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1 INTRODUCTION 

Modern ships are equipped with complicated ship 
motion control systems, the goals of which depend 
on tasks realised by an individual ship. The tasks ex-
ecuted by the control system include, among other 
actions, controlling the ship motion along the course 
or a given trajectory (path following and trajectory 
tracking), dynamical positioning and reduction of 
ship rolls caused by waves. Figure 1 presents basic 
components of the ship motion control system. 

The guidance system generates a required smooth 
reference trajectory, described using given positions, 
velocities, and accelerations. The trajectory is gener-
ated by algorithms which make use of the required 
and current ship positions, and the mathematical 
model with complementary information on the exe-
cuted task and, possibly, the weather. 

The control system processes the motion related 
signals and generates the set values for actuators to 
reduce the difference between the desired trajectory 
and the current trajectory. The controller can have a 
number of operating modes depending on the exe-
cuted tasks. On some ships and in some operations 
the required control action can be executed in sever-
al ways due to the presence of a number of propel-
lers. Different combinations of actuators can gener-
ate the same control action. In those cases the 
control system has also to solve the control alloca-
tion problem, based on the optimisation criteria 
(Fossen, 2002). 

The navigation system measures the ship position 
and the heading angle, collects data from various 
sensors, such as GPS, log, compass, gyro-compass, 
radar. The navigation system also checks the quality  

of the signal, passes it to the observer system in 
which the disturbances are filtered out and the ship 
state variables are calculated. Stochastic nature of 
the forces generated by the environment requires the 
use of observers for estimating variables related with 
the moving ship and for filtering the disturbances in 
order to use the signals in the ship motion control 
systems. 

Filtering and estimating are extremely important 
properties in the multivariable control systems. In 
many cases the ship velocity measurements are not 
directly available, and the velocity estimates are to 
be calculated from the position and heading values 
measured by the observer. Unfortunately, these 
measurements are burdened with errors generated by 
environmental disturbances like wind, sea currents 
and waves, as well as by sensor noise. 
 One year after publishing his work on a discrete 
filter (Kalman, 1960), Rudolph Kalman, this time 
together with Richard Bucy, published the second 
work in which they discussed the problem of contin-
uous filtering (Kalman & Bucy, 1961). This work 
has also become the milestone in the field of optimal 
filtering. In the present article the continuous Kal-
man filter is derived based on the discrete Kalman 
filter, assuming that the sampling time tends to zero. 
A usual tendency in numerical calculations is rather 
reverse: starting from continuous dynamic equa-
tions, which are digitised to arrive at the discrete dif-
ference equations being the approximates of the ini-
tial continuous dynamics. In the Kalman filter idea 
the discrete equations are accurate as they base on 
accurate difference equations of the model of the 
process. 
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Figure 1. Basic components of modern ship motion control system (Fossen, 2002). 

 
The dynamic positioning systems have been de-

veloped since the early sixties of the last century. 
The first dynamic control systems were designed us-
ing conventional PID controllers working in cascade 
with low-pass filters or cut-off filters to separate the 
motion components connected with the sea waves. 
However, those systems introduce phase delays 
which worsen the quality of the control (Fossen, 
2002). 

From the middle of 1970s more advanced control 
techniques started to be used, which were based on 
optimal control and the Kalman filter theory. The 
first solution of this type was presented by (Balchen 
et al., 1976). It was then modified and extended by 
Balchen himself and other researchers: (Balchen et 
al., 1980a; Balchen et al., 1980b; Fung and Grimble, 
1983; Saelid et al. 1983; Sorensen et al., 1996; 
Strand et al. 1997). The new solutions made use of 
the linear theory, according to which the kinematic 
characteristics of the ship were to be linearized in 
the form of sets of predefined ship heading angles, 
with an usual resolution of 10 degrees. After the lin-
earization of the nonlinear model, the observer based 
on such a model is only locally correct. This is the 
disadvantage of the Kalman filter. The Kalman filter 
can make use of measurements done by different 
sensors at different accuracy levels, and calculate 
ship velocity estimates which are not measured in 
the majority of ship positioning applications. 

The main goal of the article is designing and test-
ing the observer for the ship motion velocity estima-
tion. 

