547
1 INTRODUCTION
The development and modernisation of the already
existing port solutions is aimed at regulating traffic
norms and satisfying the needs of all interested
parties in the Przemyslowy Canal of the Szczecin
port. Changes in the port infrastructure greatly
influence the land economy in its vicinity, thus it
seems pla
usible to analyse future solutions and
variants in the form of, for example, necessary
dredgingworks.Theseworkswillmakeitpossibleto
extendthescopeoftheport’soperations.In2014,the
Przemyslowy[8].Wharfwasputintousewherethe
maximum ship is a general/bulk cargo vessel of the
parameters L=120m
, B=16.5m, T=6.5m (Figure 1). In
earlieranalyses, the needto stop the transshipment
of vessels that transship in the SWFiL (Baltchem)
Wharf while the vessel moves to the Przemyslowy
Canalwaspointedto,andthewidthofthewaterway
inthePrzemyslowyCanalwasdefinedasD=50mfor
thedepthof7m
.Practicehasshownthattheproposed
wayof thecoexistence of the SWFiL(Baltchem) and
Przemyslowy Wharfs caused problems linked to
technicaldifficultiesinstoppingthetransshipmentin
SWFiL (Baltchem), which as a result hinders the
organization of optimum handling of the
Przemyslowy Wharf. The analysis provides an
answertothequest
ionaboutpossibleenlargementof
vessels approaching the SWFiL (Baltchem) Wharfs
and the Przemyslowy Wharf to the parameters
L=130m,B=22mandT=6.5m[PIANC2014]:.
At the stage of preliminary analyses, the main
objectiveswereformulated:
Determining the possibility of exploiting a tank
vessel (product tanker) of the lengt
h L=130m,
breadthB=22manddraughtT=6.5mattheSWFiL
(Baltchem)WharfinthePrzemyslowyCanalusing
simulationmethods;
Determining the safety of the movement of a
vesselL=120m,B=16.5mandT=6.5mandavessel
L=130m,B=22mandT=6.5mtothenorthsectorof
the Przemyslowy Ca
nal (Przemyslowy Wharf
Cronimet) with vessels moored at the SWFiL
Applying Simulation Studies to Define Further
Development of the Przemyslowy Canal in Szczecin
L.Gucma,R.Boć&A.Bąk
M
aritimeUniversityofSzczecin,Szczecin,Poland
ABSTRACT: The increasing sizes of ships and lack of functionality of the existing solutions determine the
interest in rebuilding the already existing solutions. Simulation models allow to analyse the possible
modernisation variants taking into account the variability of elementary parameters. The article presents
analysisresultsforthePrzemyslowyCa
nalinSzczecinwithrespecttonavigationsafetyandregulatingtraffic
regulationsinthePrzemyslowyCanaltakingintoconsiderationtheinterestsofallsubjectsinvolved.Thepaper
appliesrealtimesimulationmethodsbasedonmanoeuvringsimulators.Afterathoroughanalysisthattook
intoaccountthesafetyofnavigation,furt
herpossibilitiesofdevelopmenthavebeendetermined.Studyresults
areaimedatdesigningnewsolutionsincaseofmodernizationofthePrzemyslowyCanalinSzczecin.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 11
Number 3
September 2017
DOI:10.12716/1001.11.03.22
548
(Baltchem) Wharf of diverse (variant) breadth of
between 16.5m and 22m using simulation
methods;
Determining theacceptable conditionsfor
manoeuvring (wind, tugboats and other) for
maximumvesselsintheareaofthePrzemyslowy
Canal;
Determining the conditions for the movement of
vesselsintheareaofthePrzemyslowy
Canal.
Figure1.Currentparametersofthewaterwayinthevicinity
oftheSWFiL(Baltchem)andPrzemyslowyWharfs,andthe
Parnica turning place after completing and accepting the
investmentinthisregion.
2 DEFININGSELECTEDPARAMETERSOF
WATERWAYSINTHEAREAOFSTUDIES
USINGSIMULATIONMETHODS
At the Maritime University in Szczecin, a whole
familyofanalyticalandexperimentalmodelsofship
movements were designed [Gucma S. 1990]. In this
paper,theSMARTmodelwasusedasamoreprecise
one.
2.1
Amathematicalmodelofshipmovement
Themodelusedforstudyingshipmotionsbelongsto
force models of modular structure, i.e. one where
hydrodynamic forces of the hull, forces from
propelling and steering units, external forces and
other are separated as independent elements of the
modelandsummedupaccordinglyin
thefinalphase
as longitudinal, lateral and rotational forces [Gucma
S.etal.2007].
