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1 INTRODUCTION 

The navigational problem is as follows (Fig. 1): 
− we have known geographic coordinates of posi-

tion P′– φP′, λP′, 
− we have ranges, bearings or courses from position 

P′ to position P, 
− we search for geographic coordinates of position 

P – φP, λP, 
The most common solution of such a navigational 

problem is a rather strange combination of flat and 
ellipsoidal calculations: 
− conversion ranges, bearings and courses, by sol-

ving flat triangles, to δx, δy increments in a flat 
rectangular coordinate frame (with the y-axis 
pointing north), 

− conversion rectangular δx, δy flat increments to 
geographic coordinates increments δφ, δλ, on the 
reference ellipsoid, by the equations 
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where RM(φP′) = the radius of curvature in meridian 
for P′; and RN(φP′)  = the radius of curvature in the 
prime vertical for P′ 
given by the equations 
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where a0 = the semi-major axis of the reference el-
lipsoid; and e = eccentricity 
and finally 

δϕ+ϕ=ϕ ′PP  (5) 

δλ+λ=λ ′PP  (6) 

if east longitude and north latitude are considered 
positive and west longitude and south latitude are 
considered negative. 

Apart from the obvious errors of assuming the 
part of the ellipsoid a plane there are also errors hid-
den in Equations 1 and 2 – although Equations 3 and 
4 are accurate for the ellipsoid – the errors of as-
suming the main radii of curvature constant at points 
P′ and P. 
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Figure 1.Definition of the problem and the position from range 
and bearings 

2 ERROR OF ASSUMING THE PART OF 
ELLIPSOID TO BE A PLANE 

The spherical excess in an equilateral spherical trian-
gle with sides d and spherical radius R is 
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For d = 22 km (≈ 12 n.m.) and R = 6370 km, we 
get  

rad 105 -6×≈ε  
This gives linear changes in the range of 11 cm. 

3 ERRORS OF ASSUMING THE MAIN RADII 
CONSTANT AT POINTS P′ AND P 

A better approximation of Equation 1 should be 
(Lenart 1985) 
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Defining the resulting error as  
*δϕ−δϕ=δϕ∆  (9) 

we get 
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which with 









ϕ

δϕ+ϕδϕ=δ ′ d
dR

2
1)(Ry M

PM  (11) 

yields 

)(R
d

dR)(
2
1

PM

M2

′ϕ
ϕ

δϕ
=δϕ∆  (12) 

After substitution 
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we finally get 

ϕδϕ≈δϕ∆ 2sin)(e
4
3 22  (14) 

where, if δφ is in radians the result is also in radians. 
For example, if 
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In the case of error in longitude we have, in ac-
cordance with Equation 2, 
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Then 
*δλ−δλ=δλ∆  (16) 

and, after substitution 
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After simplification 

PN

PNP
N

cosR

sinRcos
d

dR
2
1

′

′′

ϕ









ϕ−ϕ

ϕ
δϕδλ

≈δλ∆  (19) 

Since 

N
2N R2sine

2
1

d
dR

ϕ≈
ϕ

 (20) 

then finally 

d

P'

P

N



 

529 

ϕδϕδλ−≈δλ∆ tan
2
1  (21) 

If δφ and δλ are in radians, the result is also in ra-
dians. 

For example, if 
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At that latitude, this corresponds to –222 m! 

4 THE DIRECT GEODETIC PROBLEM 

It can be seen from the above, that the errors of sim-
plifications are neglectable or significant, depending 
on the required accuracy and the values of φ, δφ and 
δλ, but all of them are systematic and are integrated 
in dead reckoning. 

These simplifications have been necessary to re-
duce the number of calculations on the ellipsoid and 
justified in times of manual mechanical or electronic 
calculators, but are completely unnecessary and un-
justified in times of computer calculations. There-
fore we will directly apply the solution of the prob-
lem known in geodesy as direct geodetic problem. 

In the solution of the direct geodetic problem 
(Fig. 2) from the given coordinates φ1, λ1 and azi-
muth α1-2 at the start of geodesics P1 and their length 
S are calculated coordinates φ2, λ2 of the endpoint P2 
and the reversed azimuth α2-1, on any reference el-
lipsoid.  

