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1 INTRODUCTION 

Satellite navigation has mature to become a public 
goods, an essential component of the national 
infrastructure, and the enabling technology for 
growing number of technical and socio-economic 
systems [1, 2, 3]. Global Navigation Satellite System 
(GNSS) comprises several global satellite navigation 
systems, including Global Positioning System (GPS), 
operated by the US, which provide the Positioning, 
Navigation, and Timing (PNT) services in an 
interoperable and co-operative manner [4, 5, 6]. 
Matured enough to be one of the cornerstones of 
modern society, GNSS still keeps traditions that 

constraint developments and utilisations [6, 7]. 
Among them is the system-centric view of GNSS 
positioning performance assessment and declaration, 
which does not concern with the potential application 
and its requirements [2, 6]. Consequentially, GNSS 
application developers, operators, and users cannot 
either assess systematically the effects and risks the 
GNSS positioning performance degradation renders 
to GNSS application Quality of Service, or develop the 
GNSS application QoS resilient to potential short-term 
GNSS performance degradations or outages [2, 3, 6, 8, 
9, 10]. The problem becomes more emphasised in the 
wide range of disciplines utilising GNSS, including 
the maritime sector [3, 6, 8, 9, 10]. 
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Disciplines, such as air or maritime transport and 
traffic, attempt to assist GNSS applications with 
standards of required GNSS performance [11, 12, 13, 
14]. An excellent review of current standards with 
direct amendments proposals from expert panels has 
been performed by European Agency for Space 
Programme (EUSPA), which conducts bi-annual re-
assessment of GNSS user needs and requirements per 
disciplines, based on expert panel opinions [8]. Still, 
the current state-of-the-art does not overcome the gap 
between the GNSS operator’s expression of GNSS 
performance, which naturally considers it without 
knowledge of the actual positioning conditions 
around GNSS users, and the GNSS application’s 
needs to assess the risk of GNSS positioning failure in 
actual conditions of usage [6, 7, 8, 11, 13]. 

Here we propose the solution for the growing 
problem by introduction of the method and the 
model/index for the risk assessment of GNSS 
utilisation for the particular GNSS application with 
known requirement for GNSS position accuracy. 
Called the Probability of Occurrence (PoO), the index 
is capable of advising GNSS application developer, 
operator, and user on the risk of GNSS not meeting 
the required positioning accuracy level at the certain 
conditions of usage. Such a knowledge may assist 
GNSS application developers, operators, and users in 
making the objective inference on the need for 
suitable alternative when the GNSS PNT 
underperform in relation to GNSS application, thus 
rendering GNSS application resilient. The proposed 
method and model are demonstrated in this 
manuscript on the case of risk assessment of the GPS 
PNT ionospheric effects for single-frequency 
commercial-grade GPS positioning in the Arctic 
region.  

This manuscript is structured, as follows. This 
chapter introduces the problem and outlines the 
research hypothesis. Chapter 2 describes (2.1) the 
theoretical foundations and the proposal for PoO 
model and the methodology for its development, (2.2) 
the experimental observations needed for the PoO 
model development, (2.3) a proof-of-principle case 
study the PoO model development, and (2.4) 
demonstrates and discusses PoO model utilisation for 
risk assessment for a particular maritime 
task/application. Chapter 3 concludes the manuscript 
with the outline of contributions and findings, and 
proposals for future research. 

2 GPS UTILISATION RISK PROBABILITY-OF-
OCCURANCE (POO) METHOD AND MODEL 

The Probability of Occurrence (PoO) model is 
proposed in this research as a single GPS application-
centric model for the GPS utilisation risk estimation in 
defined GPS positioning conditions and utilisation 
scenario. This Section outlines the method and 
describes the material required for the PoO model 
development and deployment for the GPS utilisation 
risk assessment.  

2.1 Method 

The proposed GPS/GNSS Probability of Occurrence 
(PoO) risk index is defined based on empirical 
identification of the GPS/GNSS positioning 
degradation [2, 3, 4, 6, 9, 10, 15] risk in characteristic 
positioning environments [3, 6, 9, 10, 16, 17, 18], and 
in accordance to a fundamental statistical principles 
[19, 20], as follows. 

Let X be a statistical random variable, and x its 
value. Experimental observations of a variable may be 
considered values x of a statistical variable X. 
Statistical distribution of a variable X serve as its 
statistical model, characterised with two essential 
functions: the cumulative distribution function (CDF) 
and the  probability density function (PDF) [19, 20].  

The probability density function fX(x) of statistical 
variable X is defined as the function that returns the 
probability of X acquiring the value exactly equal to x 
[19, 20], as shown in (1). 

