

and Safety of Sea Transportation

# A Look at the Development of GNSS **Capabilities Over the Next 10 Years**

J. Januszewski

Gdynia Maritime University, Gdynia, Poland

ABSTRACT: This paper considers what the SNS (Satellite Navigation Systems) as GPS, GLONASS, Galileo and Compass, and SBAS (Satellite Based Navigation Systems) as EGNOS, WAAS, MSAS and GAGAN services might look like 10 years from now. All these systems, called GNSS (Global Satellite Navigation System), are undergoing construction or modernization (new satellites, new frequencies, new signals, new monitoring stations, etc.) and continuous improvement to increase its accuracy, availability, integrity, and resistance to interference. The most significant events in SNS and SBAS in the nearest 10 years are presented also. Additionally three possible scenarios considering these systems (in 2016 and 2021 years), concerning the number of satellites in particular, optimistic, pessimistic and the most probable were taken into account.

## **1 INTRODUCTION**

Nowadays (January 2011) the American GPS Satellite Navigation System (SNS) is fully operational with 31 satellites. Since few years the Russian GLONASS system was being revamped and undergoing an extensive modernization effort, therefore today this system with 21 satellites can be used for fix position also. Galileo system (Europa) and Compass system (China) are under construction, must likely these systems will be operating at the earliest in 2016 and 2021 adequately.

The Satellite Based Augmentation Systems (SBAS) that enhance the integrity, accuracy, and operation of two SNS – GPS and GLONASS. Today the SBAS as Wide Area Augmentation System (WAAS), Multi-functional Transport Satellite Based Augmentation System (MSAS) and European Geostationary Navigation Overlay System (EGNOS) are accessible in USA and Canada, Japan and Europe and North Africa adequately. While WAAS and MSAS are fully operational since few years, EGNOS officially entered into operational phase with the provision of the Open Service as of only October 1, 2009. Additionally the Department of Defense of the United States is cooperating with India to develop new system over Indian space. This is the GAGAN (GPS and Geo Augmented Navigation), new SBAS, actually under construction. Other SBAS will enhance GLONASS and GPS systems, called SDCM (System for Differential Correction and Monitoring), is under construction in Russia. All

these SNS and SBAS create Global Navigation Satellite System (GNSS). System Compass was nottaken into account in this paper, because about this system little information is available still.

#### 2 SATELLITE NAVIGATION **SYSTEMS** CONSTELLATION

Actually (January 2011) GPS spatial segment consists of 32 satellites, 11 the oldest block IIa, 12 block IIR, 8 block IIR–M and 1 block IIF (Table 1) [www.navcen.uscg.gov]. Additionally in this table we can find the information about active life of each satellite in years and months. The value of this life depends on the system and satellite block. The mean values of these satellites life of block IIA, IIR and IIR-M are equal 16.3, 8.9 and 3.2 years adequately. It means that the active life of all satellites of block IIA is greater than nominal value 10 years, considerably. The satellites IIA and IIR transmit one frequency (L1) for civil users only, IIR-M two frequencies (L1, L2), IIF and the future III three (L1, L2, L5). Information about integrity will provide the satellites block III only [Gleason S., Gebre-Egziabher D. 2009] and [Hofmann-Wellenhof B. et all. 2008].

The GLONASS spatial segment consists of 21 satellites, all block M (Table 2), which transmit two frequencies for civil users (L1, L2), but without information about integrity [www.glonass-ianc.rsa.ru]. This information and the third frequency will be provided by the satellites next generation K. The

Galileo spatial segment consists of 2 satellites only, 27 operational and 3 active spheres in the future. The satellites will transmit four frequencies.

The accuracy of the user's position obtained from the SNS depends on a number of satellites (ls) visible above masking angle. That's why the total number of satellites, fully operational especially, is very interesting for the users. There is no direct relation between the number ls and the position error M, but for all SNS in the case of position fix in restricted area we can say the following "when ls greater, M is less" and inversely "when ls is less, M is greater" [Januszewski J. 2008].

