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1 INTRODUCTION 

An autopilot is defined as a mechanical, electrical or 
hydraulic system used to guide a vehicle without as-
sistance from a human being. A ship uses an autopi-
lot for steering during her voyages except when she 
navigates in confined waters or maneuvering at port 
(COLREGS 72) [8]. A ship’s voyage may last sev-
eral days and a large proportion of it takes place in 
the open sea where the autopilot is used almost ex-
clusively. Even though the ship’s bridge, where the 
autopilot is located, is always supervised by the of-
ficer on watch (STCW 95) [22], it is necessary to 
ensure that the autopilot is a safe and reliable tool in 
his / her hands.  

Keeping a ship on course is not an easy task since 
ships are exposed to severe weather conditions and 
are operating in extreme situations. Wind, sea, cur-
rent, etc, are some of the factors affecting a ship’s 
deviation from the desired course. An autopilot’s 
task is to keep the ship on track, not losing control in 
any case and simultaneously minimizing the devia-
tions regardless of cause. To do that, an autopilot 
must have the proper configuration so that it would 
be able to perform its best according to the situation 
at hand. This ideal situation is not easy to achieve 
because the weather combinations of wind, sea, cur-
rent, etc, are practically infinite and the same stands 
for the ship’s loading conditions which also affect 
the final outcome. Moreover, an autopilot device is 

designed to work on almost any type of ship, thus its 
performance wouldn’t be the same in different hulls.  

The actual performance of the device is measured 
using parameters like loss of steering, vertical and 
angular deviation, extra distance, etc, because they 
are closely connected to dangerous situations at sea 
or significant losses of fuel and time. Loss of steer-
ing, combined with a generator failure can cause a 
serious accident i.e. capsize (Leontopoulos 79) [34], 
while vertical deviation from course (Cross Track 
Error) leads to unwanted approaches to navigational 
dangers. Moreover, extreme angular deviations from 
compass settings affect the ability to command, es-
pecially in bad weather (Bowditch 2002) [6]. Final-
ly, an incorrect adjustment increases the total voyage 
distance, the fuel consumption, the time delay and 
the corresponding costs (Dutton 1958) [11]. 

Given the above it is very difficult to develop a 
method that takes into account all the affecting fac-
tors and being able to maximize the performance on 
every ship, under any weather and loading condition. 
An ideal situation would be the development of a 
customized device able to “understand” its environ-
ment (weather, loading condition and ship’s particu-
lars) and properly adjust itself, responding to any 
changes. Even though such a device is not developed 
yet, we claim that a pattern able to operate in a simi-
lar way is feasible, provided that a conventional de-
vice will be equipped with some additional features 
mentioned below. 
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This pattern is incorporated as an application 
within an AI system named POLARIS (POlicy 
Leading ARtificial Intelligence System) (Nikitakos 
& Fikaris, 2007) [38] able to analyze problems of 
maritime interest and propose courses of action for 
them. This approach has certain advantages com-
pared to others because it doesn’t deal directly with 
the identification and estimation of the parameter 
values that constitute a configuration but instead it 
presupposes an unlimited number of them already 
installed on the device, with known properties that 
can be modified according to the user’s wishes. 
There is no limit to the number or nature of the pa-
rameters. 

The system’s core methodology is CBR (Case 
Based Reasoning) which solves current situations – 
problems with the assistance of similar cases that 
were dealt successfully in the past. These cases are 
stored in a case library and retrieved by the system 
using the proper indexes. The retrieved cases are 
ranked according to the criteria and the system pro-
poses the best solution to solve the current problem. 
If necessary, a solution may be adapted to fit a new 
situation. When the best solution is proposed a pro-
cedure of fine tuning may begin and last till the solu-
tion meets the pre specified criteria. 

The application described in this paper includes 
the development of a series of diagnostics performed 
by the autopilot device in different loading and 
weather situations in order to measure the corre-
sponding performances and create a case base out of 
them. Thus, when the ship finds herself in a similar 
situation, the device will track the case’s characteris-
tics, select the case with the configuration that per-
formed best and steer the ship with it until it detects 
another set of conditions. It is important to mention 
that the user may choose to measure the perfor-
mance of a given situation again so that the database 
would be constantly updated with improved scores. 