( ) ( ) [ ], : 0,1XF x P X x F= = →  (1) 

The cumulative distribution function (CDF) FX(x) is 
defined as the function that returns the probability 
that X will acquire the value less then, or equal to x 
[19, 20], as expressed in (2). Two essential functions of 
a statistical variable X are mutually related [19, 20]. 

( ) ( ) [ ] ( ), : 0,1
x

X XF x P X x F f x dx
−∞

= ≤ → = ∫
 (2) 

The complementary cumulative distribution 
function (CCDF), or tail distribution, is derived from 
the cumulative distribution function, and defined as 
expressed in (3). 

( ) ( ) ( )1X XF x P X x F x= > = −  (3) 

The CCDF outcome may be interpreted as the 
probability of X exceeding (being larger than) x. 
Introduction of CCDF may serve as a numerical 
indicator of probability of risk that an observed 
variable exceeds a critical value, established in the 
domain of interest. 

Statistical distribution functions may be estimated 
analytically using various statistical methods [19, 20], 
implemented within either stand-alone software 
packages, such as CumFreq [21], or in programming 
environments, such as the open-source R environment 
for statistical computing [22]. Software libraries, such 
as the R-based fitdistrplus [23], allow for estimation of 
experimental PDF and CDF, fitting them to theoretical 
statistical distributions [19, 20]. Furthermore, 
statistical tests, such as Kolmogorov-Smirnov and 
Shappiro-Wilk, may be uitilised to confirm 
compliance of an experimental statistical distribution 
to the particular theoretical one, thus completing the 
identification of the experimental statistical 
distribution [19, 20]. Once estimated and identified, 
the experimental CDF may be used for derivation of 
the CCDF for the process/data pool in question. 

The CCDF approach is applied in the research 
presented for definition of the Probability of 
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Occurence model development method, which utilises 
a massive data set of GPS positioning error 
observations, as a statistical variable. The PoO model 
emerges as the CCDF of the observed GPS positioning 
errors over a long time in the specified conditions of 
positioning environment and GPS application 
requirements for the particular scenario of utilisation. 

The PoO model application for risk estimation 
requires understanding and specification of means of 
utilisation in an GPS application-oriented sense, as 
well as the targeted effect as the source of the risk. The 
PoO model is derived from a large data set of 
experimental GPS position observations in 
positioning conditions and the particular scenario of 
usage, of interest for a particular GPS-based 
application. 

The GPS positioning environment effects that may 
cause GPS positioning degradation may include [3, 4, 
5, 6, 24, 25]: (i) GPS ionospheric delay, (ii) GPS 
ionospheric scintillation, (iii) GPS multipath in a 
specified class of terrain (forest, mountain, urban, 
semi-urban, rural, ocean), (iv) GPS tropospheric delay 
etc. 

The GPS utilisation scenario should be described 
by specification of user equipment (for example: 
commercial-grade single-frequency GPS receiver, as 
found in most smartphones still), utilisation of SBAS 
(for example: EGNOS) or other advanced positioning 
techniques (such as Real-Time Kinematics, RTK) 
instead of essential GPS, expected utilisation 
environment (indoors vs outdoors, urban, rural,  
mountains, forrest, maritime, air, vehicle etc.) [3, 4, 5, 
6, 24, 25]. 

Once the targeted risk effects is defined, and GPS 
positioning environment and GPS application 
utilisation scenario specified, a massive set of GPS 
positioning error observations should be obtained, 
either by long-term data collection using individual 
equipment, or by utilisation of trusted data. Section 
2.2 should be consulted for more details. 

With the massive GPS positioning error data set is 
at hand, the CCDF should be estimated, using the 
experimental PDF and CDF estimation methods. The 
experimental CCDF then serves as the Probability of 
Occurrence (PoO) model. Te PoO model returns the 
probability of GPS positioning failure for a given GPS 
positioning error threshold. With the GPS positioning 
error threshold set as a maximum acceptable 
positioning error of the GPS application in 
consideration, the PoO will return the probability of 
occurrence the event in which the GPS positioning 
process will fail to meet the requested positioning 
accuracy threshold for particular GPS application. 

The PoO model development method is developed 
in a formal manner to be implemented easily within a 
programming environment of a choice. The lack of 
‘ground truth’ complicates the validation of the PoO 
model performance. An alternative cross-validation 
approach [20] is taken for this research, thus allowing 
for objective assessment of the PoO model correctness. 

