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ABSTRACT: The paper presents new results on the inherent properties of ship linear dynamics. The focus is
made on the second-order formulation for the uncoupled equations of sway and yaw, and on their unique,
unknown performance within the zigzag test. From the standpoint of application to full-mission model
tuning, a very important loop in the drift-yaw domain of the zigzag behaviour, as governed by the rudder rate
dependent time constants (of T3-type), is brought to the light. This and some other dependent effects, like
overshoot angle performance, are likely to be lost, if the well-known, rather ambiguous, first-order

approximations are deployed.

1 INTRODUCTION

The linear dynamic models of first- or higher-order,
not only in the field of ship steering or manoeuvring,
have been inspiring researchers for decades, and still
draw our attention nowadays. Despite some
drawbacks, they are simple, can often provide an
efficient analytical solution that can be easily studied
for exact and direct inherent relationships within the
investigated dynamics, mostly constituting a more or
less nonlinear problem. The dynamic models of ship
manoeuvring can be of hydrodynamic type (with
parameters as hydrodynamic derivatives) or the
equivalent input-output (transfer function) type. The
parameters of the latter type cover various time
constants and amplification ratios.

With regard to the coupled ship sway (drift) and
yaw motions in the linear formulation, they can be
well either described by a single two-dimensional
linear model of first-order (as set of two coupled
linear ODEs of first-order) or by two uncoupled one-
dimensional models of second-order for each motion.

We cautiously omit here a discussion on the validity
range of this linearity.

Over the years, various identification techniques
(including system identification) for parameters of the
two hydrodynamic and input-output types of models,
especially in their linear form and for the combined
sway-yaw motions, as of concern in the present paper,
were developed and are still under improvement
efforts — e.g. [Kallstrom, 1979], [Holzhuter, 1990],
[Terada, 2015]. The ship motion phenomenon and
measurement experiments are actually complicated.
The last word has not been said yet. Although the
conversion of hydrodynamic description to transfer
function description, and analysis of dynamic systems
in the latter, convenient form, is firmly established in
literature, e.g. [Nomoto et al., 1957], [Lisowski, 1981],
[Dudziak, 2008], the inverse transformation is
practically missing.

Within the full-mission ship handling simulator
mathematical models, very sophisticated and
nonlinear, the so-called four-quadrant operation and
lookup-table data storage is standard requirement for
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modelling the hull, propeller, and rudder
hydrodynamics - e.g. [Lebedeva et al, 2006],
[Artyszuk, 2013] , [Sutulo, Guedes Soares, 2014]. With
regard to hull and rudder forces in particular, we
focus on arbitrary combinations of drift angle and
dimensionless yaw velocity, as their arguments, and
consider appropriate plots/curves in the drift-yaw
plane. Based on recorded motions, an attempt is made
to efficiently fix the values of hydrodynamic
coefficients — the nodes of lookup-tables. In this
context, a special interest is being placed on designing
high quality manoeuvring trials, such that bring a lot
of information for comprehensive and unique
calibration of the math model. In this process, we are
also looking for analytical techniques of those trials,
similar in type to that of [Nomoto, 1960], to
effortlessly and quickly arrive at some parameters,
that can be next transformed to the background 'full-
mission' hydrodynamic model.

The existing zigzag test also seems to provide
necessary data. However, the most frequently used
first-order Nomoto approximation for uncoupled
motions, though originally introduced and discussed
for yaw motion [Nomoto et al., 1957], proves to be
inadequate when we want to revert back to the basic
hydrodynamics. In the latter aspect, at least for zigzag
test, we are thus forced to fully maintain the original
second-order formulation of uncoupled motions. Very
crucial parameters of this representation are the so-
called Ts-time constants, derived from and
responsible for the essential interaction between sway
and yaw. These constants surprisingly lack a proper
appreciation in the past research. A tribute shall here
be passed to [Norrbin, 1996], who as one of not many
tried to consider some aspects of Ts problem in
respect of ship hydrodynamics.