2 DSS AND CASE BASED REASONING 

The literature defines Decision Support Systems 
(Raiffa 76) [26] as “interactive computer based sys-
tems that help decision-makers use data and models 
to solve ill-structured, unstructured or semi-
structured problems (Goel 92) [15].” The most 
popular definitions belong to Gorry & Scott-Morton 
(1971) [16], Keen and Scott-Morton (1978) [25] and 
Bonczek, Holsapple & Whinston (1981) [5]. DSS 
were categorized in seven major categories which 
are file drawer systems, data analysis systems, anal-
ysis information systems, accounting and financial 
models, representational models, optimization sys-
tems and suggestion systems (Alter 1980) [1]. A 
type based categorization defines data driven, model 
driven (Knowles 89) [28] and knowledge driven sys-

tems (Dhar & Stein 1997 [9], Holsapple & Whinston 
1996) [20]).  

Knowledge driven DSS -sometimes called Expert 
Systems- incorporate knowledge about a particular 
domain, understanding of problem solving and ex-
pertise at solving those problems (Redmond 1992) 
[42]. They are also related to data mining techniques 
and usually evolve to hybrid systems (Simpson, 
1985) [44]. Major components of a DSS are a) the 
shell b) the case library c) the knowledge base or the 
model and d) the system’s architecture and network 
(Sprague and Carlson 1982) [46]. These systems an-
alyze data using symbolic logic, have an explicit 
knowledge base and have the ability to explain con-
clusions in an understandable way. Web based DSS 
are referring to a computerized system that delivers 
decision support information or decision support 
tools to a manager or business analyst using a “thin 
client” Web browser (Power 2000) [41].   

Reasoning is a procedure that draws conclusions 
by chaining together generalized rules, usually start-
ing from scratch. However in Case Based Reasoning 
new solutions are generated not by chaining, but by 
retrieving the most relevant cases from memory and 
adapting them to fit new situations (Leake 1996, 
2003) [33][32]. A case is a contextualized piece of 
knowledge representing an experience that teaches a 
lesson fundamental to achieving the goals of the rea-
soner. A case may have different shapes or sizes, 
various time horizons and can associate solutions 
with problems, outcomes with situations or both. A 
case’s main task is to provide a solution to a prob-
lem but it can also provide the necessary context to 
assess or understand a situation (Kolodner 93, 
Schank 1994) [29] [45]. A case is comprised from 
indexes which should be predictive, goal oriented, 
abstract and easily recognizable (Birnbaum & Col-
lins 89 [4], Hammond 89 [18]). These indexes must 
describe the problem (goals, constraints and situa-
tion), the solution and the outcome. The case base 
indexing is organized according to the problem’s re-
quirements and can be checklist based, difference 
based (Kolodner 93) [29], similarity and explanation 
based (Hammond 87, 89 [17]), etc. The problem / 
situation indexes are mainly used for the retrieval, 
qualification and ranking of cases while the solution 
indexes present the way of action to the user. The 
outcome indexes are a part of the evaluation proce-
dure. 

The main advantages of CBR are its simplicity, 
its capability of incorporating uncertainty and its 
plausibility (Kolodner 1993) [29]. Two major clas-
ses of CBR systems have been developing since the 
method’s introduction. These are the interpretive and 
problem solving CBR systems (Rissland, Kolodner 
& Waltz, 1989) [43]. The former use prior cases as 
reference points for classifying new situations, 



253 

whilst the latter use prior cases to suggest solutions 
that apply to new circumstances. Another major ad-
vantage of CBR is that because it uses specific epi-
sodes (cases) for reasoning there is no need to de-
velop many rules and thus makes the knowledge 
acquisition process –which is vital to AI systems- 
very “cheap”. As pointed by “Mark et al, (1996)” 
[35] there are some domains that are very suitable 
for CBR, while others are not, especially if cases are 
unavailable or in hard to use format. The functions 
performed by a typical CBR system are recall and 
interpretation of past experiences (cases), adaptation 
of those cases to fit the new situation, evaluation of 
proposed solutions and repair of the “defective” ones 
(Kolodner, 1993) [29].  