#### 3 THE MOST SIGNIFICANT EVENTS IN THE GNSS IN THE NEAREST 10 YEARS

The most significant events in the SNS and SBAS waited in optimistic scenario into 10 nearest years (2012–2021) with the consequences for the civil users are presented in Table 3. One of the parameters mentioned in this table is the number of frequencies transmitted by the satellites of each SNS. Because of two or three frequencies make possible the calculation of ionosphere correction, the user's position accuracy increases. Unlike actual generation of GPS and GLONASS systems next generation of these systems, GPS III and GLONASS K, and new system Galileo will provide integrity information. Integrity can be defined as a reliability indicator of the quality of positioning, user's position obtained from SNS also [Januszewski J. 2009].

EGNOS has claimed that they will eventually transmit integrity information for users of GPS and GLONASS systems as well as for Galileo system.

Between 2008 and 2013, the FAA (Federal Aviation Administration) will make the necessary changes in the ground equipment of WAAS to handle the L5 signal from GPS. Having two frequencies for ionospheric corrections will eliminate loss of vertical guidance caused by ionospheric storms.

Japan has had a plan to display a new regional system called the Quasi–Zenith Satellite System (QZSS), which services include enhanced accuracy GPS signals, communications and broadcasting.

The GPS and GLONASS systems are undergoing uninterrupted modernization (new satellites, new frequencies, new signals, new codes, new monitoring stations, etc.) and continuous improvement to increase its accuracy (position in particular), availability, integrity, and resistance to interference, while at same time maintaining at least the performance it enjoys today with existing already user's receivers [Januszewski J. 2010] and [Springer T., Dach R. 2010]. In the case of the GPS system the plans of the control segment modernization are well known. The next Generation GPS Control Segment (OCX) will provide significant benefits to all users around the world, as well as to GPS operators, mainters, and analysts. Two major upgrades are in development; the Legacy Accuracy Improvement Initiative (L-AII) and the Architecture Evolution Plan (AEP). The L-AII upgrade adds up to 14, actually 11 only, National Geospatial Intelligence Agency (NGA) monitor stations [Kaplan E.D., Hegarty C.J. 2006], [Gower A. 2008].

United States Air Force officials are moving to reconfigure the GPS constellation to create as soon as possible a 27 satellites geometry that will improve the availability and accuracy of positioning, navigation, and timing capabilities, in particular for U.S. military forces [Roper E. 2010].

A third civil signal at the GLONASS L3 frequency will be on newer GLONASS K satellites, probably starting in 2011 (Table 3).

The first two in-orbit validation (IOV) Galileo satellites are scheduled for launch 2011, followed by two more in next year.

### 4 THE POSSIBLE SCENARIOS AFFECTING THE DEVELOPMENT OF GNSS

Three possible scenarios considering three SNS, the GPS, GLONASS and Galileo, and SBAS in 2016 and 2021 years, optimistic, pessimistic and the most probable were taken into account [Lavrakas J.W. 2007]. The projected total number of satellites, number of satellites transmitting signals for civil users on two and three frequencies and information about integrity for GPS, GLONASS and Galileo for each mentioned above scenario are presented in the author's Table 4.

#### 4.1 *Optimistic scenario*

In this scenario every project meets its projected dates. In the case of GPS system the following assumptions are made for 2016 year:

- all 12 Block IIF and 4 Block III satellites were launched,
- as in 2011 the satellites IIA launched in 1992 or earlier are fully operational still, we can expect that in 2016 years the vitality of all satellites on orbit will be also 20 years.

In this situation we have in GPS satellites:

- 12 Block IIFs ranging from 0 to 6 years old,
- 8 Block IIR–Ms ranging from 7 to 11 years old,
- 12 Block IIRs ranging from 12 to 18 years old,
- 4 Block IIAs ranging from 19 to 20 years old,

#### - 4 Block IIIs ranging from 0 to 2 years old.

It means that the GPS spatial segment will consist of 40 satellites. As this number is greater than 32 (nominal value), 8 oldest satellites will be able to be not used. In 2016 year two other SNS the GLONASS and Galileo systems are operational with 24 satellites M and few satellites K, and at least 18 satellites adequately.