2 DISCRETE MODEL OF THE PROCESS 

Discussed are time-dependent discrete processes, 
which are recorded by sampling continuous process-
es at discrete times. Let us assume that the continu-
ous process is described by the following equation: 

 

)()()()()( ttttt uGxAx +=  (1) 

where u is the input vector having the form of white 
noise. The state transition matrix for equation (1) 
takes the form: 
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For the discrete model, the objects of analysis are 
process samples recorded at times t0, t1, ..., tk, .... 
Equation (2) written for a single sampling interval 
can be presented as 
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which can be briefly written as 

kkkk wxFx +=+1  (4) 

where Fk is the state transition matrix for the step be-
tween times tk and tk+1 at the absence of the excita-
tion function 
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and wk is the excited response at time tk+1 due to the 
presence of the white noise at the input in the time 
interval (tk, tk+1), i.e. accidental disturbances affect-
ing the process 
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The white noise is a stochastic signal having the 
mean value equal to zero and finite variance. The 
matrix elements wk can reveal non-zero cross corre-
lation at some times tk. The covariance matrix con-
nected with wk is denoted as  

{ } k
T
ikE Qww =  (7) 

The covariance matrix Qk can be determined us-
ing the formula written in the following integral 
form 
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The matrix E[u(ξ)uT(η)] is the matrix of the Di-
rac delta function, well known from continuous 
models. 

3 DISCRETE KALMAN FILTER 

Briefly, the Kalman filter tries to estimate, in an op-
timal way, the state vector of the controlled process 
modelled by the linear and stochastic difference 
equation having the form given by formula (4). Ob-
servations (measurements) of the process are done at 
discrete times and meet the following linear relation 

kkkk vxHy +=  (9) 

where xk is the state vector of the process at time tk, 
yk is the vector of the values measured at time tk, Hk 
is the matrix representing the relation between the 
measurements and the state vector at time tk, and vk 
represents the measurement errors. It is assumed that 
the signals vk and wk have the mean value equal to 
zero and there is no correlation between them. 

The covariance matrix for the vector wk is given 
by formula (7), while that for vk is defined in the fol-
lowing way 

{ } k
T
kkE Rvv =  (10) 

{ } 0=T
kkE vw ,   for all k and i (11) 

It is assumed that the initial values of the process 
estimates are known at the beginning time tk and that 
these estimates until time tk base on the knowledge 
about the process. Such an estimate is denoted as xk 
where the bar means that this is the best estimate at 
time tk before the measurement. The estimation error 
is defined as: 

kkk xxe −=  (12) 

and the related error covariance matrix is 

( )( )




 −−=





=

T
kkkk

T
kkk EE xxxxeeP  (13) 

At sampling times tk at which the measurement yk 
is done, the possessed estimate xk is corrected using 
the following relation (Brown & Hwang, 1997; 
Franklin et al. 1998) 

( )kkkkkk xHyLxx −+=ˆ  (14) 

where x̂ k is the estimate updated by the performed 
measurement, and Lk is the scaling amplification. 

The task is to find the vector amplifications Lk 
which update the estimate in the optimal way. For 
this purpose the minimisation of the mean square er-
ror is done. Then, the covariance matrix is deter-
mined for the error relating to the estimate updated 
by the performed measurement. 
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In time intervals between the sampling times, the 
estimates are calculated using the following formula 

kkk xFx ˆ1 =+  (16) 

Firstly, the covariance matrix P k+1 is calculated 
using formula (13) after correcting it by one sample 
ahead 
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After placing relations (4) and (16) into formula 
(17) we get (Brown & Hwang, 1997) 
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No correlation is assumed between the estimation 
error signals ek and the disturbances wk. After plac-
ing the covariances defined by formulas (7) and (15)  
into relation (18) we get the required error covari-
ance matrix between the sampling times 

k
T
kkkk QFPFP +=+1  (19) 

The estimation error covariance matrix Pk is cal-
culated for sampling times in the similar way. After 
placing relations (9) and (14) into formula (15) we 
get 

( ) ( )[ ]{ kkkkkkkkk E vLxxHLxxP −−−−=   

 ( ) ( )[ ]

−−−−⋅

T
kkkkkkkk vLxxHLxx  (20) 

And after similar algebra operations as in formula 
(21) we get the following solution 

T
k

T
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kk

T
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The final task is to calculate the optimal values of 
the amplification matrix Lk. This task is realised by 
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finding such values of the vector Lk. which minimise 
the trace of the matrix Pk being the sum of the mean 
square errors of the estimates of all state vector ele-
ments. The trace of the matrix Pk is differentiated 
with respect to Lk and made equal to zero. What can 
be easily noticed, the second and third term of equa-
tion (21) are linear with respect to Lk, while the 
fourth term is quadratic and the trace of LkHkPk is 
equal to the trace of its transposition LkHk P k P
kHk

TLk
T. We get (Brown & Hwang, 1997) 
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− k

T
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TT
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and after some transformations we arrive at the re-
quired form of the matrix Lk, bearing the name of 
Kalman amplification: 