Of course, a big challenge is here to develop a
deterministic, curve fitting method of zigzag data for
this dual (sway & yaw) second-order model, but it is
out of the scope of the present study. Instead of, some
new facts on sensitivity effects of Ts are revealed,
which shall be helpful in designing and implementing
such an identification method.

This  conceptual, theoretic paper, though
supported by a numerical analysis, is subdivided into
several chapters. We start from recalling and
discussing the basic linear system of differential
equations for sway and yaw manoeuvring motions,
its hydrodynamic structure and the second-order
uncoupled version. The most innovative yet very
important and meaningful results, though simple in
methodology, are presented in the next three
chapters. Therein starting from deriving the inverse
formulas for the second-order models, by which the
transfer function parameters are converted to
hydrodynamic coefficients. Based on them, some
investigations are next conducted on the great role of
the mentioned so-called T3 time constants in transfer
function description. Finally, a rational proposal
follows on how to fix the detailed hydrodynamic
coefficients, if the aggregate hydrodynamic
coefficients, as obtained from the mentioned inverse
formulas, are known.
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2 2D LINEAR MODEL OF SHIP MANOEUVRING

The coupled linear ordinary differential equations of
the first-order with constant coefficients for sway and
yaw velocities of a ship are worldwide known in the
field of ship manoeuvring and ship control
engineering. They constitute a basis for deriving the
very famous direct (uncoupled, or independent of
sway) the 2" order linear differential equation of yaw
motion, traditionally referred to as the 2" order
Nomoto model. This can be next approximated to the
first-order linear equation of yaw, the so-called 1¢
order Nomoto model [Nomoto et al., 1957], [Dudziak,
2008].

The stated above models can be formulated in
dimensional, i.e. absolute units of velocities and time,
or just made dimensionless. The dimensionless time,
by rule, is expressing the advancing time counted in
units of time that a ship requires to cover its own
length and is fully equivalent to dimensionless
distance, i.e. the distance travelled by a ship as rated
in her own length units.

The dimensionless quantities are much better in
analysis, since they provide universal steering
characteristics, as independent of the ship's
size/length and forward (surge) velocity. One of
essential assumptions underlying the linear model,
much stronger in the fully dimensionless case, is the
constant surge velocity.

The adopted notation of coefficients in the coupled
equations for sway and yaw varies from author to
author, where we may generally distinguish two
styles - the western (international) and the eastern
(Russian) one. For the purpose of the present study,
however, the following is applied:

dﬂ’ =a,f+bw',+Cc,0
40 M
ds'z =a,f+b,0,+c,8

where:

B - drift angle [rad] at ship's origin, positive when
laterally moving to port, f= arctan<rl vy / V, ), vx and
vy - ship's surge and sway velocities,

@', -relative yaw velocity [-], positive for turning to
starboard, @', =w,L/V, where: @: - yaw velocity, L -
ship's length, v - total linear velocity (as resulted from
vx and vy),

s' - dimensionless time/distance [-], s'=s/L=t-v/L,
in which: ¢ - time or s - distance,

0 - rudder angle in [rad] as input control, positive
when to port.

Additionally, one can write @, =dy / dt, where v
is the heading angle.

3 STRUCTURING THE MODEL

Except for c1 and c2, as solely connected with the
rudder hydrodynamic force, all other coefficients in
(1) combine the effects from both a ship's hull ('H')
and rudder ('R'). In addition, the coefficient b1 has a
very important contribution from the centrifugal force



('C") involved in the development of drift angle. All
the coefficients can easily be derived (or
approximated) from a detailed description of
hydrodynamic forces laid down at a core of the
mentioned full mission models. The core mainly
consists in storing relevant relationships in the form
of lookup-tables. Around a certain point, those can
make up the usual analytical form, known from other
simpler models, and even be reduced to linear model.
A practical example of such relationships, which can
be suited to any existing approach was presented in
[Artyszuk, 2013]. Those are quoted, rearranged, and
simplified to meet the definition of the six coefficients
in (1) - ai, bi, ci, where i =1, 2 - as follows:

a, =ay +a;z, b =by +br +b¢ (2a)
a, =ayy +a,z, by =byy +bye (2b)
L 1
%38, 180
C
ay=—2Y'y——, where Y, >0 3)
1+k,, T
R CRy