Propellerpressure,
Propellerlateraloperation,
Carryingandsteerresistance,
Bowthrustersoperation,
Current,windandice,
Suckingandrotationaltorqueofthebankeffect,
Brakingofshallowwater,
Hawserandanchoroperation,
Wharfreactionandfrictionbetweenthewharfand
theshiphull,
Tugs,
And other resulting from the characteristics of
eachpropellingandsteeringdevice.
Theschemeofhowthemodelworksispresented
inFigure2[ArtyszukJ.,2004].
2.2 Detaileddescriptionofthe
SMARTmathmodel
Intheanalysis,thefollowinglabellingmostfrequent
in the hydrodynamics of vessel manoeuvring was
adopted:
Ox
0y0z0 (immobile) linked to the ground to
positionthevessel,bothintermsofitslocation(x
yposition)onthesurfaceoftheearthaswellthe
orientation
Mxyz(mobile)linkedtothevesseltorecordthe
dynamicsofthemovement(changeinthespeedof
themovementdue
toexternalforces).
Figure2.Themainfunctionaldiagramofsimulationmodel
549
Omitting the effects that are less important in
manoeuvring,themodelcanbepresentedasasetof
infinitesimal equations whose results show the
change in the speed of the ship with respect to the
bottomofthebasin (ʹv
g
ʹ)forthreelevels offreedom.
The basis for the math model of manoeuvring
movements of a vessel applied (infinitesimal
equations of movement and the structure of
functional dependences of each external interaction)
was presented in detail among others in [Artyszuk,
2005] and are in line with the current state
of
knowledgeinthisfield.





z
c
y
g
y
c
x
g
x
z
z
yz
c
xz
g
x
g
y
xz
c
ymz
g
ym
g
x
Mvvvvmm
dt
d
mJ
Fvmmvmm
dt
dv
mm
Fvmcmvmcm
dt
dv
mm
)(
112266
22111122
22112211
(1)
z
g
EW
g
NS
d
t
d
v
d
t
dy
v
d
t
dx
,,
00
(2)
g
y
g
x
g
EW
g
NS
v
v
v
v
cossin
sincos
(3)
where:
v
x
g
,vy
g
,z Longitudinal, cross and tangential
velocity
x
0,y0, Positioncoordinatesandvessel’scourse
M Vessel’sdisplacement(weight)
M
11,m22,m66 Added weights (resulting from
movementinidealliquid)
c
m Empiricalcoefficient takinginto account
viscosityeffects
F
x,Fy,Mz External interferences(total longitudinal
and cross forces, and the tangential moment) which
can be spread into the following for the modelled
twopropeller ship (with two conventional rudders)
withadoublesternthruster:
2
1
2
2
1
2
1
2
1
2
2
1
2
1
2
2
1
2
1
i
zLTizWVzA
i
zRi
i
zPizHz
i
yLTiyWVyA
i
yRi
i
yPiyHy
xWVxA
i
xRi
i
xPixHx
MMMMMMM
FFFFFFF
FFFFFF
(4)
Theindexesstandfor:
H Hull,
P Propeller,
R Sternrudder,
A Wind,
WV2 Irregular wave (2nd class forces, socalled
driftforces),
LT Thruster.
All the above components of the generalized
external forces are basically a function of the ship’s
speedwith
respecttothewater(ʹv
w
ʹ):


z
w
y
w
xzz
z
w
y
w
xyy
z
w
y
w
xxx
vvMM
vvFF
vvFF
,,
,,
,,
(5)
c
y
g
y
w
y
c
x
g
x
w
x
vvvvvv ,
(6)
c
c
c
c
c
y
c
x
v
v
v
v
sin
cos
cossin
sincos
(7)
where:
c
v
andcarethespeedandgeographicaldirection
oftheseacurrent
2.3 Verificationofdatausedforsimulationsinthe
SMARTprogram
Tooptimisethemodel,originalsoftwarebasedonthe
MS Excel 2000 spreadsheet and the mode of
accelerated time of the abovementioned SMART
program were used, with the
visualization of the
convergenceofpredictionstotheactualdataplaying
animportantroleinit.Thecorrectfunctioningofthe
predictioncodeofthemodelappliedwasconfirmed
by several years of research during classes in ship
manoeuvringforstudentsattheMaritimeUniversity
inSzczecinandresearchstudiesof
anacademicteam
of sea traffic engineers, among others [Gucma L,
2005].