( ) 1−
+= k

T
kkk

T
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Now we remove the matrix Lk from equation (21) 
by placing the relation (23) to get 

( ) kkk
T
kkk

T
kkkk PHRHPHHPPP

1−
+−=  (24) 

The obtained recurrent calculation algorithm, 
based on equations (14), (16), (19) (23) and (24), is 
widely known as the Kalman filter. Equation (24) 
can be presented in another form taking into account 
the Lk relation given by the formula (23) which 
gives 

( ) kkkkkkkk PHLIPHLPP −=−=  (25) 

4 CONVERSION FROM DISCRETE TO 
CONTINUOUS EQUATIONS DESCRIBING 
THE KALMAN FILTER ALGORITHM 

The general form of a continuous process is already 
given by equation (1), while the equation describing 
the measuring model for a continuous system is 

vCxy +=  (26) 

Consequently, by analogy with the discrete model 
it is assumed that the vectors u(t) and v(t) are the 
vectors of the stochastic process bearing the name of 
the white noise with the zero cross correlation value. 

{ } ( )τδτ −= ttE T Quu )()(  (27) 

{ } ( )τδτ −= ttE T Rvv )()(  (28) 

{ } 0)()( =τTtE vu  (29) 

The covariance parameters Q and R play a simi-
lar role to that played by the parameters Qk (7) and 

Rk (10) in the discrete filter, but have different nu-
merical values. 

To do the conversion from discrete to continuous 
form, let us first define the relations between Qk and 
Rk, on the one hand, and the corresponding values of 
Q and R for small sampling intervals ∆t. Based on 
formula (5) we can notice that for small t∆  values 
the discrete transition matrix Fk = I. After applying 
this conclusion to the matrix Qk given by formula 
(8) we get (Brown & Hwang, 1997). 
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Then placing the equation (27) into the equation 
(30) and integrating for a small time interval ∆t we 
get 

tT
k ∆= GQGQ  (31) 

Deriving the equation relating Rk to R is not 
straightforward. In the continuous model the signal 
v(t) is the white noise and direct sampling returns 
the measuring noise with infinite variance. In order 
to get equivalent values at the discrete and continu-
ous times it is assumed that the continuous meas-
urements are averaged over the time interval ∆t in 
the sampling process. The state variables x are not 
“white” and can be approximated as constant along 
this interval. Hence 
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where Hk = C(tk). This way a new equivalent is ob-
tained which defines the relation between the con-
tinuous time and discrete time domains 
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From formula (10) we get 
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Placing equation (28) into equation (34) and inte-
grating we get the required relation 

tk ∆
=

RR  (35) 

The amplification of the discrete Kalman filter is 
given by formula (23). After placing relation (35) in-
to this formula we get 
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a) 

 

b) 

 
Figure 2. Block diagram of the continuous Kalman filter.  
 

( ) 1−
∆+= tT

kkk
T
kkk RHPHHPL   

 tT
kk ∆≈ −1RHP  (36) 

as the second term inside the parentheses is dominat-
ing in formula (36) 

T
kkkt HPHR >>∆  (37) 

When passing from the discrete form to the con-
tinuous form, the error covariance matrix between 
sampling times, given by formula (19), nears to P
k+1 ≈ Pk when ∆t→0. Therefore only one error matrix 
P is in force in the continuous filter. Equation (36) 
takes the form  

tT
k ∆= −1RPCL  (38) 

And, finally, when ∆t→0, we arrive at the formu-
la for determining the amplification L in the contin-
uous Kalman filter (Brown & Hwang, 1997) 

1−=
∆

= RPC
L

L Tk

t
 (39) 

As the next step, the equation describing the es-
timation error covariance matrix is to be derived. 
Placing relation (25) into equation (19) we get 
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 k
T
kkkkk

T
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Then the discrete transition matrix kF  in equation 
(40) is substituted by its approximate given by for-
mula (5) (Brown & Hwang, 1997) 
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It can be seen from equation (38), than in equa-
tion (41) the matrix Lk is of an order of ∆t. And, af-
ter removing all terms containing ∆t of and order 
higher than one from equation (41) we get the sim-
plified form (Brown & Hwang, 1997): 
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T
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After substituting formula (38) for Lk and formu-
la (31) for Qk in equation (42) we arrive at 
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kkkk ∆+∆+=+ APPAPP 1   

 tt T
kk

T
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Based on equation (43) we can get the following 
difference 

T
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T
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Then, after limiting ∆t→0 and removing all sub-
scripts and bars over matrices we get the matrix dif-
ferential equation 
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.

