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1 INTRODUCTION  

The risk prediction model consists of a dangerous 
event (DE) module and the event consequence mod-
ule. The DE connects the two modules - it initiates 
consequences of particular causes. In the case of 
propulsion risk (PR), the event DE is immediate loss 
of the propulsion capability by the ship, i.e. an im-
mediate catastrophic failure (ICF) of its propulsion 
system (PS) (Brandowski 2005, Brandowski et al. 
2007, 2008, 2009a). The event may be caused by the 
PS element failures or operator errors.   

It is assumed that the model parameter identifica-
tion will be based on opinions of the ship power 
plant operators, hereinafter referred to as experts. 
The opinions will be formulated mainly in a linguis-
tic form, supported to a minimum extent by numeri-
cal data.  

The ship PS is well developed. In the example of 
a simple PS presented below, it consists of 11 sub-
systems (SS) and these of 92 sets of devices (SD) 
including several hundred devices (D) altogether. 
The PS sizes, the expert ability to express the opin-
ions necessary to construct a propulsion risk model 
and the limited number of experts that the authors 
managed to involve in the study influenced the mod-
el form.  

The expert investigation methods used in the PR 
modelling were presented in publications (Bran-

dowski 2005; Brandowski et al. 2007, 2008, 2009a; 
Nguyen 2009) 

2 THE PROPULSION RISK PREDICTION 
MODEL  

The PR model form is determined by data that can 
be obtained from experts. It is assumed that they 
elicit: 
− Annual numbers N of the system ICF type fail-

ures; 
− System operating time share in the calendar time 

of the system observation by the expert t(a)%. 
− Linguistic estimation of the share of number of 

PS fault tree (FT) cuts in the failure number N 
during a year. 

− Linguistic estimation of chances or chance pref-
erences of the occurrence of system ICF  specific 
consequences, on the condition that the event it-
self occurs.  
Those opinions are a basis for the construction of 

a system risk prediction model.  
The following assumptions are made as regards 

the system risk model: 
− The system may be only in the active use or 

stand-by use state. The system ICF type events 
may occur only in the active use state.  

− The formal model of a PS ICF event stream is the 
Homogeneous Poisson Process (HPP). It is 
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a renewal process model with negligible renewal 
duration time. This assumption is justified by the 
expert opinions, which indicate that catastrophic 
failures (CF) of some systems may occur quite 
frequently, even several times a year, but in gen-
eral they cause only a relatively short break in 
normal system operation. Serious consequences 
with longer breaks in the system operation are 
less frequent. Also the exponential time between 
failures distribution, as in the case of HPP, is 
characteristic of the operation of many system 
classes, including the ship devices (Modarres et 
al. 1999, Podsiadlo 2008). It is appropriate when 
defects of the modeled object and the operator er-
rors are fully random, abrupt and no gradual, 
without wear and/or ageing-type defects. This 
corresponds with the situation where inspection 
and renewals are regularly carried out and prevent 
that type of defects.  
The following assumptions were made with ref-

erence to the model: 
− The HPP parameter is determined in a neural 

network from data elicited by experts. The net-
work can be calibrated with real data obtained 
from the system (or a similar systems) operation.  

− The failure consequences are determined from 
data on the chances of occurrence elicited in the 
expert opinions.  

− The operators perform predictions of the system 
reliability condition and PR, i.e. of the system 
ICF specific consequences, based on subjective 
estimations of the analysed system component 
condition.  
For given ICF event a fault tree (FT) is construct-

ed, where the top event is an ICF type PS failure and 
the basic events are the system minimum cut or cut 
failures. The notion of minimum cut is generally 
known. Cut is defined as a set of elements (devices) 
fulfilling a specific function which loss of that func-
tion results in a system ICF. In the case of minimum 
cut, failures of the same system elements may ap-
pear in more than one minimum cuts. Therefore, 
they are not disjoint events in the probabilistic sense. 
Besides, obtaining reliable expert opinions on the 
minimum cut failures is almost unrealistic. Also in 
the case of a PS ICF event cause decomposition to 
the minimum cut level the number of basic events in 
the FT increases considerably - the top event de-
composition is deeper. The more basic events it con-
tains, the more data are needed to tune the neural 
network in a situation when the number of compe-
tent experts available is generally very limited. In 
the case of cuts (not minimum cuts), they can be ar-
ranged to form a complete set of events. The failure 
numbers are then easier to estimate by experts as the 
cuts include more devices. Such failures are serious 
events in the ship operation process, very well re-

membered by the experts. Besides, there are general-
ly fewer cuts than minimum cuts in the FTs.   