POLARIS is an AI system containing elements of 
a DSS since it interacts with the user and helps him 
find the best out of a series of alternatives as well as 
expert knowledge relevant to the problem’s domain. 
The system uses data from old cases to solve new 
problems but it also incorporates expert knowledge 
from the problem domain. Thus, its type is a mixture 
of a data and knowledge driven system strongly de-
pendent on the nature of the application. All these 
are significantly affected by the complexity of the 
problem and the domain knowledge available. The 
system’s architecture follows the CBR procedures 
and comprises of the following modules: 
− User interface: interacts with the user 
− Case Library: contains the old cases   
− Knowledge base: contains the expert 

knowledge in the form of rules 
− Case Retriever: retrieves and ranks the useful 

cases 
− Solution presentation facility: presents the solu-

tion to the user 
− Solution evaluator: evaluates the solution after 

the implementation 
− Solution adaptor: adapts the solution to fit the 

current situation 
− Case storage facility: stores new cases to the li-

brary (Moorman & Ram, 1992) [37] 

3 ADJUSTMENT METHODS REVIEW 

A quick review of the methods used in order to 
properly adjust a ship’s autopilot shows that almost 
every single AI technology was used by a number of 
researchers. Fuzzy logic (Polkinghorne M.N; Burns 
R.S 1994 [39], Roberts G.N, Roberts and Sutton 
2006 [40]), Neuron Networks (Unar and Murray-
Smith 1999 [48], Jia, X.J Yang and X.R Zhao, 2006 
[49]), Optimization techniques (Holzhuter, 1997) 
[21], Linear programming (Goheen K.R, Jeffreys 
E.R, 1990 [31]), Model Based Reasoning (Honderd 
and Winkelman, 1972 [14], Van Amerongen and 
Udink ten Cate, 1975 [23], Van Amerongen and Van 

Nauta Lemke, 1986 [24]), Self tuning regulators (KJ 
Astrom et al, 1977 [27]), Stochastic models (Ohtsu 
et al, 1979 [30], Herther et al, 1971 [19]), etc, repre-
sent only a fragment of the work that has been done 
in the field. 

Most Autopilots are adjusted using the PID con-
troller which calculates a performance variable with 
known values and applies the necessary corrective 
actions based on the difference between the calculat-
ed and expected value. The controller includes three 
parts: The first one responds to the error, the second 
applies a correction for the sum of all the errors and 
the third responds to the error variation percentage. 
PID controllers however cannot perform in non line-
ar systems and their accuracy is very low. 

Another interesting work is the one of Unar and 
Murray-Smith who developed an artificial neural 
network which controls and coordinates a series of 
conventional controllers. Each controller is manu-
factured for a specific operational situation of the 
vessel. Still, the level of detail is low and the situa-
tion coverage very poor. Moreover, the system’s 
cost and maintenance is relatively high. This ap-
proach has some similarities with CBR since each 
controller represents a situation, but it is obvious that 
the number of controllers is finite and cannot cover 
the infinite weather and loading situations. 

4 THE AUTOPILOT APPLICATION THEORY 

The Autopilot application presupposes a finite num-
ber of configurations available on the device and a 
number of known parameters which are adjustable 
and affect the configuration significantly. The sys-
tem creates a case library performing a series of tri-
als, assessing each configuration’s performance for a 
given situation. The situations and the corresponding 
performance values are stored in memory and ideal-
ly some time during the ship’s life cycle there will 
be a case for almost every combination of weather 
and loading condition. 

When the ship’s devices detect a specific weather 
situation, and given that the loading data as well as 
the ship’s particulars are already stored in memory, 
the system retrieves the cases with the best perfor-
mance values from the base. The qualified cases are 
ranked and the corresponding configuration is pre-
sented to the user. After the implementation of the 
selected configuration the system records the actual 
performance and compares it with the expected one. 
If the actual performance is not satisfactory the sys-
tem either switches to the second best configuration 
or it enables a fine tuning procedure where it per-
forms a sensitivity analysis of every parameter in the 
selected configuration aiming to achieve a better 
performance. If this is accomplished it stores the 
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new set of parameters and the corresponding per-
formance indicators, thus creating a new configura-
tion for the device. 

