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ABSTRACT: Different calculation methods and configurations of navigation systems can be used in algorithms
of navigational parameter fusion and estimation. The article presents a comparison of two methods of fusion of
dead reckoning position with that from a positioning system. These are the least squares method and the
Kalman filter. In both methods the minimization of the sum of squared measurement deviations is the
optimization criterion. Both methods of navigation position parameter measurements fusion are illustrated
using the data recorded during actual sea trials. With the same probabilistic model of dead reckoning

navigation, the fusion of DR results with positioning data gives similar outcome.

1 INTRODUCTION

The use of only one method and one navigation
system typically results in lower accuracy, credibility
and reliability of navigational information. This
lowers the level of navigational safety and economic
efficiency of a voyage. In order to overcome this,
various independent methods and systems for
determining navigational parameters are used. These
primarily include, in accordance with the SOLAS
convention, dead reckoning navigation systems
(compasses, logs, accelerometers), positioning
systems (GNSS or terrestrial systems) and electronic
chart display and information systems (ECDIS) or
paper charts. Various measurements and navigational
parameter data are combined through joint
algorithms and information-measurement systems.
Uptodate examples of such systems are integrated
navigation systems and integrated navigation bridge.

Figure 1 illustrates differences in ship's trajectory,
obtained from dead reckoning (DR) navigation
system and independently used positioning system

(GPS). There are visible differences between the two
trajectories obtained on the basis of measurements
from these systems. Due to the influence of drift
(systematic error) in dead reckoning navigation, that
was not measured, the DR trajectory is moved to
starboard in relation to GPS fixes.

The algorithms of integrated navigation systems
carry out the fusion of different methods, in particular
the parametric method is combined with the dead
reckoning method.

This process requires the combined processing of
measurement data, which allows us to optimize the
use of navigational information. Multi-sensor fusion
of navigational data is widely discussed in the
literature, e.g. [10], while GPS data integration with
other navigational measurements is described in [3],

[5].

These authors present selected variants of the
integration of navigational data obtained from
different navigation systems. The method of least
squares and the classic Kalman filter were used as the
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mathematical model of measurements integration.
The analyzed methods are illustrated with an
example of actual measurements recorded during sea
trials. Both cases of measurement data integration
were based on the same measurements and similar
assumptions concerning their statistical distributions.
This made their comparative analysis objective.
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Figure 1. Comparison of ship's trajectory according to DR
and GPS.

Briefly listed below are the employed methods of
position coordinates estimation method, the method
of least squares and the Kalman filter. Dead reckoning
navigation, used in these algorithms, was described in
[2], [3] and other works.

2 THE METHOD OF LEAST SQUARES

Let us assume that we have measurements of varying
accuracy and we will use the method of least squares
with weights for their fusion [11]. In this case, the
vector of state (position coordinates) is described by
this formula:

X = (GTR“G)_1 G'Rz, (1)

and its covariance matrix is written as this relation:

P=(G'R'G) @
x=[p,A]", (3)
z= [(DGPS’ﬂ“GPS’wDR’ﬂ“DR ]T' (4)
where

X - vector of state,

Z - vector of measurements,

G - a matrix binding the vector of state with the
vector of measurements,

P - covariance matrix of the state vector,

R - covariance matrix of the measurements vector.
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One of the simple measurement situations is a
combination of GPS position coordinates with dead
reckoning (DR) position. In this case G, the matrix will
be a block matrix in the following form:

G= [IZ><2 g B ]T : ®)

The matrix of measurements covariance R will
also be a block matrix

P 0
R=| 95 ’ ©)
0 P,

where P, the matrices P,, are, respectively,
matrices of GPS and DR covariances. With these
assumptions,, the matrix inverse to the covariance
matrix of measurements will have this form

Pops 0

R =
0 P,

)

Ultimately, with the above assumptions, we get
the vector of state (position coordinates)

-1 I\ Mp-1 ip-t
X:(PGPS +PDR) [PGPS:PDR]Z' 8)
and its covariance matrix

~ -l
P=(P+P) . 9)

In this case, the DR position is treated as a separate
measurement (along with its evaluation of accuracy).
It should be noted that DR is performed at short, one
second intervals, which makes the DR error
comparable to the fix error.

3 KALMAN FILTER

Kalman filtering is commonly used today [5], [6], [7],
[10], [12]. It is implemented at various levels of
navigational information processing, from physical
measurements by sensors (preliminary processing),
through the combination of measurements from
different sensors (intermediate processing), to the
estimation of position coordinates and other
navigational parameters (final processing). At each of
these levels we use the same mathematical tools and
the same computing algorithm.

The discrete Kalman filter, in a particular case,
describes the system of two equations [1], [8], [9]:

— the state equation (structural model)

Xi =ALX W,

(10)

i+1

— measurement equation (measurement model)



z,,=C, x +v,

(11)

i+1

where

X -n-dimensional vector of state,

w - r-dimensional vector of state disturbances,

Z - m-dimensional vector of measurements,

V - p-dimensional vector of measurement
disturbances (identified with measurement noise),

A - nxn-dimensional transition matrix,

C - mxn-dimensional measurement matrix,
r<n,p<m.

We assume that the vectors of disturbances w and
v are Gaussian noise with normal distribution, with
zero mean vector and are mutually non-correlated. In
the case of colour noise (with a trend) the extended
Kalman filter is applied, where the disturbance trend
is included as additional components of the state
vector.