Cuts have defined reliability structures (RS). If 
those structures and the number of cut failures with-
in a given time interval are known, then the number 
of failures of particular devices in the cuts can be de-
termined.  

The diagram of a model in Figure 1 illustrates the 
PR prediction within a period of time t(p). The sys-
tem operator inputs estimated reliability states of the 
cut elements (block (1) of the model). The elements 
are devices (D) of the all system cuts. The estimates 
are made by choosing the value of the linguistic var-
iable LV = average annual number of ICF events 
from the set {minimum, very small, small, medium, 
large, very large, critical} for the individual Ds. The 
operator may be supported in that process by a data-
base.

 Having the reliability states of the FT cuts and 
their RS structures, average numbers Nik of these cut 
ICF failures are determined by “operator algorithm” 
(block (2)). The appropriate methods are presented 
in section 3 of this paper. They are input data to the 
neural network. 

Data of 
prediction 

period 
t(p), τ(a)    (5)

Reliability 
states of FT cut 
elements   (1)

Neuron network   
(3)

Consequence 
probability   (7)

Chances of 
consequences 

(8)

Process HPP   (6)

System state 
(4)Risk  (8)

Number of ICF 
failures of FT cuts    

(2)

 
Figure 1. Diagram of the fuzzy-neuron model of risk prediction 

 
The neural network, performing generalized re-

gression, determines the system ICF type failure an-
nual number N in the numerical and linguistic values 
(block (3)). In the first case, the network determines 
the respective value of an LV variable singleton 
membership function, and in the second case - a cor-
responding linguistic value of that function. In both 
cases 7 values of the LV were adopted. The network 
may be more or less complex depending on the 
number of cuts and the FT structure.  
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The neural network is built for a specific PS, ac-
cording to its properties and size. Each cut at the FT 
lowest level implies an entry to the network. The 
network error decreases with the increasing amount 
of data. We are interested in teaching data with er-
rors fulfilling some statistical standards and that de-
pends on the number and appropriate choice of ex-
perts.  

If there is disproportion between the number of 
entries and the teaching data lot size, then the system 
FT may be divided at the lower composition levels 
and then the component networks "assembled" 
again. In the ship PR risk prediction example here 
below, the ship PS was decomposed into subsystems 
(SS) and those into sets of devices (SD). 

The system reliability condition, according to its 
operator, i.e. annual number N of its ICFs, is pre-
sented in a linguistic form by giving the LV value 
determined in block (3) (block (4)). 

Input to the model is risk prediction calendar time 
t(p) [year] and the modeled PS active use time coeffi-
cient τ(a). The prediction time is chosen as needed, in 
connection with the planned sea voyages.   

The PS active use time coefficient: 
        𝜏(𝑎) = (𝑡(𝑎) 100)⁄ 𝑡(𝑝) (1) 

where t(a)  % = propulsion system active use time as 
a share of prediction calendar time t(p) (approximate-
ly equal to the share of ship at sea time). 

The value of τ(a) coefficient is determined by op-
erator from the earlier or own estimates. 

The probability of the system ICF event occur-
rence within the prediction time t(p) is determined by 
a size K vector (block (6)): 

 (2) 
where   𝜆(𝑎) = 𝑁/𝜏 𝑡  [1/year] = intensity function (rate 
of occurrence of failures, ROCOF) related to the ac-
tive use time, where N = number of the system ICFs 
within t = 1 year of observation, with the active use 
time coefficient τ determined by neural network; k = 
number of ICFs. 

Vector (2) expresses the probability of occurrence 
of k = 1,2,…,K system ICFs within the prediction 
time t(p) interval. 

Probability of occurrence of specific consequenc-
es on the condition of the analysed system ICF oc-
currence: 

 𝑃{C ICF⁄ },  (3) 
where C = C1 ∩ C2 = very serious casualty C1 or 
serious casualty C2 (IMO 2005). 

This probability value is input by the operator 
from earlier data obtained from expert investigations 
for a specific ship type, shipping line, ICF type and 
ship sailing region. The values may be introduced to 
the prediction program database.  