+−+= −1  (45) 

with the initial condition 

0)0( PP =  (46) 

The last remaining step is to derive the state esti-
mation equation given by formula (14). Placing the 
below given relation (47), 
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Figure 3. Variables used for describing ship motion.  

 
derived from equation (16), into formula (14) makes 
it possible to arrive at the following form of  equa-
tion (17) 

( )1111 ˆˆˆ −−−− −+= kkkkkkkk xFHyLxFx  (48) 

Here again, the matrix Fk−1 is approximated by 
formula (4) 

( )tt kkkkkkkkk ∆−−+∆+= −−−− 1111 ˆˆˆˆˆ xAHxHyLxAxx (49) 

After removing all terms containing ∆t of an or-
der higher than one from equation (50) and observ-
ing that Lk = L∆t, the equation takes the form 

( )111 ˆˆˆˆ −−− −∆+∆=− kkkkkk tt xHyLxAxx  (50) 

Finally, after dividing by ∆t, 

( )11
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∆
−

kkkk
kk

t
xHyLxA

xx  (51) 

reducing by ∆t→0, and removing all subscripts and 
bars over variable matrices we get the matrix differ-
ential equation of continuous state estimation 

( )xCyLxAx ˆˆˆ −+=  (52) 

Equations (39), (45), (46) and (52) compose the 
continuous Kalman filter. They are shown in Fig. 1. 
Figure 1(a) shows a block diagram illustrating the 
principle of operation of the continuous Kalman fil-
ter. The input signal for the filter is the measured 
noised output signal of the object. Figure 1(b) pre-
sents the method of determining the optimal amplifi-
cation L. 

5 APPLYING THE KALMAN-BUCY FILTER 
FOR THE ESTIMATION OF SHIP MOTION 
VELOCITIES 

The algorithm of the continuous Kalman-Bucy filter 
described in the previous section was applied for  the 

estimation of ship motion parameters. The tests were 
performed on the training ship Blue Lady owned by 
the Foundation of Sailing Safety and Environment 
Protection in Ilawa. Blue Lady is the physical model, 
in scale 1:24, of a tanker designed for transporting 
crude oil. The overall length of Blue Lady is 
L = 13.75 m, the width is B = 2.38 m, and the mass 
is m = 22.934x103 [kg]. 

The ship sailing on the surface of the water region 
is considered a rigid body moving in three degrees 
of freedom. The ship position (x, y) and the ship 
course ψ  in the horizontal plane with respect to the 
stationary, inertial coordinate system {xe, ye} are 
represented by the vector η=[x,y,ψ]T. The second 
coordinate system {xb, yb} is connected with the 
moving ship and fixed to its centre of gravity. Ve-
locities of the moving ship are represented by the 
vector ν=[u,v,r]T, where u is the longitudinal ship 
velocity (surge), v is the lateral velocity (sway), and 
r is the angular speed (yaw). These variables are 
shown in Fig. 3. 

The position coordinates (x, y) are measured by 
DGPS (Differential Global Positioning System), 
while the ship courseψ is measured by the gyro-
compass. These three measured state variables are 
collected in the vector η=[x,y,ψ]T. The three remain-
ing state variables, composing the vector  ν=[u,v,r]T, 
are to be estimated. 

The ship motion equations simply express the 
Newton’s second law of motion in three degrees of 
freedom. These equations, formulated in the station-
ary coordinate system connected with the map of the 
water region, have the following form (Clarke, 
2003). 

Xxm =  (53) 

Yym =  (54) 

NI z =ψ  (55) 
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Figure 4. Simulation study: actual position with estimate and actual (black) and estimated (blue) velocity u in surge.  
Left-hand column – discrete Kalman filter, right-hand column – continuous Kalman-Bucy filter. 

 
where X and Y are forces acting along the xb and yb 
axes, respectively, N is the torque, m is the mass of 
the ship, and Iz is the moment of inertia along the 
lateral axis directed downwards. 

The above differential equations can be presented 
as three sets of dynamic equations having the fol-
lowing general form 

BuAxx +=  (56) 

Cx=y  (57) 

For each degree of freedom the matrices A, B, C 
are identical and take the form 
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while the state vectors for consecutive states of free-
dom are the following 
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where ux = dx/dt, vy = dy/dt, r = dψ/dt are velocities 
in the stationary coordinate system. The velocity 
vector ν=[u,v,r]T expressed in the moving coordinate 
system {xb, yb}, can be calculated based on the ve-
locities determined in the stationary coordinate sys-
tem {xe, ye} and making use of the relation 
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The continuous Kalman-Bucy filter implemented 
for estimating the motion parameters on the training 
ship Blue Lady worked based on the system and 
equations shown in Fig. 2. Moreover, for the pur-
poses of the algorithm of the Kalman-Bucy filter, 
relevant values of the coefficients in the matrices   
G, Q and R were selected. For the first and second 
degree of freedom the following values were adopt-
ed: 