, where Cp >0 and (4)

a., =—
B T4k, (1-w) 1+ ey,

-@(l+aH)/
V4

RZO'SELAVR (I—W)2(1+cTh)w
a

B a=0°

where a, >0 (5)
L1
05—
B CB ' '
N = Y',, where Y',>0 (mostly for
1+Ky,
modern ships, of skeg-shaped stern), (6)

R CRy ’7X'Reff

b —— —_a x_ . ,where X'y <0(7)
IR 1+k, (l—W) ,T'CTh AR X et Reff
1+k
b =— (8)
1+k,,
R
C == )
1+Kky,
L1
%38 180
C
A,y ='27'2*3N'b'—, where N', >0 (10)
r Z+r 66 /4
a, R Cry , 1+ky, Ay X e (11)

= X =—
2 2 Reff 2 2
r2+rZ (1-w)/1+cq, r24r

L1
O.SEf
CB ' '
b,y T N',, where N' <0 (12)
PR
R Cry " ~X'Ret 1+k 13
b.. = X = 2 g g2 (13)
e (1-w)T4cy, o r2arg R
R 1+k,,
Cz - 12 12 X’Reﬁ - 12 12 CIX’Reﬁ (14)
r;+rge r;+rg

Particular dimensionless elements of the above
expressions (3) to (14) can be explained as below:

hull-related items:

L/B - ship's hull length-to-beam ratio,

Cg - block coefficient,

k;, -surge added mass coefficient, k;; =m, /m,
where m;; - surge added mass, m - ship's
displacement (mass),

k,, -sway added mass coefficient, k,, =m, /m,
where Mm,, - sway added mass,

r', -ship's  gyration  dimensionless  radius,
r,=J,/(m?), where J,- ship's mass moment of
inertia,

s -added gyration dimensionless radius, that is
' =Mg/(mL?), where mg - added moment of
inertia,

Yy, Yy, Ny, N', -hull hydrodynamic
(dimensionless) derivatives; Y', and N'y, in view
of the conversion factor 180/7 in (3) and (10), are
computed with reference to fin [°]; N',is assumed
to include/integrate the Munk moment contribution,
as usually seen while reporting experimental results.

rudder-related items:
Az -rudder area ratio, A'g =Ag/ (LT), where: Ar -

rudder area, LT - ship's length-draft product,
W - propeller wake fraction,

Cq, - propeller thrust loading coefficient,

8 ky(J
= T( ), where | - advance ratio, kr - thrust
r J?
coefficient,
ac, (a,cq) . . o
67 - rudder lift coefficient derivative
a
a=0°

vs. flow incidence angle of°] for a given ¢,  taken at
a=0°; c is defined herein with regard to propeller race
velocity - see (5),

ay
rudder force due to hull-rudder interaction,
Cr

- empirical amplification factor of (effective)

y -empirical multiplier (21 or <I) to the rudder

geometric local drift angle to arrive at its effective
local drift angle; cr=1 means equality of both;
furthermore, it is indirectly assumed that a ship's drift
and yaw have equal effects on this effective local drift,

X'grett - effective rudder longitudinal position (the
effective location of the rudder force), dimensionless

in ship's length units; for x'rff=-0.5 we get the
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nominal/physical position of the rudder force at aft
perpendicular; as supplementing the 'action' of an,
this coefficient also arises from hull-rudder
interaction but in terms of the effective rudder force
arm, x'regr> —0.5 or even x'rey < —0.5 are allowed.

All the terms in (3) to (14), except for the seven
mostly uncertain and empirically determined
coefficients - 4 related to hull (Y's, Y'v, N's, N'v) and 3
associated with rudder (an, cry, x'ref) - can be referred
to as the formal (reference, nominal) quantities. Their
values are to be established by means of usually
available geometric or hydrodynamic prediction
methods. Any uncertainty/bias within them is
allowed since the 'final' accurateness of forces and
moments is to be reached through tuning of the
aforementioned 7 dimensionless empirical
coefficients. At this stage of research, the three rudder
parameters are considered constants, however,
according to this author's past investigations, a certain
functional relationship with motion and control
variables seems quite likely.