The Autopilot’s case contains six categories of 
indexes which represent the performance criteria 
(goals), the weather conditions (situation), the load-
ing condition of the ship (situation), the ship’s par-
ticulars (user characteristics), the configuration used 
(solution) and the applied performance criteria (out-
come).  

4.1 Performance Indexes 
The performance indexes (criteria) mainly cover the 
dimensions of danger, ease of command, cost and 
time. Three variables have been used. The first one 
is the difference of the distance measured by the 
ship’s track to bottom from the rhumb line distance 
between waypoints (d). The second is the maximum 
(dmmax) and mean vertical deviation to course 
(XTE) in miles (dm) while the third is the maximum 
(ddmax) and mean deviation of the ship’s bow to the 
true course in degrees (dd). Loss of steering LS >0, 
dmmax>threshold1 and ddmax>threshold2 were set 
as hard constraints. The system is able to 
automatically calculate all these quantities either 
separately with the appropriate sensors either using 
the usual bridge electronic equipment (GPS, ECDIS 
& ARPA combined) provided that they are 
connected to the improved Autopilot device. 

 
Figure 1: True distance of ship’s track to bottom 

 
The first criterion d was selected because it repre-

sents the extra distance traveled by the ship in a giv-
en part of the journey, so it can be translated to extra 
fuel and time that is monetary cost. The true distance 
(Figure 1)1 is calculated using the formula 
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Similarly the second criterion’s hard constraint is 
dmmax = A tan (maxRB) whereas A: ship’s advance 
from extreme vertical XTE point Ei till the next 
point Ci where it meets the course again and max 
RB: maximum relative bearing to point E while the 
mean is calculated as: 

pRBAdm p /tan*
1∑=   

where p is the number of selected and calculated 
XTE points. This criterion expresses the ship’s mean 
XTE from course, thus it’s an indicator of possible 
approaches to navigational dangers like shallow wa-
ters, wrecks, etc. The third criterion and the hard 
constraint that derives from it are: 

pZZdd p /max
1∑ −= and ZZdd −= maxmax  

 
Figure 2: Vertical deviation – Max and mean 

 

These express the selection’s performance in 
steering or the ship’s “swinging” on either side (Le-
ontopoulos 1979) [34]. Those criteria were com-
bined to measure the negative performance of each 
alternative. The analysis2 assigned 5 negative points 
for each extra mile, 10 points for each XTE mile and 
0, 2 for each degree of deviation. Moreover, the two 
hard constraint thresholds were set to 0.02 miles / 
Beaufort for dmmax and 2 degrees / Beaufort for 
ddmax. Dmmax is increased by 20% for each knot 
of current with a relative bearing > 45o. These are 
default values and are justified after a survey with 
experts aiming to assess the severity of each criteri-
on as far as the autopilot device is concerned. If the 
user disagrees he / she can intervene and change this 
balance by inserting values to the coefficients α, β, γ 
assigned to each criterion during the interaction with 

                                                 
2 The thresholds are for a 65000 DWT Panamax bulk carrier. 
For other types of ships the numbers are different, slightly in-
creasing with the tonnage 
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the system. After the normalization the selection’s 
negative performance is calculated as follows:  
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4.2 Wheather condition indexes 
The weather condition indexes describe the wind, 
sea and current. The case includes wind direction 
and force, sea direction and force, current direction 
and speed as well as swell direction and height. All 
directions are expressed in degrees, wind and sea 
force in Beauforts, current speed in knots and swell 
height in meters. All directions are relative to bow 
and current speed is true. A situation is considered 
identical when the parameter differences will not ex-
ceed half of a preset allowance in either direction 
(+/-). As the case library grows bigger the bounda-
ries can be stricter for better accuracy. 