The hydrodynamic coefficients of each force and
moment were also initially determined according to
literature data published after hull (surface and
underwater parts) model research. In case of gross
disproportion, the appropriate extrapolation of
researchresultstotechnical
andoperationconditions
ofthemodelvesselwasused.
The results of the verification of the ship model
studied were conducted based on the manoeuvring
characteristics commonly adopted for verification:
speed, braking and acceleration, circulation and
standard test confirmed that the model of the
optimisationprogramcreatedwascorrect.Trialswere
conductedunderzeroconditionsandondeepwaters,
andadditionallycirculationtestswereconducted on
shallowwaters.
2.4 Modelinterface
TheinterfaceofthemodelispresentedinFigure3.It
is the socalledʺsingle taskʺ model (aimed for
designing waterways) with a perspective 2D
visualization(bird’s eye view)
of the electronic map
type. It contains information on the location of the
post,bathymetryofthebasin,informationonthestate
of the ship, hydrometeorological conditions and
control elements for steering. The model is
implementedinthe Delphi™environment using the
Object Pascal language and in the Visual C™
environment
usingtheC++language.
550
Figrue3. Graphicinterface of the simulationmodel of ship movement (a 120m vessel with a tugboat enters the turning
place).
4a)4b)
Figure4.Graphiccomparisonofasingleentrance4a)series1ofatankvessel/generalcargoshipLc=120m,withthestern
towardsthePrzemyslowyCanalinthepresenceofmooredvesselsofB=22mand4b)series2ofatankvessel/generalcargo
shipLc=120mexitingthePrzemyslowyCanalwiththebowawayfromitinthepresenceofmooredvesselsofB=22m.
3 CHARACTERISTICVESSELSAND
ASSUMPTIONSFORSIMULATIONSTUDIES
Theaimoftheresearchistodeterminetheconditions
frompassingtothenorthernpartofthePrzemyslowy
Canal and the necessary breadth of the possible
waterway widening, and defining safety on the
Parnica Turning placeand its possible
modernisation. Two
types of characteristic vessels
loadedforthePrzemyslowy Canalwereselected for
thestudy:
The current on for the southern part of the
Przemyslowy Canal and the SWFiL Wharf
(Baltchem),
The future one for the SWFiL (Baltchem) and
PrzemyslowyWharf(Tabel1).
Table1. Vessels selected for the analysis and their
parameters.
_______________________________________________
Type L B T V Manoeuvrability
[m] [m] [m] [w]
_______________________________________________
CurrentTank  120 16.5 6.53 good
vessel
Future Tank 130 22.0 6.53 good
vessel/
general
cargoship
_______________________________________________
The hydrometeorological conditions adopted are
the eastern wind of 9m/s (5°B), which is the most
unbeneficial direction due to the vessel’s drifting in
the SWFiL Wharf. No wind veil was assumed. In
reality,thereisasmalltreecoveredareaon theeast
sideofthecanal,sosuch
windwillbeequivalentto
the maximum wind of 5°B. No waves and good
visibilitywereassumed.Intheanalyzedwatersitwas
551
not current research. The experience and expert
opinionindicatethatflowinthePrzemyslowyCanal
aresmallandcomeuptoseveralcm/s.
Four simulation series were planned, each
representing typical manoeuvres under different
conditions,selectedinawaythatwouldallowthem
tocausebiggesthindrance.Table
5.2showstheplan
of the study. Each simulation series represents the
most difficult manoeuvring situations linked to the
exploitationofshipsinthisregion,respectively:
Series1 entrance of the stern of a general cargo
ship Lc=120m in the Przemyslowy Canal in the
presence of 2 vessels of
the breadth of B=22m
mooredinSWFiL(Figure4)
Series2 exit of the bow of a general cargo ship
Lc=120m out of the Przemyslowy Canal in the
presence of 2 vessels of the breadth of B=22m
mooredinSWFiL(Figure4)
Series3 entrance of the stern of
a tank vessel /
general cargo ship Lc=130m in the Przemyslowy
Canal in the presence of 2 vessels of the breadth
B=16minSWFiL
Series4exitofthebowofatankvessel/general
cargoshipLc=130moutofthePrzemyslowyCanal
inthepresenceof2
vesselsofthebreadthB=16m
inSWFiL
4 STUDYRESULTS
Simulation studies were conducted by qualified
captainsand pilots experiencedin this type ofships
andmanoeuvres.Thesimulationdatawasregistered
and analysed. The minimum number of correct
passagesis>15insimilarstudies.Aftergoingthrough
the passages carried
out by captains, the following
numbers of simulation passages in series were
qualifiedforfurtherprocessing:
Series115passages.