4 DECOUPLED CLASSICAL DRIFT AND YAW
EQUATIONS

The basic hydrodynamic equations (1) impose
problems when someone wants to relate a ship's
kinematic response for a given control input (in terms
of rudder angle) to their coefficients. The
improvement goals using such efforts may be
multiple — from ship design, through ship steering
control, to full mission simulator performance in
nautical studies, like in our case. In this context, and
in view of transformations proposed in the next
section, it seems necessary to recall and briefly
discuss the well-known classical relationships
relevant to the uncoupled equations.

The set of linear equations of the first-order (1) can
easily be transformed to fully equivalent time
responses of drift and yaw, being the second-order
linear equations of particular motions:

d? d ds
T,T, ds—f+ (T, +T, )d—£+ B= Kb(6+T3b ds'j (15)
d’w', do', do
TszdST+(T1+T2) i +a)Z=KW[5+T3WdS'j (16)

Although the drift equation (15) is rather of less
interest and seldom challenged in literature, it is
obviously very crucial for keeping uniqueness and
identification of the basic set (1). Particular definitions
of time constants (marked with 'T" symbols) and
amplification constants ('K’ notation), both of practical
response interpretation, are summarised below:

1

(17)
O.S(a1 +b, Jr\/(a1 +h, ) —4(a,b, —a,b, ))

T, =—
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1

T, =- (18)
O.S(a1 +h, —\/(a1 +h, ) —4(a,b, —a,b, ))
c
Ty =—""—+ (19)
—a,c, +a,C,
c
T, =— 1 20
7 _b,c, +bc, (20)
—a,Cc, +a,C
K — 1%2 2¥1 21
" a,b, —a,b, 1
-b,c, +b,c
K, = 2C; +0,Cy (22)
a,b, —a,h,

The time constants T: and T2 given above
explicitly and appearing identically in both equations
(15) and (16), are sometimes quoted in a more
convenient, equivalent way, namely implicitly in the
form of their product and sum:

1
TT,=— (23)
v ab, —ayb,
a, +b
T 4T, = 2722 (g +b,)T,T 24
= an (a, +b, T,T, (24)

All the expressions (17) to (22), particularly when
applying (23) and (24), have a direct, practical
meaning while studying the time response of a ship to
certain rudder actions.

T3 and Tsw, called hereafter as Ts-type constants,
are connected with rudder (deflection) rate — its sign
and magnitude. They can oppose or magnify the
effect of rudder angle.

For a dynamically (directionally) stable ship there
holds a practical dual condition (see e.g. [Dudziak,
2008]):

TT,>0 (25)

u>O or T,+T, >0 in view of (25)

26
TT, o)

which lead to the basic stability criterion, in which T:
and T2 should be both positive. These inequalities are
satisfied when:

a,b, —a,b, >0 (27)

a,+b, <0 (28)



but with regard to (3), (4) - ensuring m<0 - and (12),
(13) - leading to b2<0 - the stability condition for
marine vessels can be solely reduced to equation (27).
However, the magnitudes for both a1 and b2 have their
direct influence on the first term in (27) and thus on
the stability.

The time-domain simulation of response to any
rudder action is symmetrical versus T1 and T2 in that
if we interchange their values in place of one another
there will be no change in response. In addition, T:
and T2 calculated by the expression (17) and (18)
accordingly always provide the case Ti>T: (even
T1>>T>) for a stable ship.

In summary, we have a set of 6 new coefficients (of
T-, and K-class) instead of the original set (of a-, b-,
and c-class) in equations (1). Both sets are invertible to
each other as being shown next. However, as
mentioned before, the inverse problem of getting the
original coefficients of (1) is seldom undertaken in
research. Moreover, the identification procedures of
T- and K-class constants based on ship motion
response do not exist for the full second-order linear
equations. This is even true in case of the single
equation for yaw motion (16).