The consequences C are so serious, that they may 
occur only once within the prediction time t(p), after 
any of the K analysed system ICFs. The risk of con-
sequence occurrence after each ICF event is deter-
mined by vector whose elements for successive k-th 
ICFs are sums of probabilities of the products of 
preceding ICF events, non-occurrence of conse-
quences C of those events and occurrence of the 
consequences of k-th failure (block (7)):  

ℜ�C, t(p)� = [P �C ICF}⁄ � P{ICFx
x

k=1
� 

(1 − P�C ICF)⁄ x−1 : x = 1,2, … , K�,  (4) 

Risk (4) is presented in block (8). 

3 OPERATOR'S ALGORITHM 

3.1  Cut models  
The algorithm allows processing of the subjective 
estimates of numbers of device D failures, creating 
FT cuts, into numerical values of the numbers of 
failures of those cuts. They are the neural network 
input data. The algorithm is located in block (2) of 
the prediction model. The data are input to the mod-
el during the system operation, when devices change 
their reliability state. Additionally, the algorithm is 
meant to aid the operator in estimating the system 
condition.  

The numerical values of the numbers of failures 
in cuts are determined by computer program from 
the subjective linguistic estimates of the numbers of 
failures of component devices D. The estimates are 
made by the system operators and based on their 
current knowledge of the device conditions. This is 
simple when cut is a single-element system, but may 
be difficult with complex RS cuts. The algorithm 
aids the operator in the estimates. Specifically, it al-
lows converting the linguistic values of D device 
ICF events into corresponding numerical values of 
the cuts. The data that may be used in this case are 
connected with cuts - the universe of discourse (UD) 
of linguistic variables LV of the cut numbers of fail-
ures for defined RSs. These numbers are determined 
from the expert investigations.  

Cuts are sets of devices with specific RS - sys-
tems in the reliability sense. They may be single- or 
multi-element systems. They are distinguished in the 
model because they can cause subsystem ICFs and 
in consequence a PS failure. Annual numbers of the 
cut element (device) ICFs change during the opera-
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tion process due to time, external factors and the op-
erational use.   

The conversion problem is presented for the case 
when in the system FT cuts of subsystems (CSS) are 
distinguished and in them cuts of sets of devices 
(CSD). The following CSD notation is adopted: 

CSDik = {eikl , l = 1,2, … , LikL},, (5) 
where CSDik = k-th cut of i-th subsystem,  
k =1.2,…,K,  i = 1,2,…,I;  eikl = l-th element of k-th 
CSD, l = 1,2,…, L. 

The CSD cut renewal process parameters, i.e. in-
tensity functions λ (ROCOF), are determined from 
the expert investigations of the system PS. In this 
case, they are applied only to the ICFs causing the 
loss of CSD function. Annual numbers of failures N, 
whose functions are intensity functions λ, are deter-
mined. It may be assumed that the numbers elicited 
by experts are average values in their space of pro-
fessional experience gained during multi-year sea-
manship. Then the asymptotic intensity function 
takes the form (Misra 1992): 

 

 𝜆(𝑎) ≅  𝑁
�

𝜏 𝑡
, (6) 

where N = average number of the analysed system 
failures during the observation time t; τ = active use 
time coefficient; t = 1 year = calendar time that the 
estimate of the number of failures is related to.  

We are interested in the dependence on the num-
ber of CSD cut ICFs to the number of such failures 
of the cut elements. It is determined from the formu-
las of the relation of systems, of specific reliability 
structures, failure rate to the failure rates of their 
components. It should be remembered that in the 
case of a HPP the times between failures have expo-
nential distributions, whose parameter is the mod-
eled object failure rate, in the analysed case equals 
to the process renewal intensity function λ. The for-
mulas for the ship system CSD cut reliability struc-
tures are given below.  

In the case of a single-element structure, the an-
nual numbers of the cut failures and device failures 
are identical. 
 𝑁𝑖𝑘 = 𝑁𝑖𝑘𝑙 , 𝑖 ∈ {1,2, … , 𝐼}, 𝑘 ∈ {1,2, … ,𝐾}, 𝑙 = 1,  (7) 
where Nik = annual number of failures of k-th cut in 
i-th  subsystem; Nikl = annual number of failures of 
l-th device. 

In a series RS, the number of system failures is a 
sum of the numbers of failures of its components.  
 𝑁𝑖𝑘 = 𝑁𝑖𝑘1 + 𝑁𝑖𝑘2 + ⋯+ 𝑁𝑖𝑘𝑙 + ⋯+ 𝑁𝑖𝑘𝐿  (8) 

A decisive role in that structure plays a "weak 
link", i.e. the device with the greatest annual number 
of failures. The CSD cut number of failures must 

then be greater than the weak link number of fail-
ures.   