The weather situation is expressed by four major 
phenomena which are wind, sea, current and swell. 
Sea condition will always be a part of the situation 
during the retrieval procedure, while current, swell 
and wind can be omitted if there are not any exact 
matches. If the phenomenon is to be included in the 
case retrieval process, its indexes are analyzed fur-
ther in order to determine their actual importance 
and whether they should be included as retrieval cri-
teria. Table 1 shows a strict version of the retrieval 
process because the criterion used is the existence of 
a Medium importance (M) characterization for the 
relative course or the sea force. Relative course has 
three importance levels (Low, Medium, and High) 
covering 30 degrees from bow and sea force has six 
levels (Very Low, Low, Medium, High, Very High, 
and Extremely High) each covering two Beauforts. 
As seen in table 1, in almost all cases the sea indexes 
should be included in the retrieval. The lower part 
presents the same data but now the criterion is the 
existence of a High importance (H) in any of the two 
indexes.  
Table 1: Combined importance of sea direction and force (Me-
dium and High Importance Thresholds are set) 

 

 
 

The influence of the sea condition parameter is 
affected by a lot of things, but since the case refers 
to the same ship, the only other factor to be consid-
ered is the loading situation. Sea direction and force 
has a much greater impact when the ship is on bal-
last and less when it’s fully loaded. Thus, when the 
vessel is on ballast condition more weather combina-
tions should be included. The strict version is used 
for ballast condition and the less strict for the fully 
loaded condition. Further division i.e. semi loaded 
condition can be applied if needed. 

Current, swell and wind are represented similarly 
in the knowledge base. Importance weights were 
assigned to each direction for each one of the three 
phenomena. Current was given a scale of 0 – 10 
knots ranging from Very low to Very High im-
portance with a pace of 2 knots. The existence of a 
Medium importance is the criterion when the ship is 
on ballast condition while a value of High im-
portance is necessary when the ship is loaded. Swell 
is measured with a scale of 0 – 5 meters ranging 
from Very Low to Very high importance while wind 
has the same scale as the sea. The thresholds are at 
least one Medium importance for the ballast and at 
least one High importance for the fully loaded con-
dition. 

4.3 Loading condition and ship  particulars indexes 
The loading condition indexes include information 
about the deadweight, draft, trim, declination, LCG, 
VCG, TCG, free surfaces, hogging and sagging. Ad-
ditional indexes include the capacity used, type of 
cargo, fuel, ballast, supplies or alternative ones like 
hull coefficient proportions, stowage factors, etc. 
The ship’s particulars represent the user characteris-
tics and include the basic dimensions, ship’s coeffi-
cients, RPM (sea speed), rudder elements, maneu-
vering characteristics, etc. The loading condition and 
the ship particulars indexes are presented in table 2. 
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Table 2: Loading condition and ship particulars indexes 

 

 
The loading indexes are identified after inter-

views with merchant ship masters and deck officers 
with more than adequate experience in the field. Im-
portance weights have been assigned to each one of 
them in order to identify those necessary to be in-
cluded as criteria in each retrieval procedure. The 
indexes with the highest importance are the DW, d, 
δ, dec, VCG, Io, SF and the Ballast percentage. All 
others are already covered by them and exist for ac-
curacy reasons. It should be noted that any of these 
indexes can be omitted if the user wishes to or if the 
case library is not rich enough and cannot retrieve 
exact matches. Also, the value boundaries can 
change to permit a stricter or a more loose retrieval 
in accordance with the needs. 

The ship’s particulars indexes describe the user 
(ship) characteristics. Even though the Autopilot ap-
plication refers to the same ship the particulars are 
inserted in the library in case a possible user compa-
ny decides to integrate the fleet’s libraries to create a 
richer one, especially if there are vessels with similar 
characteristics. Like every category of indexes and 
as the case library grows more indexes can be added 
or stricter criteria can be set. 

4.4 Solution and outcome indexes 
In this application the solution parameters are only 
the configuration with the best performance and its 
corresponding characteristics. For simplicity reasons 
we included two attributes (for demonstration pur-
poses only) which are the angular velocity of the 
rudder (AVR) and the rudder angle permitted (RA) 
in order to keep the ship on course. The configura-
tions available can be any combination of these val-
ues, thus for AVR values n-2, n and n+2 degrees per 
second and RA values of k-5, k and k+5 degrees we 
have 9 possible combinations, plus a (n - 4, k – 10) 
combination for very calm sea. Finally, the outcome 
indexes are the same as the criteria indexes, but their 

values will be the actual performance of the configu-
ration during the voyage. 