Such algorithms mostly deal with the reduced (of
lower amount of information), first-order equations of
two unknown parameters, and stable ships. The
widely used here zigzag of 10°/10° type or of another
type, but with finite yaw response, often seems to be
excessive to establish a linear yaw model for an
unstable ship. In that, the identification procedure
itself (of a certain integral approximation/fitting
towards a linear model), as redefined in [Nomoto,
1960], and the used actually 'overlinearized' zigzag
response due to the assumed relatively large variation
of nominal rudder and heading (even of only 10°
magnitude), nearly always leads to response models
of more or less but stable ships.

5 DERIVATION OF INVERSE FORMULAS

The mentioned inverse conversion of the six T-, and
K-class constants, if such are known for both drift and
yaw, to the basic six hydrodynamic coefficients (of a-,
b-, and c-class) in (1) is presented below in condense,
natural order:

_ T,T, -Ty (Tl +T, _T3w)

(29)
1 (Typ ~Tau T, T,
b, = Ky =TT, +Ty (T +T,-Ty) (30)
KW (T3b _T3W )TITZ
a, = Ky TiT, ~T3 (T 4T, -Ta) (31)
Ky (Ty ~Tau T T,
b, = -TiTL, +Ty, (Tl +T, _st) (32)

(T3b - T3W )TITZ

T, K

Cl — 3b ™ b (33)
T1T2
T3WKW

c, = (34)
T1T2

where a1 and b2 are solely based on the time constants.
The details of those derivations are as follows:

Step 1

After combining the four equations (19) to (22)
with the relationship (23) we have:

c, -T,T
Ty =212 35
3w KW ( )
¢, -T,T
Ty =—""12 36
3 K, (36)

which lead straight to (33) and (34).
Step 2

Substituting the just received definitions of c1 and
2, stored in (27) and (28), to equations (21) and (22),
and again deploying (23), we arrive at:

-T,,K

wkyd + T Kpa, =K, (37)

T3 Kuby =Ty Kby =K, (38)

which shall be next coupled with (23) and (24), as
uniquely representing (17) and (18), but written in
such a form:

1
ab, —a,b, = TT (39)
112
T, +T
—(al +b2): 'll'-{'_l' 2 (40)
112

Hence a set of four, apparently nonlinear algebraic
equations - (37) to (40) — is being received, that
shall be solved against the missing unknowns: a1, a2,
b1, b2. Speaking precisely, equation (39) is the only
nonlinear' within this set, but this nonlinearity' can
be resolved into elementary, linear relationships after
taking advantage of the other three equations. At first
glance, however, the required transformations for this
task are not so clear.

The solution of the set (37) to (40) can be obtained
analytically. For example, let's determine a2 from (37)
and b2 from (38) and then substitute both to (39) and
(40). The latter two equations shall now be solved for
the unknowns a1 and b1. Using these values, the final
values of a2 and b2 are provided after returning back
to (37) and (38).
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Not only the final relationships (29) to (34) are
useful, but such are also the intermediate equations
(37) to (40), especially while seeking for mutual
relationships between the hydrodynamic coefficients
in arbitrary groups, when some of them have already
been fixed.

Of major importance also appears a sensitivity of
the results for a- and b-class coefficients — see (29) to
(32) — to the accuracy of estimating the time constants
related to rudder rate: Ta and Tsw, particularly to their
difference. The value close to zero in the denominator
of these expressions implies very high values of the
parameters: a1, az, b, b2.

6 ROLE OF T3z AND Tsw IN SHIP
HYDRODYNAMICS - NUMERICAL EXAMPLE

Exemplary values of particular data in formulas (3) to
(14) for a hypothetical ship, without any claim to be
exact, are presented in Tab. 1, though to some extent
they originate in the author's previous full-scale
identification studies and lookup-table modelling on
a small chemical tanker [Artyszuk, 2013]. The
dimensional values of ship's length (constant) and her
forward speed (variable as specific to a given
manoeuvre) are necessary to convert the rudder rate
from the absolute dd/dt in [°/s] to ddds'[°/-]. Except
as explicitly stated, the rudder rate of 2.5°/s has been
chosen that is slightly above the minimum
international requirement for steering gear (2.3°/s).