The equation of state describes the evolution of the
dynamic system described in the state space, and the
model of measurements functionally combines
measurements with the system state. The solution to
the equations (10), (11), taking into account the
constraints imposed on the vectors of disturbances, is
the Kalman filter. Calculation of the state vector in the
Kalman filter is described by the following algorithm:

— projection of the state vector:

X X, (12)

il Ai+1,i

where X is the projected value of the state
vector, X is estimated value of the state vector,

— covariance matrix of the projected state vector

P

it A PiAiT+1,1 +Qi’ (13)

i+l,i

where Q is the covariance matrix of disturbances of
the state (of vector w),

— innovation process

g.,=2,-C, X, (14)
— covariance matrix of the innovation process

_ T
Si+1 - Ri+1 + Ci+1PiCi+1 ’ (15)

where R is the covariance matrix of measurement
disturbances (of vector v),

— filter gain matrix (Kalman matrix)

P C'S’

il T i 11D

K (16)

— estimated value of the state vector from filtering
after measurement Z,

X =X, +K ¢

i+l i+1,i i+17i+17

(17)

— covariance matrix of the estimated state vector

Pi+1 = (I -K Ci+1 ) Pi+1,i' (18)

i+l

4 THE STRUCTURE OF THE INTEGRATING
FILTER

The adopted mathematical model of ship movement
and the configuration of navigational devices affect
the structure of the Kalman filter algorithm. Let us
assume, as in the position estimation algorithm by the
method of least squares, that position coordinates are
determined using GPS (parametric navigation), and
measurements in dead reckoning navigation are
obtained from a gyroscopic compass and Doppler log.

Let us define the state vector as:

x=[p,4,V,,V;,COG,SOG]', (19)

where

@ - latitude,

A -longitude,

V.V, - projections of the vector of speed over
ground on the parallel and the meridian,

COG - course over ground,

SOG - speed over ground.

The quantities measured (measurement model) are
the following parameters: position coordinates from a
GPS system ( @pg, Agps ) Projections of the vector of
speed over ground on the parallel and meridian
(Vy,V;), course over ground (COG) and speed over
ground (SOG). Hence, the vector of measurements
will take this form:

2 =[@opss AopssVy Vi, COG,SOG]' . (20)

Each of the system matrices was appropriately
selected for vectors (19) and (20) [4], [5], [6]. DR
navigation in this algorithm is an element of a model
(trend) of ship movement, but also - as is apparent
from (19) - some of its parameters are estimated.

5 AN EXAMPLE

For a comparison of the two methods of
measurements fusion, simulation tests have been
carried out. The same measurement conditions were
adopted for the two methods of data fusion with DR
results: LS - DR and KF - DR. Therefore, the tests were
based on the same series of measurements of position
coordinates from a GPS, gyrocompass course and log
speed. In this case, the following values of variance of
specific measurements were taken [5], [6]:

- DGPS system: o, = 2,0 m, o0,=15m, the

coordinates are non-correlated;
— course over ground: O,; =1,5";
— speed over ground: O, = 0,5 knot.

For these data the DR position errors for one
second interval were equal to o, =0, =1,414 m.
These values have been adopted in both cases of the
estimated position calculations. Fig. 2 shows that in
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the macroscopic sense both methods of coordinates
estimation yield the same result, i.e. both trajectories
coincide.
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Figure 2. Macroscopic compatibility of the two trajectories.

The same initial position in both cases was
adopted (Figure 3). Only in the next steps the
particular positions, KF, LS start to differ
significantly. These differences become more visible
where larger changes of the velocity vector are made,
in this case during the turning circle (Figure 4). This
is because the KF algorithm identifies the velocity
vector trend, while the LS algorithm does not.
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Figure 3. The initial section of the two trajectories.
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Figure 4. The two trajectories at a point of intersection with
the turning circle.
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Figure 5 depicts magnified differences between KF
and LS trajectories on a steady course (uniform
rectilinear movement).
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Figure 5. Example differences between the two trajectories
of a ship on steady course (magnified).

Figure 6 presents distances between KF and LS
positions along a trajectory (in subsequent iterations).
The maximum deviation is 6 metres, the minimum 0.5
meter. The average distance between estimated
positions (for the whole set) from KF and LS is 2.747
meters.
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Figure 6. The distances between KF and LS positions.

6 SUMMARY

The presented models and algorithms illustrate two of
many possibilities of the navigational application of
the method of least squares and the Kalman filter for
the integration of navigational data. In the Kalman
filter the state vector reproduces the system evolution
(movement trend) on the basis of dead reckoning
navigation. The main advantages of Kalman filter, in
this case, are its recurrence, which is a natural
necessity in case of ship navigation and the possibility
of using the ship movement data (its trend).

The fusion of position parameters with DR
navigation by the LS method gives similar results to
those obtained by the KF method, in which data from
DR are also used. The differences between the
position coordinates obtained from using these



methods are almost insignificant (on average less than
3 meters). One advantage of the KF over the LS
method, owing to the structure of the former, is that it
offers a possibility to identify a trend of ship
movement parameters. On the other hand, the KF
algorithm requires more complex computations.
However, to achieve the same level of functionality of
the LS method, the estimation model would have to
be expanded to include the identification, which in
turn would increase significantly the computational
complexity of the algorithm.
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