4.5 Case Retrieval 
Case retrieval is one of the most important parts of 
the system’s reasoning since it is required to select 
all the related cases, classify them according to their 
utility towards the goals and promoting the most 
promising of them. As mentioned in the literature 
the proper retrieval requires a degree of similarity 
between the new and the retrieved situation. Many 
CBR systems use various levels of abstractions in 
order to recognise similarities between cases of dif-
ferent domains. There are numerous algorithms used 
for the case retrieval strongly dependent on the prob-
lem complexity. Usual serial algorithms are the Flat 
memory – serial search enhanced with shallow in-
dexing, case library partitioning or synchronous par-
allel retrieval (Kolodner 93) [29], Shared Featured 
Networks (Fischer 87 [13], Michalski and Stepp 83 
[36], Cheeseman 88 [7], Quinlan 86), Discrimination 
Networks (Feigenbaum 63) [12]) and Redundant 
Discrimination Networks (Kolodner 93) while paral-
lel algorithms are Flat Library – Parallel search 
(Stanfild and Waltz 81, 88 [47], Simoudis 91, 92, 
Domeshek 89, 91 [10]), Hierarchical memory – Par-
allel search (Kolodner 93) [29]. A serial search is 
used for the Autopilot application assisted by a case 
library partitioning using the sea condition indexes. 
Other situation parameters can be used in case the 
library grows very big. 

When the system detects the cases whose values 
fall into the ranges permitted it uses the nearest 
neighbour approach (Dasarathy 1991) [3] for each 
selected characteristic in order to assess the degree 
of situation similarity. This leads to the retrieval of a 
set of cases which are ranked according to the crite-
ria. In the Autopilot’s knowledge base the priorities 
are safety, command and monetary cost, so the goals 
are ordered with this logic: Loss of steering, vertical 
deviation, angular deviation and finally difference of 
distance. The system rejects any case that violates a 
hard constraint and then calculates the negative per-
formance of the remaining cases, proposing the one 
with the lowest score to the user. 

4.6 Evaluation and adaptation 
The evaluation procedure is the comparison of the 
actual performance of the configuration used with 
the one stored (the best) in the case library. If the 
performance is not satisfactory the user has two 
choices. One is to select the second best configura-
tion for the specific situation and store it in memory 
and the second is to adapt the selected configuration 
to fit the new situation. This is done by initiating a 
fine tuning procedure (or sensitivity analysis) where 
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the system changes the configuration parameter val-
ues and performs a new series of diagnostics in order 
to track the adapted configuration with the best per-
formance. In the Autopilot application the system 
assesses the performance of the adapted configura-
tions relatively easy since the parameters are only 
two (AVR & RA) and the possible combinations no 
more than ten. Of course the configuration 
parameters can be much more, with the system’s  
processing time  increasing exponentially but then, 
fuzzy logic classifications can be used to reduce the 
processing time. One way to avoid that is to 
categorize the configurations in classes and further 
examine them if the performance is not adequate. 

There is no adaptation procedure in this particular 
applcation because the suggestion’s outcome is an 
already preset configuration with fixed attributes. 
Moreover, instead of trying to modify the reasoning 
or re configurate the solution, it is far more 
preferable to simply use the second or third best 
configuration proposed by the system or re run the 
diagnostics with less strict constraints. 

5 CASE STUDY 

A 65000 DWT bulk carrier was selected for this case 
study which is presented based on real voyage data 
except the values of the performance criteria, since 
such a device is not developed yet. The ship sailed 
from Los Angeles (USA) to San Bernardino (Philip-
pines) and performed its diagnostics during a great 
circle trip. The ship is loaded with corn and travels 
at usual sea speed. We suppose there is an autopilot 
on board that has 10 different selections, so the di-
agnostic test will be performed 10 times in each part 
of the great circle given that every part has signifi-
cantly different weather conditions. If this ideal situ-
ation occurs a case base of 10 X 11 = 110 cases will 
be constructed in a single trip. The great circle data 
are shown in table 3. It must be noted that the rest of 
the case study is focused to the first way point for 
simplicity reasons, since the procedure is similar for 
every other part of the voyage. The distance set for 
each selection is 10 miles, thus the first test will 
cover a total distance of 100 miles. 