The individual contributions to the coefficients in
(1), classified according to the source of forces, see
(2a) and (2b), are collected in Tab. 2. Herein, the
rudder has up to 30% significant contribution in all
terms, which is sometimes forgotten, when using a
simple rudder effect as coupled only with the helm
angle . Practically, the sign of the rudder
contribution, as compared to hull, is only opposite for
the drift-related yaw moment — refer to a2# and a2z in
Tab. 2.

The final values of the direct (a-, b-, and c¢-)
constants in (1), in parallel with T- and K-constants,
are demonstrated in the upper part of Tab. 3. This
condition of the ship is referred to as the reference
case. The lower part of Tab. 3 contains the influence of
the variation of constants T3 and T3 (rather small in
magnitude, at least, as compared to Ti) on the
computation of a- and b-, c- constants while keeping
the values of the other T- and K-type parameters. The
huge sensitivity of the steering dynamic model to the
considered Ts-type constants is here evident. They
almost affect all basic parameters of the model in (1),
sometimes even changing the sign.
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Table 1. Elementary input data (dimensionless by default,
except as given explicitly)

hull rudder

L[m] 97.4 AR 0.0177

v [m/s] 7.272 w 0.326

L/ v[s] 13.39 e 2.127
aL/Ox @ cmh 0.0385

L/B 5.867

CB 0.761 an 0.6

'z 0.247 CRy 1.0

ki 0.056 X'Reff -0.5

k22 1.004

7'66 0.225

Y's 0.0043

Y'o 0.0260

N's 0.0024

N'w -0.0630

Table 2. Final contributions to constants of equations by
their nature (the reference case)

aH bin acH bon

air bir azr b2r
bic

-0.479 -0.050 4.843 -2.182

-0.144 -0.072 -1.291 -0.646
0.527

Table 3. Constants of equations

CASE Th JED Kb

- reference T2 T3w Kw
10.491 0.154 -3.464
0.298 0.983 -4.896
m b c1
a2 b2 2
-0.622 0.405 -0.171
3.552 -2.827 -1.539

Below given the a-, b- & c-constants
in same order as above

CASE - Tab -0.046 -0.037 -0.342
variation 4.366 -3.403 -1.539
Tab =0.309
CASE - Tsw -1.458 0.996 -0.171
variation 2.59%4 -1.992 -0.770
Tsw =0.492
The simulation of standard 10°/10° zigzag

manoeuvre is performed in the subsequent Figs. 1 to
9. The 'REF' curves here correspond to the reference
case, see Tab. 3. This rather simple test, as compared
to others, brings comprehensive information on ship
behaviour, especially if we consider both drift and
yaw together of varying signs All the computations
have been made by direct integration of (1), including
the differential equation for heading angle, using the
Euler method (still powerful for this specific problem)
with dimensionless time step 4s'=0.05.

Figs. 1 and 2 present the heading variation, helm
angle and the both kinematical variables as directly
governed by our dynamic equations — drift angle and
dimensionless rate of turn. The manoeuvre itself for
our ship essentially lies within transient states
because the range of kinematics shown in Fig. 2 is
much lower than the steady-state values — fo=34.6°
for the drift angle (=Kvd) and w':0=0.854 for the
relative yaw velocity (= Kwov).



One of the most noticeable features of the second-
order linear formulation of uncoupled steering
dynamics with regard to drift and yaw, see (15) and
(16), as equivalent to the full set of (1), is a partly
independent change of drift angle and dimensionless
yaw velocity. Moreover, the increase/decrease in yaw
is much higher (‘of low inertia') than of the drift angle
— Fig. 2 and 5. For zigzag manoeuvre, such a
behaviour produces - Fig. 3 and 4 - a certain,
closed loop of the mutual relationship @':=@'(f) in the
plane of the domain of the dimensionless hull
hydrodynamic forces, being functions of just drift
angle and dimensionless yaw velocity. The wider the
loop, the better for the fitting or validation of the hull
force response surface as a 3D representation of two-
variable relationship [Artyszuk, 2013]. The stated
herein performances are not exhibited at all by the so-
called first-order uncoupled Nomoto models, for
certain reasons, much more frequently used than the
former, original ~ ones. = These  first-order
approximations are based on the criterion proposed in
[Nomoto et al., 1957] and quoted below:

41
ds' (41)

d 1
T, TT) t @, =K, where T, =T, +T,-Ty, (42)
SV
Since T= and Tsw are rather small, Tv of (41) is quite
close in magnitude to Tw in (42).