==

01.00
01

yx GG , 







==

2.00
01.0

yx QQ , 

 01.0== yx RR  (61) 

while for the third degree of freedom: 









=

01.00
02.0

ψG , 







=

10
01

ψQ , 1.0=ψR   (62) 

The covariances of the position coordinates 
measured by GPS were equal to Rx = Ry = 0.01while 
the covariances of the ship course measurement 
were equal to Rψ = 0.1 and were determined based 
on the experimental tests done on the training ship 
Blue Lady. 
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Figure 5. Simulation study: actual position with estimate and actual (black) and estimated (blue) velocity v in sway.  
Left-hand column – discrete Kalman filter, right-hand column – continuous Kalman-Bucy filter. 

 

 
 

Figure 6. Simulation study: actual heading angle ψ  with estimate and actual (black) and estimated (blue) angular rate r in yaw.  
Left-hand column – discrete Kalman filter, right-hand column – continuous Kalman-Bucy filter. 
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Figure 7. Experimental data: measured position with estimate and estimated velocity u in surge.  
Left-hand column – discrete Kalman filter, right-hand column – continuous Kalman-Bucy filter. 

 

 
 

Figure 8. Experimental data: measured position with estimate and estimated velocity v in sway.  
Left-hand column – discrete Kalman filter, right-hand column – continuous Kalman-Bucy filter. 
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Figure 9. Experimental data: measured heading angle ψ  with estimate and estimated angular rate r in yaw.  
Left-hand column – discrete Kalman filter, right-hand column – continuous Kalman-Bucy filter. 

 
Initially, the simulation investigations were per-

formed in the calculating environment 
Matlab/Simulink based on the mathematical model 
of the training ship Blue Lady, described in detail by 
(Gierusz, 2001; Gierusz. 2005). These investigations 
were performed at the presence of measurement 
noises, which were added to the positions and head-
ing measurements in simulations and at the presence 
of the external disturbances. In simulation study as-
sumed that on ship was acting wind with average 
speed equal 2 m/s and in direction 0 degrees. The 
simulation results are shown in Figs. 4-6. The actual 
and estimated velocities in surge, sway and yaw are 
shown in the bottom of plots. 

After simulation tests, the algorithm of the dis-
crete Kalman-Bucy filter was implemented on the 
training ship Blue Lady sailing on the lake Silm near 
Ilawa. The performed experimental tests aimed at 
testing the quality of filter operation and its re-
sistance to disturbances. In order to provide good 
opportunities for comparison, the tests of the train-
ing ship Blue Lady were also performed using the 
discrete Kalman filter described by Tomera 
(Tomera, 2010). 

The results recorded in the experimental tests are 
shown in Figs. 7 − 9. The diagrams in the left-hand 
column present the results obtained for the discrete 
Kalman filter while the time histories in the right-

hand column refer to the investigations performed 
using the continuous  Kalman-Bucy filter. 

The presented diagrams reveal that the estimates 
of the position coordinates and the course are identi-
cal as the measured values. On the other hand, the 
correspondence between the time-histories of the es-
timated velocities is much worse, as their curves are 
not smooth and are burdened with relatively large 
errors. All inaccuracies in the measured values are 
reflected in the estimated velocity values. 

6 REMARKS AND CONCLUSIONS 

The article describes the method of deriving the al-
gorithm of the continuous Kalman-Bucy filter based 
on the discrete Kalman filter. This algorithm does 
not take into account the model of ship dynamics, 
but only bases on the position coordinates x, y meas-
ured by GPS and the ship course angle ψ measured 
by the gyro-compass. The estimates of ship position 
coordinates x, y and ship course angle ψ shown in 
Figs. 7, 8 and 9 well correspond to the measured 
values. The correspondence is worse for velocity es-
timates determined for the moving coordinate sys-
tem fixed to the ship and collected in the vector 
ν=[u,v,r]T. The determined time-histories of these 
velocities are burdened with a noise of relatively 
high level, lower for the Kalman-Bucy controller 
than for the discrete Kalman filter. The shapes of the 
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velocity estimate curves indicate that they need addi-
tional smoothing. 

Additional difficulties in velocity estimation may 
appear when the instantaneous ship position coordi-
nates measured by GPS reveal rapid changes. In this 
situation additional oscillations can be observed in 
the estimated velocities. Fortunately, in the sample 
results of investigations shown in Figs. 7 through 9 
these difficulties were not recorded. 
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