In this scenario for 2021 year all three systems GPS, GLONASS and Galileo are fully operational, all satellites of these systems transmit at least three frequencies accessible for civil users and the signals contain the integrity information. The GPS spatial segment will consist of at least 24 satellites of Block III, 12 satellites of Block IIF and perhaps all satellites of Block IIR–M and few of Block IIR. The spatial segments of GLONASS and Galileo will consist of 30 satellites of new Block K and 30 adequately.

In this optimistic scenario, already in 2016 year, all present-day SBAS, and GAGAN and QZSS also, will be fully operational, and perhaps in 2021 year other new systems (e.g. in Africa and in South America) additionally.

#### 4.2 Pessimistic scenario

In this scenario no project is not realized according to earlier plan. In the case of GPS system the following assumptions are made for 2016 year:

- 8 Block IIF satellites were launched only,
- the block III did not begin,
- the vitality of all satellites on orbit are at most equal nominal. It means that the satellites of Block IIR and earlier are out of service.

In this situation we have in satellites: 8 Block IIFs ranging from 0 to 6 years old and 8 Block IIR– Ms ranging from 7 to 11 years old, that is to say 16 satellites only. It means that user's position cannot be obtained at any point on Earth and at any moment.

In 2016 year the number of Galileo satellites fully operational is less than planned 18, therefore this system is still under construction. The number of GLONASS satellites, all kind M, is less than 24 again. The works over the next satellite generation K continually last.

In scenario for 2021 year GPS spatial segment will consist at most of 12 satellites of Block IIF and few satellites of Block III only. As the vitality of all GPS satellites are at most equal nominal, the satellites of Block IIR–M and earlier are already out of service. The GLONASS spatial segment will consist at most of 24 satellites M and few satellites K only. The date of FOC (Full Operational Capability) of Galileo system continually lengthens, the number of satellites is less than nominal 27 still.

In this pessimistic scenario in 2016 and 2021 years EGNOS, WAAS and MSAS are fully operational, but without additional geostationary satellites. GAGAN and QZSS are under construction still.

#### 4.3 The most probable scenario

All systems are undergoing modernization or construction, but time-limits are not kept.

The last launch of GPS IIF satellite and the first launch of GPS III satellite will be not in 2014 years, but several years later. The vitality of GPS satellites is continually the same as at present, for the most satellites greater than nominal. In this situation in 2016 year we have in satellites: at most 10 Block IIRs ranging from 12 to 16 years old, 8 Block IIR– Ms ranging 7 to 11 years old and 12 Block IIFs ranging from 0 to 6 years old. The construction of Galileo system became finished, but the number of satellites is 18 only. The spatial segment of the GLONASS system consists of 24 satellites M only.

In this scenario in 2021 year we have in GPS satellites: 12 Block IIIs ranging from 0 to 5 years old, 12 Block IIF ranging from 5 to 11 years old and about 8 Block IIR–Ms ranging from 12 to 16 years old. The Galileo system with the number of satellite between 27 and 30 is fully operational. The GLONASS system will consist of about 30 satellites M and K, in the most of the block M.

In the most probable scenario GAGAN and QZSS systems will be fully operational before 2016 year, but in 2021 year other new SBAS will be under construction or on the stage projects.