For detailed comparison, the output of the above
1t order models is also included in our analysis and
marked by 'Ist ORD' in Figs. 3 to 6, and 8. However,
in the case of these 1storder models, the derivatives of
drift angle and yaw velocity in Figs. 5, 6, and 8, and
the resulting direct values of these two variables in
Figs. 3 and 4, are considered only for the most
representative, initial period of the zigzag manoeuvre
with the first rudder execute. The rudder is then
simplistically kept in this position (the counter-rudder
is no longer applied), that enables a very efficient
analytical solution of (41) and (42), which is adopted.
Two versions of rudder control are studied for the 1
order models - the infinitely rapid (step) movement,
as the limiting case, denoted by '6=const' and cyan-
coloured, and the trapezoidal steering (‘6=var’, brown
color), with the same rudder rate as used in
computing  the  corresponding 'second-order’
response.

The corresponding fw- curve for the first-order
models is practically an open, straight line inclined an
angle arising from the ratio of steady state values of
drift angle and dimensionless yaw velocity, or just
directly from Ku/Kv. Figs. 3 and 4 present the 1st-
quadrant section of this curve, which is quite
independent of the model version used — with infinite
or with finite rudder rate — and of the rudder alternate
control strategy like in zigzag test. Combining both
models (41) and (42), this curve is defined by:

) ﬂJTn/Tw

(43)
Py

Vo
W, =0, 1_(

It thus means that the @'-=a'(f) relationship of the
1¢t order uncoupled models, (41) and (42), loses a lot
of essential information from the original background
hydrodynamics expressed by (15) and (16), or just by
(1). Moreover, in the latter case, the derivative of yaw
velocity in Fig. 5 experiences a significant peak that
is damped for the 1% order approximation, which in
consequence leads to quite different overshoot angles
and oscillation periods in the heading diagram.
However, this heading performance for the 1+ order
uncoupled equations, has not been shown in the
paper.

When reducing the rudder rate from the reference
2.5°/s to the abstract value of 0.5°/s, one can achieve
an efficient convergence of the second-order
uncoupled dynamics to the first-order one because of
the relatively low influence of the Tx» and Tsw
constants, which shall be rather obvious — see Figs. 6
and 7. However, the derivative of yaw in the second-
order response still displays the initial jump that is
responsible for the occurrence of a loop around the
straight line section of the first-order model in the f
- domain.

Furthermore, besides the case of simultaneously
very low T and Ts, the second-order uncoupled
dynamics also converges to first-order one for Ta
close to Tsw, independent of their absolute values. Of
course, in view of (29) to (34), this gives exaggerated,
almost enormous values for a-, b-, c-constants.

T3 and T3 have great impact (being much higher
for Tsw) on flattening or spreading of the S plot in
Figs. 3 and 4. The corresponding coefficients of (1) for
the tested variations in those time constants were
quoted in Tab. 3. The constant T3 does not affect the
yaw behaviour at all. The same should obviously
happen with regard to the Tsw variation as expected to
completely preserve the drift angle image. This is
demonstrated in Fig. 8 and can even be proved
analytically. The heading accompanying the
reduction of Tsw has already been incorporated in the
initial Fig. 1. However, since the rudder control in the
zigzag manoeuvre is essentially heading- or yaw-
based, the preservation of the drift angle for the
varying Tsw is being held only within the initial period
of the test, i.e. up to the first counter-rudder.
Thereafter, the drift angle differential equation is
being solved with the relative yaw velocities as not
corresponding’ to the actual drift angles and helm
angles. Fig. 9 shows this situation. In general, T3
implies a horizontal expansion/contraction in the loop
of the @, while Ts» acts more universally, namely
changing the loop in both direction - see again Figs. 3
and 4. Increasing Ts», which is however not shown in
the chart of Fig. 4, leads to the inverse scaling of the
@=(p) loop, such that we have a significant contraction
along f-axis and a large expansion in the direction of
w'=-axis.
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7 PROPOSED DETERMINATION OF DETAILED
HYDRODYNAMIC PARAMETERS