2.2 Material 

Material required for the PoO model development 
comprises GPS positioning errors taken over a long 
time with the specified satellite navigation 
receiver/position estimation method in the 
geographical, terrain, and positioning environment 
(space weather, ionospheric, tropospheric, multipath, 
satellite visibility)  conditions [6]. The concept of 
material collection aims at creation of a large GPS 
positioning error observations as a statistical sample 
that represent correctly the population of GPS 
positioning errors which can occur in the real-time 
GPS-based application usage. It is essential that the 
representation (sample) resembles frequency of GPS 
positioning degradation at different levels as best as 
possible [19, 20]. 

The user GPS equipment specifications, and GPS 
application requirements should be defined by a risk 
assessor in collaboration with interested parties (GPS 
application developers, operators, and users) [2, 6, 7]. 
Positioning environment conditions and GPS 
positioning error datasets may be acquired either 
through a tailored long-term field campaigns, or 
obtain from databases operated by trusted third 
parties.  

As an example, in the case of GPS ionospheric 
effects risk assessment, the 24 hours-a-day GNSS raw 
pseudorange observations at reference stations across 
the world have been continuously collected, with 
exposed ionospheric effects and mitigated all the 
others, for the exact purpose of evaluation of the 
ionospheric effects on GNSS positioning performance. 
Available from the International GNSS Service (IGS) 
database [26], the GNSS raw pseudorange observation 
may be processed with a suitably configured GNSS 
Software-Defined Radio in the post-processing mode 
[2, 6] to allow for generation of GNSS positioning 
estimates and estimation of GNSS positioning error [4, 
5, 6, 25, 27], as required for the PoO model 
development. Other sources of GNSS raw 
pseudorange observations include the internet-based 
open-access databases, such as Sonel [28], and the 
EUREF Permanent GNSS Network [29]. The GPS 
positioning environment is systematically described 
from the perspective of space weather, geomagnetic, 
and ionospheric conditions with a number of the 
internet-based open-access archives of global data and 
wide range of indices [3, 6, 9, 30], provided by 
different national and international organisations and 
agencies. The US NASA maintains a well-structured 
observation-rich OMNIWeb repository [31] with a 
Graphical User Interface (GUI) aimed at selection of 
data [32]. The International Service of Geomagnetic 
Indices [33] allows for a free access to archived 
derived values of geomagnetic descriptors.  The 
Intermagnet [34] network offers a free access to 
structured global observations of geomagnetic 
conditions, as observed with a geographically spread 
network maintained to serve scientists, researchers, 
and engineers. Alternative third-party sources of 
observations are also available, with the APIs 
supporting the computer-based data access. 
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2.3 A case study of practical PoO model development 

The research presented is established a method for 
PoO model development, and defined the required 
inputs. The case scenario of the PoO model 
development for the risk assessment of the single-
frequency commercial-grade GPS utilisation in 
maritime sector in polar regions is developed, and 
presented as a proof-of-principle demonstration. 

This research is driven by the rising interest in 
sailing in polar region, a geographical area with 
known exposure to dynamic space weather, 
geomagnetic, and ionospheric conditions known to 
produce considerable degradation of the GPS 
positioning performance [3, 4, 10, 11]. Consequently, a 
case scenario is established, resembling market 
conditions with prevailing share of the single-
frequency commercial-grade unassisted GPS 
receivers. The common GPS receiver is assumed to be 
utilising just the standard correction models provided 
by GPS operator, thus correcting the ionospheric, 
tropospheric, and satellite clock effects in the 
standardised manner [6, 27]. A suitably configured 
Software-Defined Radio GNSS receiver is used to 
produce the GPS position, based on the raw GPS 
pseudorange observations taken at the reference 
station in the polar region. The position of the 
reference station was determined by precise geodetic 
methods. The GPS positioning residuals xresidual(t) 
are used as the GPS positioning error estimates xe(t) 
at the time instant of GPS positioning t, with xGPS(t) 
denoting the vector of GPS position components 
estimates, and xref(t) denoting the true position vector 
of GPS receiver, as determined by a precise geodetic 
method as given with (4). 

( ) ( ) ( ) ( )residual e GPS refx t x t x t x t= = −
 (4) 

The GPS observations used in the proof-of-
principle PoO model development were taken at the 
IGS [26] reference station Iqualuit, Canada, using a 
stationary GNSS receiver collecting continuously the 
raw GNSS pseudoranges 24-hours-a day at 30 s 
sampling interval. Observations taken throughout 
2014 are selected as a representative sample of the 
population. Total of 1 028 713 GPS position estimates 
ate derived from the massive data set of raw GPS 
pseudorange observation, after those were fed into 
RTKLIB [35], a, SDR GNSS receiver, to produce GPS 
positioning, and GPS positioning error estimates. 

