for the value of the k-th “stair step”
of the step function xg(t) or x,(t), or also x(t).
Moreover, for the sake of clarity, it is worth recalling
at this point that the error functions es(t) and e4(t) are,
obviously, also step functions.

Let us now calculate the Fourier transform of the
waveform given by (6). We will do this in detail
starting with

X, (1)=F(x (1)) :_]O x, (t)exp(— 2 ft)dt =

=..+ I Xy (—T)exp(—j27 ft)dt+j)'xg (0)-

-1

, )
-exp(—j2z ft)dt+

2T
+ [ %, (T)exp(-j2r ft)dt+..
T

where X, (t)=F (xg (t)) means the Fourier transform
of the signal x,(t), fis the frequency, and j=+-1.

In the next step, calculating integrals in (7), we get
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T
X (f):...+xg )exp(—j27z'ft)|0_T+

—j2xf
X (T)
-2z f

- T
~on exp(—j27 ft)| +

-exp(—j27 ft)|iT +.=

L{...—xg(

- 2x f

+X, (=T )exp(—j27 f (0T ))—x, (0T)-

-exp(—jZ;zf(OT))+XQ(OT)exp(—j27sz)—

X, (T)exp(—j27 T )+x,(T)-

-exp(—jZ;zf (21 ))+} :2”%{'"—{)(9 (-21)-

—Xq ( T)Jexp(]27sz) [ X, (-T)=x, (OT)J-
( T)+[% ( ) o (T)]

-exp(—j27fT)+ [ J

-exp(—j27f(2T))+. } , ®)

—T)exp(j27fT)+

-exp( j2zf (0

1 0

In a compact form, (8) can be expressed as
X, (KT )=
jzﬂ_f £ _w|: 9 ( )

Xg((k_l)T)]'
exp(- jzﬁfkT):Jz%DTFT([ (KT) - )

=%, ((-0T)])

where DTFT() means the so-called Discrete Time
Fourier Transform (Oppenheim A. V., Schafer R. W.,
Buck J. R. 1998), (Vetterli M., Kovacevic J., Goyal V. K.
2014). (Moreover, note that (9) includes, at the same
time, also the definition of this transform.)

Xg(1)=

Further, observe that (9) can rewritten as

1
X, (f)=

~DTFT (x, ((k-1)T))|

{DTFT(x, (kT))- w0

Moreover, we can transform DTFT(xg ((k—l)T))
occurring in (10) to the following form:

0

DTFT(x, ((k —I)T)):k; X, ((k=1)T)-

i@xg(
+)T)=e
-3 %, (KT )exp(- 22 kT) =

k'=—o0

= DTFT(x, (KT ))exp(-j27 fT)

-exp(—j2z fkT)

cexp(—j2xf(k (-j27xfT)- (11)

Note that to get a final result in (11) we introduced
first an auxiliary variable k'=k-1 there, then
performed some manipulations, and finally dropped
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prime symbol at k'.
(10), we get

Substituting next this result to

DTFT (x, (KT))
T T e
=T-DTFT(x, (kT))-

'(exp(jﬂfT)—exp(—jﬂfT)) _
j2zfTexp(jz fT)

(1—exp(—j27r fT)) =

(12)

in (1 fT
—T-DTFT(x, (kT))exp(—jﬂfT)&’;):
T

=T ~DTFT(Xg (kT))sinc(ﬂfT)exp(—jﬂ'fT) )

In this way, we arrived at the end of our
calculations of the spectrum of a sampled signal.
Hence, our final result that follows from (14) has the
following form:

Xg(f)=

. . : (13)
=T ~DTFT(Xg (kT))smc(ﬂfT)exp(—jﬂfT)

3 DISCUSSION OF THE RESULT ACHIEVED

Evidently, the result given by (13) differs from the one
telling us that the DTFT of a sequence of analog signal
samples is a Fourier transform of this sequence. In
other words, the DTFT is identified with (or plays a
role of) a Fourier transform (spectrum) of the sampled
version of an analog signal, and it turns out here that
this is not a quite correct identification. Furthermore,
this identification is done without any justification,
simply assuming a priori it as a definition.

Moreover, as shown in Introduction, the above
approach is difficult to justify when confronted with
signals that appear at the output of an A/D converter.
Undoubtedly, these are continuous-time signals so
calculation of their Fourier transforms (spectra) can be
done within the framework of a classical Fourier
theory — without any problems. It is not necessary to
reach for some new tools, such as, for example, DTFT.
The result obtained in this paper shows that the above
is possible. Besides, our tackling with the problem is
firmly "anchored" in realities of physical operations of
sampling analog signals. Additionally, it also turns
out that the outcomes can be expressed in terms of the
DTFT and a certain multiplying function, see (13).

Note, however, that for very small values of the
frequency f, compared to the value of the sampling
frequency f=1/T, ie. for f/f,«l = f < f, it can be
assumed that the values of the multiplying function in
(13) are approximately equal to 1. And this allows us,
for these frequency ranges, to assume that the
following formula:

X, (f)=T -DTFT(x, (KT)) (14)

is valid approximately.



By the way, note the occurrence of a scaling factor
T in equations (12), (13), and (14) above. Its existence
is due to the fact that the DTFT is only a weighted
sum of signal samples, while a "real" signal spectrum
is related to integration over time, or "summation
times time."

Obviously, the expression given by (13) for
calculation of the spectrum of a sampled signal differs
also from the following highly celebrated formula:

Xa()= 3 X(-K)), (15

where X(f) means the Fourier transform of an un-
sampled signal x(t), but Xs(f) is identified with the
spectrum of its sampled version x«(f) (described in
another way as x,(t) here). To see this, let us use in
(15) the relationship (Oppenheim A. V., Schafer R. W.,
Buck J. R. 1998), (Vetterli M., Kovacevic J., Goyal V. K.
2014) according to which the DTFT equals the
expression occurring on the right-hand side of (15).
Evidently, we see then that X (f)#T-X,(f) holds.
Moreover, we get then the equivalent of (13) in the
following form:

X, (f)=sinc(z T )exp(-jz fT)-

3 X (f -k,

(16)

So we can say that the formulas (13) and (16)
postulate the need to introduce a correcting coefficient
(correcting function): sinc(7 fT)exp(—jzfT) into the
expression on the right-hand side of (15), which is
currently in force in the literature.

4 CONCLUSIONS

The need to develop a new, better description of
output waveforms of A/D converters have been
indirectly confirmed in many places in the literature.
For example, see (de la Rosa ]., Perez-Verdu B.,
Medeiro F., del Rio R., Rodriguez-Vazquez A. 2001)
and (de la Rosa J., Perez-Verdu B., Medeiro F., del Rio
R., Rodriguez-Vazquez A. 2004). Among others, these
authors confirm that the effect which is discussed in
this paper is most annoyed at the large ratios of signal
frequencies to sampling frequencies (comparable to
each other). And this effect actually disappears at very
high sampling frequencies (that is, when the above
frequency ratio is relatively small; see (14)).
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