E. M. Sodano (Sodano 1958, 1965, 1967) from 
Helmert’s classical iterative formulae derived a ri-
gorous non-iterative procedure, for any length of ge-
odesics and for any required accuracy, which is at-
tached in Appendix A. This procedure will be used 
in this paper in the formal form 

φ2, λ2  = SDGP (φ1, λ1, α1-2, S) (22) 

α2-1 = SDGP (φ1, λ1, α1-2, S) (23) 

5 APPLICATION OF THE DIRECT GEODETIC 
PROBLEM 

5.1 Position from range and bearings 
We search for the position P(φP, λP)  for which we 
have the range d and the bearing α from, or the bear-
ing β to, known position P′(φP′, λP′) (Fig. 1). 

The solution is 

φP, λP  = SDGP (φP′, λP′, α, d) (24) 
or 

φP, λP  = SDGP (φP′, λP′, β – 180°, d) (25) 

5.2 Dead reckoned position 
We search for the position P(φP, λP) dead reckoned 
from known position P′(φP′, λP′) with the speed over 
ground Vg  and the course over ground Cg during the 
time interval Δt (Fig. 3). 

The solution is 

φP, λP  = SDGP (φP′, λP′, Cg, Vg Δt) (26) 

 
Figure 2. Direct and inverse geodetic problem 

 
Figure 3. Dead reckoned position 
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5.3 Position from two ranges 
We search for the position P(φP, λP) for which we 
have two ranges d1 and d2 to known positions 
P′1(φP′1, λP′1) and P′2(φP′2, λP′2) (Fig. 4). 

The solution is iterative 
φP1, λP1  = SDGP (φP′1, λP′1, α1 = var, d1) (27) 

φP2, λP2  = SDGP (φP′2, λP′2, α2 = var, d2) (28) 
where α1 and α2 are adjusted by any small incre-
ments until e.g. 

mincoscos)()( 1P2P
2

1P2P
2

1P2P =ϕϕλ−λ+ϕ−ϕ  (29) 

This iterative process, although looks as very 
complicated, is very fast and simple with using e.g. 
the Solver in Microsoft Excel. 

5.4 Position from two bearings 
We search for the position P(φP, λP) for which we 
have the bearing α1 from, or the bearing β1 to, 
known position P′1(φP′1, λP′1) and the bearing α2 
from, or the bearing β2 to, known positions P′2(φP′2, 
λP′2) (Fig. 4). 

The solution is iterative 
φP1, λP1  = SDGP (φP′1, λP′1, α1, d1 = var) (30) 

φP2, λP2  = SDGP (φP′2, λP′2, α2, d2 = var) (31) 
or 
φP1, λP1  = SDGP (φP′1, λP′1, β – 180°, d1 = var) (32) 

φP2, λP2  = SDGP (φP′2, λP′2, β – 180°, d2 = var) (33) 
or any combination of the above, where d1 and d2 are 
adjusted by any small increments until e.g. Equation 
29 is fulfilled. 

5.5 Position from range and bearing to different 
positions 

We search for position P(φP, λP) for which we have 
the range d1 to known position P′1(φP′1, λP′1) and the 
bearing α2 from, or the bearing β2 to, known posi-
tions P′2(φP′2, λP′2) (Fig. 4). 

The solution is iterative 
φP1, λP1  = SDGP (φP′1, λP′1, α1 = var, d1) (34) 

φP2, λP2  = SDGP (φP′2, λP′2, α2, d2 = var) (35) 
or 
φP2, λP2  = SDGP (φP′2, λP′2, β – 180°, d2 = var) (36) 
where α1 and d2 are adjusted by any small incre-
ments until e.g. Equation 29 is fulfilled. 

5.6 Position from any combination of ranges and 
bearings 

The above can be easily extended to any number of 
combination of ranges and bearings - we search for 
position P(φP, λP) for which we have n ranges d or 
bearings α from, or bearings β to, n known positions 
P′(φP′, λP′) (Fig. 5). 