Space weather, geomagnetic, and ionospheric 
disturbances at various scales occurred in that year, 
with their frequency of occurrence resembling the 
long-standing pattern, as confirmed with the 
examination of the Dst index [3, 9, 36, 37] of 
geomagnetic storms/disturbances in 2014, as depicted 
in Figure 1. 

 
Figure 1. Time series of Dst, geomagnetic disturbance index, 
throughout 2014. 

Dst data set is obtained from [32, 33], for the 
purpose of identification of particular classes of the 
GPS positioning environment: (i) (relatively) quiet 
geomagnetic condition, (ii) positive (first) phase of the 
geomagnetic storm, (iii) negative (deep through, and 
recovery) phase of the geomagnetic storm [36, 37]. 
Such classification allows for establishing three cross-
validation [20] scenarios for the PoO model 
performance validation. 

The raw GPS pseudorange observations are then 
fed into the RTKLIB GNSS SDR receiver, set in the 
post-processing mode and with configuration as a 
single-frequency commercial-grade sole-GPS receiver 
[27, 35], as outlined in Figure 2. 

 
Figure 2. Configuration of RTKLIB as a single-frequency 
sole-GPS satellite navigation receiver 

The RTKLIB receiver returns the GPS positioning 
estimates, which are then transformed into GPS 
positioning errors using the method (4). The method 
is applied in the tailored software developed for the 
purpose of this research in the R environment for 
statistical computing. The GPS positioning error 
statistical analysis and the PoO model development 
are performed with the R-based software developed 
under this research.  
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The PoO model in the presented proof-of-principle 
is targeting the horizontal GPS positioning accuracy, 
derived from the positioning accuracy of horizontal 
components of position, as the index referred to in 
GPS-based application requirements for maritime [7]. 
Before the PoO model development takes place, the 
obtained components of GPS positioning error vector 
are examined for their statistical properties, as 
outlined with box-plot diagrams in Figure 3. 

 
Figure 3. Box-plot of GPS positioning error vector 
components 

Figure 3 reveals a number of outliers, caused by 
extensive ionospheric storms in the region, which 
were affecting the GPS positioning quality with the 
resulting risks for GPS-based applications. 

A cross-validation method is developed for the 
PoO model validation, based on classification of GPS 
positioning error vector into one of the three classes of 
geomagnetic conditions [36, 37]: (i) quiet conditions, 
(ii) positive phase of geomagnetic storm, (iii) negative 
phase of geomagnetic storm. Essential statistical 
properties for classes (ii) and (iii), and the total sample 
are given in Table 1. 
Table 1. Statistical properties of the total set of horizontal 
GPS positioning errors, and the two subsets related to 
geomagnetic storm development ________________________________________________ 
GPS     No. of    Mean  Median Variance 
horizontal  observations 
error [m]  in 2014 ________________________________________________ 
Total    1019769   1.9549 1.6300 4.89951 
Dst > 30 nT  24     2.0077 1.5496 1.629124 
Dst < -40 nT 222    1.8110 1.6709 1.328492 ________________________________________________ 
 

The box-plots of horizontal GPS positioning errors 
remain balanced in regard to the Dst value ranges 
during quiet geomagnetic conditions. However, it is 
evident from Figures 4, and 5, respectively, that the 
median of GPS positioning error rises in regard to the 
absolute value of Dst during disturbed geomagnetic 
conditions, thus justifying the classification approach. 

 
Figure 4. Box-plots of GPS positioning errors per ranges of 
Dst values, positive phase of geomagnetic storm 

 
Figure 5. Box-plots of GPS positioning errors per ranges of 
Dst values, negative phase of geomagnetic storm 

Cross-validation approach is justified further with 
the comparison of horizontal GPS positioning error 
data sets for geomagnetic disturbance classes (ii) and 
(iii). Related statistical tests [19, 20] reveal no 
similarities in two subsets of the original observations. 
Table 2. Statistical tests results of comparison of GPS 
positioning error subsets during phases of geomagnetic 
storms ________________________________________________ 
Compared   t-test, p-value,  F-test, p-value, 
with     H0: means    H0: variances  
General    are equal    are equal ________________________________________________ 
Dst > 30 nT   0.8411     0.00227 
Dst < -40 nT  0.06421     < 2.2e-16 ________________________________________________ 
 

