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1 INTRODUCTION 

Fuzzy set theory has been used successfully in virtu-
ally all the technical fields including control, im-
age/signal processing and expert systems. One of the 
most successful applications however seems to be in 
the control field where the theory can utilize the hu-
man control operator’s knowledge and experience to 
intuitively construct models so that they can emulate 
human control behaviour to a certain extent (Ying 
2000, Zadeh 1996). 

Simulation studies give perfect opportunity to 
record the expert knowledge of pilots commanding 
vessels in the relevant area. An essential problem of 
the acquisition and representation of navigator’s 
knowledge referring the conduct rules (procedural 
knowledge) and the analysis and evaluation of navi-
gational situation (declarative knowledge) can be 
solved by gaining knowledge directly from electron-
ic records made during such research and creation of 
the expert knowledge database can finally lead to fi-
nally to the concept of autonomous ship control dur-
ing FTS in confined waters. Fast time simulation can 

be achieved easily by applying shorter period of 
state change than established in the ship’s hydrody-
namic model, for instance dt = 0.01s, which is not a 
problem for contemporary computers (Gucma et al. 
2008), but ship’s fuzzy control in confined waters 
requires further analysis. 

2 FUZZY LOGIC CONTROLLER 

In autonomous FTS the manoeuvring decision find-
ing can follow the procedure described in Zalewski 
(2003). However if any of the present ship state vec-
tor parameters comes outside the scope of the expert 
database it is assumed that the optimum manoeuvre 
should lead the ship to regain safe values of state 
vector parameters. For this purpose the fuzzy dis-
crete-time controller can be designed. The major 
components of the typical fuzzy controller are fuzzi-
fication, fuzzy rule base, fuzzy inference, and de-
fuzzification. These components will be described 
further in an exemplary MISO (multiple input single 
output) controller of pitch for vessels with two pro-
pellers. 

 

 

Figure 1. Structure of a MISO fuzzy control system which is composed of a Mamdani fuzzy logic controller and a system under 
control (based on Ying (2000)). 
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Figure 2. Illustration of the ∆vx input variable fuzzification. 

 
2.1 Fuzzification 
Fuzzification is a mathematical procedure for con-
verting an element in the universe of discourse into 
the membership value of the fuzzy set. 

In the Figure 1 controller output is designated by 
u(n) and system output is designated by y(n), where 
n is a positive integer representing sampling time dt. 
The desired system output trajectory is denoted as 
S(n). 

In case of system being a ship, steered in accord-
ance to expert passage, u(n) will be pitches setting, 
y(n) will be a vector containing six variables defin-
ing actual motion in 3-degrees of freedom: Pxy - ac-
tual position of selected waterline point stored as 
two variables, vx - actual longitudinal (advance) ve-
locity, vy - actual transverse (lateral) velocity, ω - ac-
tual angular (rotation) velocity, ψ – actual ship’s 
heading; and S(n) will be a vector containing six var-
iables defining required motion in 3-dof: Pxyr - re-
quired position of selected waterline point stored as 
two variables, vxr - required advance velocity, vyr - 
required lateral velocity, ωr - required rotation ve-
locity, ψr - required ship’s heading  At time n, y(n) 
and S(n) are used to compute the input variables of 
the fuzzy controller (effect of pitches setting on mo-
tion): ∆Pxy - deviation between required and actual 
position, ∆vx - difference or deviation between re-
quired and actual longitudinal (advance) velocity, 
∆vy - difference or deviation between required and 
actual transverse (lateral) velocity, ∆ω - difference 
or deviation between required and actual angular 
(rotation) velocity, ∆ψ – difference or deviation be-
tween required and actual ship’s heading. So gener-
ally the input variables vector can be designated by: 

( ) ( ) ( )nynSne −=  (1) 

Input variable scaling factors are used to conven-
iently manipulate the effective fuzzification on the 
scaled universes of discourse. The scaled factors 
used for e(n) vector in presented research are nor-
malization constants of the five mentioned devia-

tions, with their preserved positive or negative sign, 
as accepted in Zalewski (2003). Assuming the scal-
ing factors for deviations as vector Ke the scaled in-
put vector is: 

( ) ( )neKnE e=  (2) 

The scaled variables are then fuzzified by input 
fuzzy sets defined on the scaled universes of dis-
course: [0,1]. Figure 2 shows five input fuzzy sets 
for one of the E(n) parameters that are used by the 
fuzzy controller. At this conceptual phase of FTS 
model development the research on the most suitable 
fuzzy sets is still ongoing so the most popular mem-
bership functions types found in literature have been 
selected, namely triangular and trapezoidal. 