In a two-element parallel RS, we obtain from the 
average time between failures formula (Misra, 
1992):  

 𝑁𝐼𝑘 = 𝑁𝑖𝑘1
2  𝑁𝑖𝑘2+𝑁𝑖𝑘1 𝑁𝑖𝑘2

2

𝑁𝑖𝑘1 𝑁1𝑘2+𝑁𝑖𝑘1
2  𝑁1𝑘2

2   (9) 

If one element in that structure fails then it be-
comes a single element structure. Similar expres-
sions can be easily derived for a three-element paral-
lel structure.  

In the structures with stand-by reserve, only part 
of the system elements are actively used, the other 
part is a reserve used when needed. The reserve is 
switched on by trigger or by the operator action. The 
trigger and the system functional part create the se-
ries reliability structure. When the trigger failure rate 
is treated as constant and only one of the two ele-
ments is actively used (L = 2), then: 

 𝑁𝑖𝑘 = 𝑁𝑖𝑘 
𝑝 + 𝑁𝑖𝑘1 𝑁𝑖𝑘2

𝑁𝑖𝑘2+𝑁𝑖𝑘1
, (10) 

where  𝑵𝒊𝒌 
𝒑  = annual number of trigger failures. 

In the case of a three-element structure (L = 3) 
with two stand-by elements, we obtain: 

 𝑁𝑖𝑘 = 𝑁𝑖𝑘
𝑝 + 𝑁𝑖𝑘1𝑁𝑖𝑘2𝑁𝑖𝑘3

𝑁𝑖𝑘2𝑁𝑖𝑘3+𝑁𝑖𝑘1𝑁1𝑘3+𝑁𝑖𝑘1𝑁𝑖𝑘2
. (11) 

In the load-sharing structures, as the expert data 
on the number of failures in the case when entire cut 
load is taken over by one device are not available, 
a parallel RS (equation (9)) is adopted. 

In operation, the CSD cut elements may become 
failure and cannot be operated. If in a two-element 
RS with stand-by reserve one element is non-
operational then it becomes a single element struc-
ture. If in a three-element RS with stand-by reserve 
one element is non-operational then it becomes a 
two-element structure with one element in reserve. If 
in that structure two elements are non-operational 
then it becomes a single-element structure. Identical 
situation occurs in the case of element failures in the 
parallel RS systems.  

3.2 Fuzzy approach to the cut failure number 
estimate problem 

Our variables LV are estimates of the average lin-
guistic annual numbers of ICFs failures Nik of cuts 
CSDik and Nikl devices Dikl, i = 1,2,   ,I,  k = 
1,2,…,K, l = 1,2, …,L. We define those variables 
and their linguistic term-sets LT-S. We assume sev-
en-element sets of those values: minimum, very 
small, small, medium, high, very high, critical. We 
assume that these values represent the reliability 
state of appropriate objects. 
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From the expert investigations we obtain the uni-
verse of discourse values UDik of individual cuts. 
Each of those universes is divided into six equal in-
tervals. We assume that the boundary values   
      𝑁𝑖𝑘1 ,𝑁𝑖𝑘2 , … ,𝑁𝑖𝑘7  
of those intervals are singleton member functions of 
the corresponding linguistic variable values LVik. 

The universe of discourse values UDik are the var-
iability intervals of the numbers of failures of cuts 
CSDik appearing on the left hand sides of equations 
(7) – (11). In the case of a single element RS, paral-
lel RS and with stand-by reserve composed of iden-
tical elements in terms of reliability, we can easily 
determine the minimum and maximum numbers of 
element failures. 

      𝑁𝑖𝑘𝑙1 ,𝑁𝑖𝑘𝑙7  
and their universes of discourse UDikl and then the 

singleton seven-element member functions: 
      𝑁𝑖𝑘𝑙1  ,𝑁𝑖𝑘𝑙2 , … ,𝑁𝑖𝑘𝑙 7 . 

If all the cut elements remain in the minimum 
state then the cut is also in the minimum state. If all 
the cut elements remain in the critical state then the 
cut is also in the critical state. The situation is more 
difficult when the cut elements are not identical in 
terms of reliability. Then expert opinion-based heu-
ristic solutions must be applied. 

4 CASE STUDY 

The example pertains to the prediction of a seagoing 
ship propulsion risk. Determination of the probabil-
ity of loss of propulsion capability is difficult be-
cause of the lack of data on the reliability of PS ele-
ments and of operators. This applies in particular to 
the risk estimates connected with decisions made in 
the ship operation phase.   