Finally, the method outlined in Section 2 is applied 
to yield three PoO models, for the whole sample 
(total) of horizontal GPS positioning errors, and for 
the subsets relating to geomagnetic conditions classes 
(ii), and (iii). The method application results in three 
PoO models, respective to geomagnetic conditions, as 
depicted in Figure 6. 
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Figure 6. Three PoO models, for the whole set of horizontal 
GPS positioning errors (total, in red), for the positive phase 
of geomagnetic storm (Dst > 30 nT, in blue) subset, and for 
the negative  phase of geomagnetic storm (Dst < -40 nT, in 
green) subset 

In consideration of the PoO model performance, 
the negative phase PoO fits well the total PoO, thus 
confirming the total PoO model success. The reason 
may be found in the fact that statistical properties of 
the horizontal GPS positioning errors during the 
negative phase of the geomagnetic storms are clearly 
identified within the total pool of horizontal GPS 
positioning errors. A relatively small subset of 
horizontal GPS positioning errors observed during the 
positive phase of geomagnetic storm creates a unique 
statistical pattern, resulting in a slightly different PoO. 
Difference is particularly visible in the 1 m – 6 m 
range of horizontal GPS positioning errors. However, 
the size of related sample may lead to inference of 
neglecting the observed difference in PoOs.  

2.4 PoO model application on particular GPS application 

The total PoO model, expressed either in graphical or 
analytical form may be utilised to asses the risk of 
GPS utilisation, in the presented positioning 
environment conditions and the scenario of 
utilisation, in a specific GPS application defined by its 
requirements for horizontal GPS positioning accuracy 
[7, 38]. 

Let us assume the PoO is expressed in the 
analytical form, as given in (5). 

( )  riskP f requested horizontal accuracy=  (5) 

A specific GPS-based application should define its 
request for the highest acceptable horizontal GPS 
positioning error, and use it as the value for requested 
horizontal accuracy. Applied to the PoO model (5), 
the GPS-based application receives the probability of 
horizontal GPS positioning accuracy not meeting its 
request, and may consider potential alternatives for 
periods of degraded GPS positioning performance. 
Determination of the PoO/risk for a particular 
requested horizontal GPS accuracy may be performed 
using the analytical model, or graphically, as shown 
in Figure 7. 

 
Figure 7. Graphical determination of PoO/risk of horizontal 
GPS positioning accuracy not meeting the requested level, 
based on the PoO curve 

Considering the proof-of-principle demonstration 
scenario, a maritime GPS-based application requiring 
the positioning accuracy of 5 m may find the 
probability of approx 4% that the required accuracy 
level will not be met. Reference [7] states such a 
request may be set for the navigation in port 
operations. GPS application operator and user may 
consider implementation and operation of a 
redundant positioning system in a confined area 
(port) to overcome the risk, or the utilisation of 
integrated navigation (for example, GPS+INS), for the 
period of degraded GPS positioning performance.  

The proposed method, and PoO model 
demonstrated in the proof-of-principle scenario, may 
be generalised towards any positioning indicator 
requested, as well as to utilisation multiple GNSS 
position estimation. 

3 CONCLUSIONS 

The lack of objective and systematic risk assessment of 
GPS/GNSS utilisation renders raising number of 
GPS/GNSS-based applications uncertain of potential 
derogation of their Quality of Service (QoS), or even 
failure to deliver, due to potentially unacceptable 
GPS/GNSS positioning performance degradation. 

The research presented addresses the problem 
with the proposal for a method for development of 
Probability of Occurrence model, a statistical model, 
for risk assessment of GPS utilisation in particular 
positioning environment and for a specific GPS-based 
application that extends its requirements for GPS 
positioning accuracy.  

Contributions of the presented research 
summarise, as follows: 
1. A method of the Probability of Occurrence (PoO) 

model of GPS utilisation. 
2. Assemblage of a year-long massive database of GPS 

positioning errors at Iqualuit, Canada in Arctic 
region, presented in the open-source access 
manner. 

3. A cross-validation method for the PoO validation, 
based on geomagnetic conditions classification. 

4. A method of the PoO utilisation for the GPS 
utilisation risk assessment for the specified GPS-
based application. 
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5. An R-based software for PoO model development 
and validation. 

The proposed method and the PoO model are 
demonstrated in the case scenario of a sole-GPS, 
single-frequency commercial-grade GPS positioning 
in the Arctic polar region. As the result, the PoO 
model is developed based on the experimental data 
taken in the real and statistically representative 
conditions. The PoO model utilisation for risk 
assessment is demonstrated in the case of a maritime 
GPS application. The research will continue with 
improvement and advancement of developed R-based 
software that will allow for specification of 
positioning environment and GPS-based application 
utilisation scenario, as well as with generalisation of 
the PoO method development. 
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