#### 5 CONCLUSIONS

- in the case of GPS system the kind of scenario will depend on vitality of his satellites, of Block IIR-M in particular. If this vitality will be equal a dozen or so years, as in earlier blocks, scenario will be optimistic,
- in the case of the GLONASS and Galileo systems the kind of scenario will depend on time-limit of the implementation of all improvements,
- in optimistic scenario in 2021 GPS, GLONASS and Galileo systems offer full service on all 32, 24 and 27 satellites, adequately and information about integrity; five years earlier integrity provides the Galileo system only,
- in pessimistic scenario in 2021 one only SNS, the GLONASS system, offers full service, the number of GPS satellites is less than nominal 24, the Galileo system is under construction still; five

years earlier all these three SNSs are not fully operational,

- in the most probable scenario in 2021 all three SNSs are fully operational, but in each system information about integrity can be obtained only from the part of his satellites; five years earlier this information is provided by the part of GPS and Galileo satellites only.

#### REFERENCES

- Gleason S., Gebre-Egziabher D. 2009. GNSS Applications and Methods, Artech House, Boston/London.
- Gower A. 2008. The System: The Promise of OCX, GPS World, No 8, vol.19.
- Hofmann-Wellenhof B. et all. 2008. GNSS–Global Navigation Satellite Systems GPS, GLONASS, Galileo & more, SpringerWienNewYork, Wien.
- Januszewski J. 2010. Visibility and geometry of combined constellations GPS with health in question, GLONASS and

Galileo, p. 1082–1094, Institute of Navigation, International Technical Meeting, San Diego (CA).

- Januszewski J. 2009. Satellite navigation systems integrity today and in the future, Monograph "Advances in Transport Systems Telematics", p. 123–132, Edited by Jerzy Mikulski, Wydawnictwa Komunikacji i Łączności, Warszawa.
- Januszewski J. 2010. Nawigacyjny system satelitarny GPS dzisiaj i w przyszłości, p. 17–29, Prace Wydziału Nawigacyjnego nr 24, Akademia Morska, Gdynia (in polish).
- Kaplan E.D. & Hegarty C.J. 2006. Understanding GPS Principles and Applications, Artech House, Boston/London.
- Lavrakas J.W. 2007. A Glimpse into the Future: A Look at GNSS in the Year 2017, p. 210–217, Institute of Navigation, National Technical Meeting, San Diego (CA).
- Roper E. 2010. GPS Status and Modernization, Munich Satellite Navigation Summit, Munich.
- Springer T., Dach R. 2010. GPS, GLONASS, and More Multiple Constellation Processing in the International GNSS Service, GPS World, No 6, vol.21.

www.navcen.uscg.gov

Table 1. GPS System, PRN – Pseudorandom noise number, SVN – Space Vehicle Number, launch and input dates, active life and mean active life in years and months of all 32 satellites in January 21, 2011