The solution is iterative 
φP1, λP1  = SDGP (φP′1, λP′1, α1 = var, d1) (37) 

φP2, λP2  = SDGP (φP′2, λP′2, α2, d2 = var) (38) 

………………………………………. 

 
Figure 4. Positions from two ranges or bearings 

 

 
Figure 5. Position from n ranges and bearings 
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φPi, λPi  = SDGP (φP′i, λP′i, βi – 180°, di = var) (39) 

………………………………………. 

φPn, λPn  = SDGP (φP′n, λP′n, βn – 180°, dn = var) (40) 

where d or α or β are adjusted by any small incre-
ments until e.g. 
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22
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It is worth mentioning, that we will achieve the 
least square errors position in the case of excessive 
number of position lines. 

5.7 Position lines of different accuracies 
In the case of position lines of different accuracies 
we can extend Equation 29 or 41 with weights – e.g. 
reciprocal of mean square errors mi 
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5.8 Bearings for long ranges 
For long ranges 
α ≠ β – 180° (45) 

If this difference is significant, for Section 5.1, 
we at first iteratively search for α from the equation 

α2-1 = SDGP (φP′, λP′, α = var, d) (46) 
until  
α2-1 = β (47) 

and then 

φP, λP  = SDGP (φP′, λP′, α, d) (48) 
For Section 5.4 and 5.5 Equations 32, 33, 36, 39 

and 40 becomes respectively to 
φPi, λPi  = SDGP (φP′i, λP′i, αi = var, di = var) (49) 
and additionally 

α2-1i = SDGP (φP′i, λP′i, αi = var, di = var) (50) 

as well as Equations 29 and 41 should be supple-
mented by the component e.g. 
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for each βi. 

6 ACCURACY OF THE SOLUTION OF THE 
DIRECT GEODETIC PROBLEM 

“The accuracy of geodetic distances computed 
through the e2, e4, e6 order for very long geodesics is 
within a few meters, centimeters and tenth of milli-
meters respectively. Azimuths are good to tenth, 
thousandths and hundreds thousandths of a second. 
Further improvement of results occurs for shorter 
lines” (Sodano 1958). 

7 DIRECT COMPUTATION FORM SIMPLIFIED 

For shorter distances (the abovementioned “very 
long geodesics” means even 20 000 km) or lower 
required accuracies we can use equations from Ap-
pendix A reduced to e2 and f order. Therefore Equa-
tion A 9 becomes to 
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and Equation A 12 becomes to 

γ+βΦ−= 0S cosfL  (53) 

8 CIRCULAR FUNCTIONS 

The angles α2-1 and γ from Equations A 10 and A 11 
have to be calculated with the circular function     
tan-1(), but this function gives solutions in the range 
(-90°, 90°). For full range (0°, 360°) retrieving tables 
of quadrants are used in Sodano 1965. 

For computer calculations a special procedure 
should be used to retrieve the full range (0°, 360°) 
from the signs of the numerator N and the denomi-
nator D and to detect and support a division by zero 
case e.g.: 

For 

D
Ntanangle 1−=  

 
IF D ≠ 0 THEN ANGLE = ATN(N/D) 

  IF D < 0 THEN ANGLE = ANGLE + 180°: END IF 
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ELSE 

  ANGLE = (2 - SIGN(N))*ABS(SIGN(N))*90° 

END IF 

IF ANGLE<0 THEN ANGLE=ANGLE+360°: END IF 

9 CONCLUSIONS 

Presented procedures are quite general and univer-
sal. They can be used for any number of ranges and 
bearings, any combinations of ranges and bearings, 
any ranges – from meters up to 20 000 km, with al-
most any required accuracy, on any reference ellip-
soid and can calculate the optimal position according 
to any objective function. 
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APPENDIX A 

Direct computation form (Sodano 1965) 
Given: φ1, λ1, α1-2, S 
Required: φ2, λ2, α1-2 

 
Reference ellipsoid: a0, b0 = semi-major and semi-
minor axes 
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