If we move from the T- and K-class constants, six in
total, determined through the analysis of kinematic
response to a certain rudder control, to the six a- to c-
class constants, by means of the inverse formulas (29)
to (34), we can attempt to obtain the detailed
parameters underlying the latter constants. In the
‘Structuring the model' section seven natural
unknowns — {Y's, Y's, N's, N's} and {an, cry, x'reff} — were
specified in this context. However, we now arrive at
an indeterminate (overparameterised) set of algebraic
equations because of too many unknowns in relation
to the number of equations. One of the parameters
should be thus fixed. Based on available model test
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data and/or other methods, any of those 7 coefficients
could be selected for this purpose. In view of the
potential estimation uncertainty, such selection will
have an impact on the model validity while
simulating specific manoeuvres.

In view of our derivations, the terms c¢1 and c2
responsible for the effect of helm angle &, see (5), (9)
and (14), can be resolved into:

G zcl(aH)=(1+aH)' f, (44)

C, =¢C, (aH s X' et ): (1 +ay )X'Reff -, (45)

where f1 and f» have been introduced to reflect the rest
part of the corresponding expressions.

Hence, at the first stage we directly receive an from
(44), and next x'rg from (45), and come to the
following 4 equations with 5 unknowns:

a =Yy fi, +Cqy - f3b(aH)

by =Yy faa +Cry - f4b(aH s X' geft )+ bic (46)
a, = N'y-fs, +Cqy - fsb(aH  X'geft )

b, = N'y-fea + Cry - féb(aH s X et )

where similarly the
appropriate relationships.

In the light of the state-of-the-art in ship
manoeuvring hydrodynamics, it is suggested to fix
one of the drift-dependent hull terms in (46) - Y' or
N's - as relatively well worked out and published in
the literature.

f-symbols represent the

Of course, any uncertainty in estimating the
rudder parameters will be 'corrected' by relevant
recalibration of the hull parameters (and vice versa)
due to the same physics or dependence involved in
the background expressions. However, this will be
paid for by errors in simulation when, for example, a
ship is subject to manoeuvring without rudder action,
like in wind, in which case the hull effects dominate.

8 CONCLUSIONS

It seems that existing ground-related ship's
positioning (satellite) systems and collected data
during full-scale sea manoeuvring trials are still
insufficient in order to conduct a reliable
identification of the uncoupled second-order (‘full’)
linear dynamics, as aimed in the paper. This is also
true, when we apply a certain amount of post-
processing, as connected with filtering/smoothing the
measurements and eliminating the environmental
disturbances. In particular, the problem lies in a low
adequacy/reliability of the indirectly acquired run of
the drift angle, which is often subject to significant
water current effects. If the very sensitive Ts-type
constants are not accurately established, then we can
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lose the physical sense of the final hydrodynamic
derivatives. Herein, a certain role herein is obviously
played by a manoeuvring test (control input) selected.

To some extent, a remedy can be offered by free-
running model tests. Nevertheless, this is really a big
challenge for the future research to design special
kind, high quality manoeuvres, conduct their
measurements, and perform identification.

It is believed that the zigzag test, served in the
present investigation as an example to demonstrate
peculiarities of the second-order uncoupled linear
dynamics, could also be used for that purpose. This
manoeuvre has a very extensive record of published
experimental and theoretical (simulation) data.
However, some systematic parametric studies are
required for zigzag performances being essentially
'generated' by the concerned dynamics. This would
yield a benchmarking material in order to detect
hidden nonlinearities in actual (of given ship) zigzag
behaviour and then to prevent from fitting the
considered linear part of the full-mission model.
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