A general description of the voyage is as follows: 
The ship’s draught was 13.3 meters, the cargo holds 
were full and the stowage factor was 1.52. There 
was no hogging or sagging and the trim was 1 meter 
by the stern. The engine’s RPM were 110 and the 
ship’s initial stability satisfactory since the GM was 
25 centimeters. The ship’s heading was 295 during 
the first diagnostic and the wind was NW 6-7. The 
sea was NNE moderate to rough and the current 2 
knots to the starboard beam. 

 

Table 3: Initial voyage data 

 
The situation was presented with two sets of vari-

ables –weather and loading parameters- and a third 
set which is already inserted in memory representing 
the ship’s particulars. The variables used for the 
weather conditions are the relative directions of sea, 
current, wind and swell and are listed in table 4. The 
weather situation is identical since the heading and 
distance traveled for each test is the same (295, 10), 
the wind3, sea and current differences do not exceed 
the allowances permitted and there is not any swell. 
The loading situation was represented using the car-
go (+/- 25*TPC4 % MT), draft (+/- 0, 25 m), SF (+/- 
0, 05), % hold capacity (+/- 10%), RPM (+/- 2%), 
VCG (+/- 0, 05 m) and trim (+/- 0, 5 m) variables. 
The parentheses show the allowances for the loading 
situation similarity. The loading situation is shown 
in table 5. Table 6 shows the case as it is stored in 
the case library. 
Table 4: The weather conditions during the diagnostic test 

 
 

Table 5: The loading condition during the diagnostic test 

 
                                                 

3 The (-) declares left (port) from bow  
4 Tons Per Centimeter: the amount of cargo required to alter the 
ship’s draft for 1 centimeter  
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Table 6: The situation as it is stored in the base 

 

 
 
Table 7 presents a scenario of possible criteria 

values measured during the diagnostics. These in-
clude the criteria measuring the performance as well 
as the hard constraints with their respective thresh-
olds. The first hard constraint eliminates three selec-
tions since the maximum vertical distance dmmax 
exceeds the threshold dmmaxTh. Thus, selections 
1.1, 1.2 and 1.3 are no longer considered. Similarly 
the second constraint ddmax eliminates the selec-
tions 1.6 and 1.10 since the value must be below the 
limit and not equal. The third constraint which re-
quires zero tolerance to steering losses eliminates se-
lections 1.6 and 1.7 as well as 1.2 and 1.3 which 
were already excluded. At this point selections 1.4, 
1.5, 1.8 and 1.9 remained active and the system cal-
culates their negative performance NP in order to 
rank them. Finally, selection 1.8 is proposed as the 
best alternative since it has less negative points than 
the others. 
Table 7: Criteria and hard constraints 

 
An estimation of the potential benefits resulting 

from a proper selection is shown comparing the bet-
ter with the worst alternative not taking into account 
the hard constraints that exclude it. Those alterna-

tives are 1.8 and 1.2. Criterion d shows that the ship 
travels 0, 9 extra miles5 in every 10 miles of journey. 
This means that during this passage the ship will 
travel 6156, 6 * 0, 9 / 10 = 554 extra nautical miles 
and will lose 554 / 15 = 37 hours in terms of time. 
Moreover the ship will vertically deviate (mean) 
from its course 278 meters more and swing about 10 
degrees more (mean) if 1.2 is selected. This means 
bigger exposure to danger and greater difficulty in 
command which in turn wears the hull, engine, pro-
peller, etc.  One must not forget the additional wear 
and tear of the rudder and engine if a false steering 
configuration is set as well as the crew fatigue and 
other damages that may result from rolling, pitching, 
etc. 

6 CONCLUSION – FUTURE RESEARCH 

Summarizing the above it is concluded that a way of 
selecting the best alternative from a pre existing set 
of configurations of an autopilot is possible using 
CBR as the core technology. Since such a device is 
not yet developed this application is considered con-
ceptional and its main task was to present some ini-
tial thoughts still requiring verification and hard da-
ta. The development of a prototype could give a lot 
of answers and test the system’s performance in the 
real world. 

Apart from that we strongly believe that the mari-
time industry and especially the ship is a very com-
patible environment for CBR and numerous applica-
tions could be developed. In time, an integrated 
system able to deal with a number of issues could be 
developed and with the accumulation of cases its 
performance and learning will constantly improve. 
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