Series222passages.
Series317passages.
Series421passages.
Thestretchanalysedwasdividedintosections of
5mof
width,andtheaveragewaterwayandstandard
deviationwerecalculatedforeach ofthem.The safe
manoeuvreareaof95%(95%waterway)wascreated
asaresultofaddinga1.95multipleof thestandard
deviation to the middle waterway. The maximum
waterwayisamaximumenvelopeoftheshipfrom
all
the attempts in a series. The statistical processing of
the simulation studies results boils down to
calculating the safety criteria of the manoeuvre
carriedoutthatareusedtocomparethestudyresults
ofeachvariant(seriesofsimulationpassages)[Gucma
S,2001]
The results of the Series 1
studies for a general
cargoshipLc=120manalysedarepresentedinFigure
5 (results of the middle, maximum and 95%
waterwaysarepresentedinFigure5a),theresultsof
the location of the bow extreme point of the stern
tugboatarepresentedinFigure5b),theresultsofthe
extreme location
(maximum distance in each section
of the waterway) of manoeuvring vessels in each of
thepassagesanalysedarepresentedinFigure5c)).
Theanalysesofseries1,2,3and4showthatthere
is no risk related to the insufficient size of the
manoeuvringspace.The95%waterwayfor
thevessel
Lc=120mandLc=130mcoincideswiththesafeisoline
(7m), i.e. in the region of the Elektownia (area
marked)andontheeasternshoreofthePrzemyslowy
Canal (Figure 6). The area covered by the extreme
bow point of the tugboats shows considerable
narrowinginthenortheastern regionof
the turning
placeduetolimitedspaceforitsmanoeuvring.
a)b)c)
Figure5.ResultsoftheanalysedstudiesinSeries1forageneralcargoshipofLc=120m.
552
Figure6. The location of particularly sensitive spots in the
areaoftheentrancetothePrzemyslowyCanal.
5 CONCLUSIONS
Thesimulationstudyresultspresentedcanbeusedto
determine further development of the Przemyslowy
Canalasfarasthedimensionsofmanoeuvreareasfor
vessels larger than L=130m are concerned, which is
consideredrealistic.Itcanbecompletedthroughthe
followingactions:
Developingtheturningplacetowards
thenorth
easterndirectionandtheElektowniabasin(south
western)bygivingittheshapeofanellipsiswhich
isperfectforthehalfturnvesselmanoeuvreinthis
region.
Widening the Przemyslowy Canal and the
approachwaytowardsitfromtheturningplace.
Minorcorrectionof
thewaterwayssothattheyfit
thenewturningplace.
Attempting at marking the region of the turning
placenear the entrance to the Elektownia basin
(southwestern part of the turning place ), which
willbedifficultduetothefactthatthewaterways
areutilisedbyother
usersofasmallerdraught.
REFERENCES
[1]Artyszuk J. (2005). Towards a Scaled Manoeuvring
MathematicalModelfor a Ship of Arbitrary Size.Scientific
Bulletin,MaritimeUniversityofSzczecin.
[2]Artyszuk J. (2004) Optimisation of Shallow Water
CoefficientsBasedonSeaTrialsManoeuvring.EXPLO
SHIPʹ2004, Zeszyty Naukowe nr 2(74), Akademia
Morska,Szczecin,Str.3343.
[3]
GucmaL.(2005).Risk ModellingofShipCollisionsFactors
with Fixed Port and Offshore Structures Maritime
UniversityofSzczecin.
[4]GucmaS.(1990)Metody wyznaczaniai kształtowania dróg
wodnych,WSMSzczecin
[5]Gucma S.(2001). Inżynieria ruchu Morskiego, wyd.
OkrętownictwoiŻegluga,Gdańsk
[6]Gucma S.
(pod red.)(2008) Metody symulacyjne w
inżynierii ruchu morskiego. Akademia Morska w
Szczecinie
[7]PIANC (2014). Harbour Approach Channels Design
Guidelines. PIANC Report PIANC Secretariat General.
Bruksela.
[8]ZARZĄDZENIE NR 3 Dyrektora Urzędu Morskiego w
Szczeciniezdnia26lipca2013r.,Przepisyportowe