The object of investigation was a PS consisting of 
a low-speed piston combustion engine and 
a constant pitch propeller, installed in a container 
carrier operating on the Europe - North America 
line.  

The FT of analysed PS is shown in the Figure 2. 
For reasons of huge number of SDs the structure of 
fuel oil subsystem is only described within the low-
est FT level. The object was decomposed into sub-
systems (SS) (propulsion assembly and auxiliary in-
stallations necessary for the PS functioning - 11 SSs 
altogether) and the subsystems into sets of devices 
((SD) - 92 sets altogether). Each SS makes the CSS 
cut and each SD – the SDC cut. In considered case 
the system FT consists of alternatives of those cuts. 
In general such FT structure doesn’t have to appear 
in the case of PS. 

 
The FT allowed the building the neural network. 

The sets of input signals for the network were as-
signed.  

Using the code (IMO, 2005), five categories of 
ICF consequences were distinguished, including 
very serious casualty C1, serious casualty C2 and 
three incident categories. Consequences of the alter-
native of first two events were investigated (C = C1 
∩ C2). 

The consequences are connected with losses. 
They may involve people, artifacts and natural envi-
ronment. They are expressed in physical and/or fi-
nancial values. Detailed data on losses are difficult 
to obtain, particularly as regards rare events like the 
C1 and C2 type consequences. They cannot be ob-
tained from experts either, as most of them have 
never experienced that type of events. In such situa-
tion, the risk was related only to the type C conse-
quences of an ICF event. 

4.1 Acquisition and processing of expert opinions  
The experts in the ICF event investigation were ship 
mechanical engineers with multi-year experience (50 
persons). Special questionnaires were prepared for 
them, containing definition of the investigated ob-
ject, SS and SD schemes, precisely formulated ques-
tions and tables for answers. The questions asked 
pertained to the number of ICF type events caused 
by equipment failures or human errors within one 
year and the share of time at sea in the ship opera-
tion time (PS observation time by expert). These 
were the only questions requiring numerical an-
swers.   

Figure 2. Fault tree of a ship propulsion system ICF 
Legend: PS – propulsion system; ICF – immediate 
catastrophic failure; 
SSi – subsystem, i =1 -fuel oil subsystem, 2 -sea water 
cooling subs.; 3 – low temperature fresh water cooling 
subs.; 4 – high temperature fresh water cooling subs.; 5 – 
startig air subs.; 6 – lubrication oil subs.;  7 – cylider 
lubrication oil subs.; 8 - electrical subs.; 9 – main engine 
subs.; 10 – remote control subs.; 11 – propeller + shaft 
line  subs. 
SD1k – set of devices; ik = 11 -  fuel  oil service tanks; 12 
– f. o. supply pumps; 13 – f. o. circulating pumps; 14 – f. 
o. heaters; 15 -filters; 16 – viscosity control arrangement; 
17 - piping’s heating up steam arrangement.

D’s ICF

SD11
ICF

SDik
ICF

SD17
ICF

PS ICF

SS1 ICF SS11 ICFSSi ICF.... ….

…….. …….

…………......... ...
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Other questions were of a linguistic character and 
pertained to the share of ICF type failures of indi-
vidual SSs in the annual number of the PS ICF type 
events and the share of ICF failures of individual SD 
sets in the annual numbers of SS failures. In both 
presented cases the experts chose one of five values 
of the linguistic variables: very great, great, medi-
um, small, very small. The elicited linguistic opin-
ions were compared in pairs and then processed by 
the AHP method (Saaty 1980; Nguyen 2009). The 
obtained distribution of subsystem shares complies 
with the engineering knowledge. The greatest shares 
are due to the main engine and the electric power 
and fuel supply systems and the smallest - due to the 
propeller with shaft line.   

The experts in the ICF event consequence field 
were ship mechanical engineers and navigation of-
ficers (37 in number). A similar questionnaire was 
prepared with questions about preferences of 5 pos-
sible consequences (C1 - very serious casualty, C2 - 
serious casualty and 3 types of incidents) of the ICF 
type event occurrence. The casualty types were de-
fined in accordance with the code (IMO, 2005). The 
experts could choose from the following prefer-
ences: equivalence, weak preference, significant 
preference, strong preference, absolute preference, 
and inverse of these preferences (Saaty, 2005; Ngu-
yen 2009). After processing of the so obtained data 
by the AHP method, a normalized vector of shares 
of the ICF type event consequences was obtained.  

