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1 INTRODUCTION 

The safe conduct of a commercial ship in situations of 
passing by with more of the ships they meet is to keep 
the least risk of collision with each of them. The 
source of information on the current state of the vessel 
traffic control process and the collision risk 
assessment is the Automatic Radar Plotting Aid 
(ARPA) radar anti-collision system, which enables the 
operator of the vessel through the TRIAL 
MANOEUVRE function to determine the anti-
collision manoeuvre in relation to the most dangerous 
vessel, including the rules of the International 
Regulations for Preventing Collision at Sea 
(COLREGs) maritime route according to International 
Maritime Organization (IMO). The COLREGs rules 
apply only to two ships met, separately for the 
conditions of good and restricted visibility at sea. 

Over 80% of ship collisions are caused by the 
human factor, during the subjective assessment of the 
navigational situation and maneuvering decision in 
the game environment (Engwerda 2005, Kun 2001, 
Lebkowski 2018, Millington & Funge 2009). 

It is assumed that about half of these losses can be 
avoided using computer-aided navigator decision 
support software using artificial intelligence, game 
theory and optimization methods (Bist 2000, Isaacs 
1965, Lazarowska 2017, Miloh 1974, Perez 2005, 
Szlapczynski & Szlapczynska 2016). 

The aim of this article is to present a multi-step 
matrix game that contain the risk of ship collisions, 
determining the safe trajectory of the ship in terms of 
multi-criteria optimization, allowing for the degree of 
cooperation in avoiding collisions (Kouemou, 2009, 
Lisowski 2016, Olsder & Walter 1977). 

This article proposes a new mathematical 
formulation model of the collision-risk index, 
depending on ships proximity parameters and the 
distance between them. 
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2 THE MATHEMATICAL MODEL OF A MATRIX 
GAME 

Figure 1 presents a matrix game of the process of 
controlling your own ship in the situation of passing 
by with the ships at sea. 

 
Figure 1. Matrix game of ships. 

2.1 State and control variables 

Process state variables are represented by the distance 
between the encountered ships Dj, bearing Nj and the 
risk of collision rj and the coordinates of the own-ship 
position (X,Y) on the reference trajectory of movement 
(Kazimierski & Stateczny 2013).  

The control variables of the own-ship are: the 
course  and the speed V, and the control quantities 
of the j-th encountered ship in question are its course 
j and the speed Vj (Tomera 2012). 

State variables in the ship control process in 
collision situations are measurable by means of the 
on-board ARPA anti-collision system. 

2.2 Collision-risk 

The forms of the collision-risk rj of own-ship with the 
j-th encountered ship as the mean square reference of 
a safe situation are determined by the value of the 
assumed safe distance Ds and safe approach time Ts 
with the current situation of the ships approximation 
which are determined by the smallest expected 
distance Dj,min and time to the largest approximations 
of Tj,min and the distance between ships Dj: 
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where the coefficients a1 and a2 determine: the type of 
visibility at sea - good or restricted and the type of 
navigation area - open or closed (Modarres 2006, Xu 
2014) (Fig. 2). 

 
Figure 2. Collision-risk characteristics in the situation of 
concentrated ship traffic at: a1 = a2 = 0.4, Ds/Dj = 0.5 (above) 
and in the situation of larger distances between ships at: a1 = 
a2 = 0.5, Ds/Dj = 0.1 (below). 

The mathematical collision-risk model proposed 
here was taken into account not only the approach 
parameters of Dj,min and Tj,min, but also the distances 
between ships Dj. The value of collision-risk also 
depends on the density of the position of the 
encountered ships (Lisowski 2014). 

2.3 Matrix of collision-risk 

The game matrix R, in which own ship with clean sw 
strategies and m encountered ships with clean 
strategies, can each be presented each in the following 
equation form: 
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The numbers of rows are corresponded to the 
amount W of the acceptable own-hip's strategy in the 
Sw set, in the form of changes in its course  and the 
speed V to avoid collision (Mesterton-Gibbons 2001, 
Polak et al. 2016): 
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The numbers of columns were corresponded to the 
total amount of K = mWj admissible strategies for all m 
ships in the set Sj, in the form of changes in their 
courses j and speeds Vj in order to avoid 
collisions: 
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The Constraint-set C(sw,sj) of the permissible 
strategies result from the rules of the right of the 
COLREGs sea route are shown in Figures 3 and 4. 

 
Figure 3. Met j-th ship on the starboard side: the sets of 
acceptable game strategies of own-ship Sw and j-th 
encountered ship Sj (above), and hyperplane of collision-risk 
rj depending on the  own-ship course changes and the 
encountered j-th ship j (below). 