| Block   | PRN | SVN | Launch date | Input date    | Active life |        | Mean active life |        |
|---------|-----|-----|-------------|---------------|-------------|--------|------------------|--------|
|         |     |     |             |               | years       | months | years            | months |
| IIA-10  | 32  | 23  | 26.11.1990  | 10.12.1990    | 16          | 0.8    |                  |        |
| IIA-11  | 24  | 24  | 04.07.1991  | 30.08.1991    | 19          | 1.3    |                  |        |
| IIA-14  | 26  | 26  | 07.07.1992  | 23.07.1992    | 18          | 5.8    |                  |        |
| IIA-15  | 27  | 27  | 09.09.1992  | 30.09.1992    | 18          | 3.2    |                  |        |
| IIA-21  | 9   | 39  | 26.06.1993  | 20.07.1993    | 17          | 4.8    |                  |        |
| IIA-23  | 4   | 34  | 26.10.1993  | 22.11.1993    | 17          | 2.0    | 16               | 3.1    |
| IIA-24  | 6   | 36  | 10.03.1994  | 28.03.1994    | 16          | 9.0    |                  |        |
| IIA-25  | 3   | 33  | 28.03.1996  | 09.04.1996    | 14          | 8.1    |                  |        |
| IIA-26  | 10  | 40  | 16.07.1996  | 15.08.1996    | 14          | 4.4    |                  |        |
| IIA-27  | 30  | 30  | 12.09.1996  | 01.10.1996    | 14          | 2.8    |                  |        |
| IIA–28  | 08  | 38  | 06.11.1997  | 18.12.1997    | 13          | 0.2    |                  |        |
| IIR-2   | 13  | 43  | 23.07.1997  | 31.01.1998    | 12          | 11.6   |                  |        |
| IIR-3   | 11  | 46  | 07.10.1999  | 03.01.2000    | 11          | 0.6    |                  |        |
| IIR-4   | 20  | 51  | 11.05.2000  | 01.06.2000    | 10          | 7.5    |                  |        |
| IIR-5   | 28  | 44  | 16.07.2000  | 17.08.2000    | 10          | 5.2    |                  |        |
| IIR–6   | 14  | 41  | 10.11.2000  | 10.12.2000    | 10          | 1.3    |                  |        |
| IIR–7   | 18  | 54  | 30.01.2001  | 15.02.2001    | 9           | 11.1   | 8                | 11.0   |
| IIR-8   | 16  | 56  | 29.01.2003  | 18.02.2003    | 7           | 10.9   |                  |        |
| IIR–9   | 21  | 45  | 31.03.2003  | 12.04.2003    | 7           | 7.2    |                  |        |
| IIR-10  | 22  | 47  | 21.12.2003  | 12.01.2004    | 7           | 0.3    |                  |        |
| IIR-11  | 19  | 59  | 20.03.2004  | 05.04.2004    | 6           | 9.5    |                  |        |
| IIR-12  | 23  | 60  | 23.06.2004  | 09.07.2004    | 6           | 6.3    |                  |        |
| IIR–13  | 2   | 61  | 06.11.2004  | 22.11.2004    | 6           | 1.9    |                  |        |
| IIR-14M | 17  | 53  | 26.09.2005  | 13.11.2005    | 5           | 1.1    |                  |        |
| IIR-15M | 31  | 52  | 25.09.2006  | 13.10.2006    | 4           | 3.3    |                  |        |
| IIR-16M | 12  | 58  | 17.11.2006  | 13.12.2006    | 4           | 1.1    |                  |        |
| IIR-17M | 15  | 55  | 17.10.2007  | 31.10.2007    | 3           | 2.7    | 3                | 1.8    |
| IIR-18M | 29  | 57  | 20.12.2007  | 02.01.2008    | 3           | 0.6    |                  |        |
| IIR-19M | 7   | 48  | 15.03.2008  | 24.03.2008    | 2           | 9.9    |                  |        |
| IIR-20M | 1   | 49  | 24.03.2009  | in commission | ing phase   |        |                  |        |
| IIR-21M | 5   | 50  | 17.08.2009  | 27.08.2009    | 1           | 4.8    |                  |        |
| IIF–1   | 25  | 62  | 28.05.2010  | 27.08.2010    | 0           | 4.8    | 0                | 4.8    |

www.glonass-ianc.rsa.ru

Table 2 GLONASS System, orbit/slot, frequency channel, GLONASS number, launch and input dates, active life and mean active life in years and months of all 21satellites in January 21, 2011