4.2 Some results 
The PR model was subjected to a broad range of 
tests. Some of the results are presented below. Fig-
ures 3 and 4 present the probability of the occur-
rence of defined numbers ICF type events of PS in 
dependence on the prediction time, when PS is in 
excellent and critical reliability states. The number 
of ICF events from 1 to 5 was adopted for each of 
those states. The probability was performed for the 
prediction time t(p) = 1, 3 and 6 months. The dia-
grams 3 and 4 indicate that the occurrence of ICF 
events and their numbers are significantly greater 
when PS is in the critical state than in excellent state. 

 
Figure.3. Probability of the ICF type events versus the numbers 
of those events for the selected times of risk prediction. PS re-
liability state is excellent. 

 
Figure 4. Probability of the ICF type events versus the number 
of those events for the selected times of risk prediction. PS re-
liability state is critical. 

 

 
Figure 5. Propulsion risk versus the numbers of ICF events for 
selected prediction times. PS reliability state excellent. 

 
Figures 5 and 6 presents the PR risk, i.e. the risk 

of type C consequences after occurrence of an ICF 
event, for the prediction times t(p) = 1, 3 and 6 
months, when PS is in the excellent and critical for 
states. The diagrams show increased risk with dete-
riorating PS reliability.   

 

 
Figure 6. Propulsion risk versus the numbers of the ICF events 
for selected times of prediction. PS reliability state is critical 

5 SUMMARY 

A fuzzy-neural model of risk prediction has been 
developed, based on the knowledge acquired from 
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experts. It is a model of homogeneous Poisson re-
newal process, where parameters are determined by 
means of a neural network. The model parameter es-
timation data were acquired from experts - the mod-
eled system operators. Their opinions were elicited 
in a numerical form as regards the events observed 
by them many times and in a linguistic form in the 
cases where their knowledge might be less precise. 
The neural network was tuned with the elicited opin-
ions. The network may be calibrated with data col-
lected in the system operation process. In this way 
the Homogeneous Poisson Process can be adapted to 
real operating conditions - it becomes non-
homogeneous in steps. The model allows prediction 
of the risk of dangerous events consequences, which 
may occur due to different systems.  

In the expert investigations we have to rely on da-
ta obtained from experts and models are constructed 
from that data. The adequacy and type of obtained 
information depends on the form and adequacy of 
the data. The expert competence level must not be 
exceeded. In the case reported here, it might have 
happened in the estimates of occurrence of the ICF 
event consequences. In the authors' opinion, the 
competence level was not exceeded as the remaining 
data are concerned, as the choice of experts was 
careful. 

The expert-elicited data have an impact on the 
level of adequacy of models used in the investiga-
tions - like data like model. A number of simplifying 
assumptions had to be made. Some of them are the 
following: two states of the use of modeled objects, 
failures possible only in the active use state, homo-
geneity of the Poisson renewal process, the cut no-
tion, definition of the ICF event consequences etc. 

Results of the propulsion risk estimates quoted in 
section 4 are not questionable as regards the order of 
magnitude of the numbers. Events from the subset of 
C consequences occur at present in about 2% of the 
ship population (20 ships out of 1000 in a year). This 
applies to ships above 500 GT. There are at present 
about 50 thousand such ships (Graham, 2009; Podsi-
adlo 2008). The results are also adequate in terms of 
trends of changes in the investigated values, which 
are in compliance with the character of the respec-
tive processes.   

It has to be taken into account that results of 
a subjective character may be (but not necessarily) 
subject to greater errors than those obtained in a real 
operating process. The adequacy of such investiga-
tions depends on the method applied, and particular-
ly on the proper choice of experts, their motivation, 
as well as the type of questions asked. In the expert 
investigations the fuzzy methods are especially use-
ful, as they allow the experts to express their opin-
ions in a broader perspective.   

In the authors' opinion, the main difficulty in the 
neural network application for modeling is the ne-
cessity of having a considerable amount of input and 
output data for tuning the models. In the prospective 
investigations the data are generally in short supply. 
They may be gathered after some time in the operat-
ing process of the respective objects, but that may 
appear to be too late.  

There is a chance of further developing and using 
the risk prediction program, developed under the 
project, aboard ships and not only for the propulsion 
systems. It could be coupled with the existing 
equipment renewal management or operating man-
agement programs.  

The investigations presented in the paper were 
supported by Ministry of Science and Higher Educa-
tion in the frame of a study project. 
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