 
Figure 4. Met j-th ship on the port side: the sets of 
acceptable game strategies of own-ship Sw and j-th 
encountered ship Sj (above), and hyperplane of collision-risk 
rj depending on the  own-ship course changes and the 
encountered j-th ship j (below). 

3 TYPES OF OPTIMIZATION OF THE MULTI-STEP 
MATRIX GAME 

In most real transport and logistics processes, the 
matrix game does not reach the saddle point and then 
has no solution when using pure strategy in game 
theory. Therefore, an approximate solution to the 
game is the use of the mixed strategy chain as the 
probability of using pure strategies (Ehrgott 2005, 
Ehrgott & Gandibleux 2002). 

First, the probability matrix for using pure 
strategies is determined as shown in equation 5: 
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Then, the most probable strategy is the optimal 
control used of the own-ship (Eshenauer et al. 1990, 
Osborne 2004): 
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The game ends after bringing the collision-risk of 
each ship to the value of zero and reaching a certain 
value of the final payment pf, in the form of the final 
deviation of the safe trajectory from its initial value. 

3.1 The criterion of a non-co-operative matrix game 

The algorithm of MMG_nc multi-step non-co-
operative matrix game uses the following 
optimization criterion (Nisan et al. 2007, Straffin 
2001): 

 ,min max w j
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3.2 The criterion of the co-operative matrix game 

The MMG_c algorithm of multi-step co-operative 
matrix game uses the following optimization criterion 
(Basar & Bernhard 2008, Wells 2013): 

 ,min min w j
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3.3 The criterion of non-game control 

The MNG algorithm of multi-step non-game control 
uses the following optimization criterion: 

min w

w

s
ng js

Q p   (9) 

The MMG_nc, MMG_c and MNG algorithms for 
determining a safe own-ship trajectory in a collision 
situation were developed using the linprog function 
from the Matlab Optimization Toolbox package 
(Breton & Szajowski 2010). 

The method of entering the initial data for 
calculations describing the navigational situation is 
shown in Figure 5, and the form of calculations results 
of the safe trajectory of the ship is illustrated in Figure 
6. 

 
Figure 5. Algorithm window with initial data of the 
navigational situation. 

 
Figure 6. The algorithm window with the results of 
calculations of the safe own-ship trajectory and own-ship 
control by change of speed V or course . 

4 COMPUTER SIMULATION OF GAME 
CONTROL ALGORITHMS 

The safe trajectories of own ship in the situation of 33 
ships in the Kattegat Strait, in conditions of good and 
restricted visibility of the sea, are determined 
according to algorithms of multi-criteria optimization: 
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MMG_nc, MMG_c and MNG, and this are shown in 
Figures 7-13. 

 
Figure 7. The six-minute speed vectors of own ship and 33 
encountered ships in a navigational situation in Kattegat 
Strait. 

 
Figure 8. A safe trajectory of own-ship in non-co-operative 
matrix game, in conditions of good visibility in the sea, for 
Ds = 1.0 nm, final payment pf = 1.88 nm (nautical mile). 

 
Figure 9. A safe trajectory of own-ship in non-co-operative 
matrix game, in conditions of restricted visibility of the sea, 
for Ds = 2.6 nm, pf = 2.18 nm (nautical mile). 

 
Figure 10. A safe trajectory of own-ship in co-
operative matrix game, in conditions of good visibility 
in the sea, for Ds = 1.0 nm, pf = 0.57 nm (nautical mile). 
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Figure 11. A safe trajectory of own-ship in co-operative 
matrix game, in conditions of restricted visibility of the sea, 
for Ds = 2.6 nm, pf = 1.19 nm (nautical mile). 

 
Figure 12. A safe trajectory of own-ship in non-game 
control, in conditions of good visibility on the sea, for Ds = 
2.6 nm, pf = 0.69 nm (nautical mile). 

 
Figure 13. A safe trajectory of own-ship in non-game 
control, in conditions of restricted visibility on the sea, for 
Ds = 2.6 nm, pf = 0.71 nm (nautical mile). 

5 CONCLUSIONS 

The use of a matrix game with collision-risk for the 
synthesis of algorithms for computer-aided 
navigating maneuvering decision makes it possible to 
take into account the degree of indeterminacy of the 
navigational situation caused by the imperfection of 
the law of the sea route and the subjectivity of the 
navigator making the maneuvering decision to avoid 
a collision. 

The multi-criteria approach to the task of 
optimizing the safe control of the ship's movement 
allows taking into account of both the non-co-
operative and co-operative game control and the 
control of the non-target ships.  

Obtained safe ship trajectories differ mainly in the 
value of the final deviation from the set trajectory of 
the movement. 
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