| Orbit / slot           | Frequency channel                     | GLONASS number         | Launch date | Input date | Life time |        | Mean l | Mean life time |  |
|------------------------|---------------------------------------|------------------------|-------------|------------|-----------|--------|--------|----------------|--|
|                        |                                       |                        |             | •          | years     | months | years  | months         |  |
| I / 1                  | 01                                    | 730                    | 14.12.2009  | 30.01.2010 | 1         | 1.2    |        |                |  |
| I / 2                  | - 4                                   | 728                    | 25.12.2008  | 20.01.2009 | 2         | 0.9    |        |                |  |
| I / 3                  |                                       | satellite 727 in maint | enance      |            |           |        |        |                |  |
| I / 4                  | without satellite                     |                        |             |            |           |        |        |                |  |
| I / 5                  | 01                                    | 734                    | 14.12.2009  | 10.01.2010 | 1         | 1.2    |        |                |  |
| I / 6                  | - 4                                   | 733                    | 14.12.2009  | 24.01.2010 | 1         | 1.2    |        |                |  |
| I / 7                  | 05                                    | 712                    | 26.12.2004  | 07.10.2005 | 6         | 0.9    |        |                |  |
| I / 8                  | 06                                    | 729                    | 25.12.2008  | 12.02.2009 | 2         | 0.9    |        |                |  |
| II / 9                 | - 2                                   | 736                    | 02.09.2010  | 04.10.2010 | 0         | 4.6    |        |                |  |
| II / 10                | - 7                                   | 717                    | 25.12.2006  | 03.04.2007 | 4         | 0.9    |        |                |  |
| II / 11                | 00                                    | 723                    | 25.12.2007  | 22.01.2008 | 3         | 0.9    |        |                |  |
| II / 12                | - 1                                   | 737                    | 02.09.2010  | 04.10.2010 | 0         | 4.6    | 2      | 2.2            |  |
| II / 13                | -2                                    | 721                    | 25.12.2007  | 08.02.2008 | 3         | 0.9    |        |                |  |
| II / 14 <sup>x1</sup>  | - 7                                   | 722                    | 25.12.2007  | 25.01.2008 | 3         | 0.9    |        |                |  |
| II / 15                | 00                                    | 716                    | 25.12.2006  | 12.10.2007 | 4         | 0.9    |        |                |  |
| II / 16                | - 1                                   | 738                    | 02.09.2010  | 04.10.2010 | 0         | 4.6    |        |                |  |
| III / 17               | satellites 714 and 728 in maintenance |                        |             |            |           |        |        |                |  |
| III / 18               | -3                                    | 724                    | 25.09.2008  | 26.10.2008 | 2         | 3.9    |        |                |  |
| III / 19               | 03                                    | 720                    | 26.10.2007  | 25.11.2007 | 3         | 2.9    |        |                |  |
| III / 20               | 02                                    | 719                    | 26.10.2007  | 27.11.2007 | 3         | 2.9    |        |                |  |
| III / 21               | 04                                    | 725                    | 25.09.2008  | 05.11.2008 | 2         | 3.9    |        |                |  |
| III / 22 <sup>x2</sup> | -3                                    | 731                    | 02.03.2010  | 28.03.2010 | 0         | 10.7   |        |                |  |
| III / 23               | 03                                    | 732                    | 02.03.2010  | 28.03.2010 | 0         | 10.7   |        |                |  |
| III / 24               | 02                                    | 735                    | 02.03.2010  | 28.03.2010 | 0         | 10.7   |        |                |  |

 $x^{1}$  – additional satellite 715 in maintenance,  $x^{2}$  – additional satellite 726 in maintenance

Table 3. The most significant events in the satellite navigation systems and satellite based augmentation systems in the nearest 10 years and their consequences for users

| Year | Event                                                                                                                                                           | Consequences for users                                                                                                                                                                                                                                                      |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | three GLONASS M satellites crashed into<br>Pacific Ocean after a failed launch                                                                                  | Full Operational Capability of GLONASS system cannot be obtained                                                                                                                                                                                                            |
|      | first launch of QZSS spacecraft Michibiki additional launches of Compass satellites                                                                             | for the first time in history the signal L1C is transmitted in space<br>new GEO, IGSO and MEO satellites of China's system                                                                                                                                                  |
| 2011 | 24 GLONASS M satellites<br>all GAGAN satellites on geostationary orbit<br>the first launch of GLONASS K satellite                                               | two SNS systems (GLONASS and GPS) fully operational<br>GAGAN – Indian SBAS fully operational<br>the beginning of the new generation of GLONASS satellite<br>the first use of code division multiple access CDMA                                                             |
| 2012 | third SDCM satellite on geostationary orbit                                                                                                                     | SDCM – Russian SBAS fully operational                                                                                                                                                                                                                                       |
| 2013 | WAAS – two frequencies (L1 and L5) for ionospheric corrections                                                                                                  | elimination of vertical guidance caused by ionospheric storms                                                                                                                                                                                                               |
| 2014 | the first launch of GPS III A satellite                                                                                                                         | the beginning of the third generation of GPS system                                                                                                                                                                                                                         |
| 2015 | Full Operational Capability of the next<br>Generation GPS Control Segment (OCX)<br>Galileo constellation with 18 satellites<br>(4 IOV and 14 fully operational) | continuous L-band tracking coverage of the GPS constellation<br>additional features and functionality of control segment (CS)<br>for the first time in history, integrity information about SNS<br>for the users of the all the world, Initial Operational Capability (IOC) |
| 2016 | 24 GPS satellites transmitting L2C                                                                                                                              | full access to two civil frequencies                                                                                                                                                                                                                                        |
| 2018 | 24 GPS satellites transmitting L5<br>Galileo constellation 27–30 satellites                                                                                     | full access to three civil frequencies<br>full access to all signals and services, Full Operational Capability (FOC)                                                                                                                                                        |
| 2019 | 30 GLONASS K satellites                                                                                                                                         | full access to three civil frequencies, integrity information about system                                                                                                                                                                                                  |
| 2020 | 35 Compass satellites fully operational<br>(5 GEO, 27 MEO and 3 IGSO)                                                                                           | full access to all signals and services                                                                                                                                                                                                                                     |
| 2021 | 24 GPS satellites block III transmitting L1C                                                                                                                    | full access to new block III, integrity information and new signal L1C                                                                                                                                                                                                      |

Table 4. The projected total number of satellites, number of satellites transmitting signals for civil users on two and three frequencies and information about integrity for different satellite navigation systems and for different scenarios in 2016 and 2021 years

| Year | Scenario    | System  |                      | Number of            | Integrity              |               |
|------|-------------|---------|----------------------|----------------------|------------------------|---------------|
|      |             | 2       | total                | with two frequencies | with three frequencies | of the system |
| 2016 | optimistic  | GPS     | 40                   | 24                   | 16                     | non           |
|      | •           | GLONASS | at least 24          | at least 24          | several                | non           |
|      |             | Galileo | at least 18          | at least 18          | at least 18            | yes           |
|      |             | Total   | at least 82          | at least 66          | at least 40            | _             |
|      | pessimistic | GPS     | 16                   | 8                    | 8                      | non           |
|      |             | GLONASS | less than 24         | less than 24         | 0                      | non           |
|      |             | Galileo | less than 18         | less than 18         | less than 18           | non           |
|      |             | Total   | less than 58         | less than 50         | less 26                | -             |
|      | the most    | GPS     | at most 30           | at most 20           | 12                     | non           |
|      | probable    | GLONASS | 24                   | 24                   | 0                      | non           |
|      |             | Galileo | 18                   | 18                   | 18                     | yes           |
|      |             | Total   | at most 72           | at most 62           | 30                     | _             |
| 2021 | optimistic  | GPS     | at least 44          | at least 44          | 24                     | yes           |
|      |             | GLONASS | 30                   | 30                   | 30                     | yes           |
|      |             | Galileo | 30                   | 30                   | 30                     | yes           |
|      |             | Total   | at least 104         | at least 104         | 84                     | _             |
|      | pessimistic | GPS     | a dozen or so        | a dozen or so        | a dozen or so          | non           |
|      |             | GLONASS | at most twenty sever | ral at most 24       | several                | non           |
|      |             | Galileo | less than 27         | less than 27         | less than 27           | non           |
|      |             | Total   | about 65             | about 60             | about 45               | _             |
|      | the most    | GPS     | about 32             | about 32             | 24                     | non           |
|      | probable    | GLONASS | about 30             | a dozen or so        | a dozen or so          | non           |
|      |             | Galileo | 27 ÷ 30              | $27 \div 30$         | $27 \div 30$           | yes           |
|      |             | Total   | about 89 ÷ 92        | about 73 ÷ 79        | about 63 ÷ 72          | _             |