The fuzzification results for normalized ∆vx value 
of E(n), E2(n)= Ke2×∆vx, shown in Figure 2, are 
membership value of 0.65 for fuzzy set Positive 
Small (PS) and 0.2 for fuzzy set Positive Large (PL). 
The linguistic names “Positive” and “Negative” are 
related directly to faster advance speed than required 
and slower advance speed than required respective-
ly. The membership values for Near Zero (NZ), 
Negative Small (NS) and Negative Large (NL) are 0. 

Fuzzification can be formulated mathematically 
replacing linguistic naming system by a numerical 
index system, for instance five fuzzy sets used may 
be represented by Ai, i = -2 (NL), -1 (NS), 0 (NZ), 1 
(PS), 2 (PL). The example fuzzification of e2(n) with 
Ke2=0.7s/m at time t: e2(n)=∆vx=0.5m/s, E2(n)=0.35 
can be described as: 
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No mathematically rigorous formulas or proce-
dures exist to accomplish the design of input fuzzy 
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sets – the proper determination of design parameters 
is strictly dependent on the experience with system 
behaviour, hence the expert data coming from ship 
manoeuvring trials is necessary. 

2.2 Fuzzy rules 
Fuzzification results are used by fuzzy logic AND 
operations in the antecedent of fuzzy rules to make 
combined membership values for fuzzy inference. 
An example of a Mamdani fuzzy rule used for con-
trol of simulated ship advance speed is: 
IF E2(n) is PL AND E1(n) is NS 

THEN u(n) is SAs (8) 
where PL and NS are input fuzzy sets and SAs 
(Slow Astern) is an output fuzzy set. In essence rule 
(8) states that if ship’s advance speed is significantly 
larger than the desired advance speed and the ship’s 
position is a little back of the desired one (calcula-
tion of  vector connecting both positions must be 
done) the controller output should be the pitch set-
ting corresponding to Slow Astern fuzzy set. 

The quantity, linguistic names, and membership 
functions of output fuzzy sets are all design parame-
ters determined by the controller developer. Similar-
ly to input fuzzy sets the most popular membership 
functions of singleton type have been used (Fig. 3). 

The exact number of fuzzy rules is determined by 
the number of input fuzzy sets. For the considered 
system of ship control the total number of fuzzy 
rules will be the combination of 5 input variables 
and 5 fuzzy sets (if for all variables the same number 
of fuzzy input sets is designed): 55=3125; quite a 
large amount for only pitches setting. Actually this 
number of fuzzy rules can be significantly reduced 
by treating each input variable independently and 
combining the output during defuzzification. This 
can be achieved by utilizing coupled fuzzy control-
lers. 

2.3 Fuzzy inference 
The resultant membership values of input sets pro-
duced by fuzzy logic AND operation (Zadeh or 
product operator can be used (Ying, 2000)) are then 
related to the singleton output fuzzy sets by fuzzy in-
ference. The four common inference methods pro-
duce the same inference result if the output fuzzy set 
is singleton. Assuming that for fuzzy sets Ai mem-
bership values are given by (3)-(7), and for fuzzy 
sets Bi, corresponding to position deviation, the 
membership values are: 
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if four fuzzy rules similar to (8) will be activated at 
time n, using the Zadeh fuzzy logic AND operator 
and Mamdani minimum inference method (Ying 
2000) yields the following inference results: 
for u1(n)=DSAs (Dead Slow Astern): 
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for u2(n)=STOP: 
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for u3(n)=SAs (Slow Astern): 
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for u4(n)=HAs (Half Astern): 
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Figure 3. Singleton fuzzy sets as output fuzzy sets in the designed controller. 
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If output fuzzy sets in rules are the same fuzzy 
logic OR operation can be used to combine the 
memberships. In the presented example all four out-
put singleton sets are different (DSAs, STOP, SAs, 
HAs) so the calculation will continue without it. 

2.4 Defuzzification 
The membership values computed in fuzzy inference 
must be finally converted into one number by a de-
fuzzifier. In the ongoing research the most prevalent 
defuzzifier in literature – centroid defuzzifier has 
been used (Piegat 2003, Ying 2000). In the present-
ed example the defuzzifier output at time n is: 
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where: 
u1=-13% of pitch/throttle position (DSAs), 
u2=0% of pitch/throttle position (STOP), 
u3=-25% of pitch/throttle position (SAs), 
u4=-50% of pitch/throttle position (HAs), 
so u(n)= -18% of pitch/throttle position. 

 
u(n) is the new output of the fuzzy controller at 

time n which will be applied to the ship system to 
achieve control. In comparison with conventional 
controllers, what is lacking is the explicit structure 
of the fuzzy controller behind the presented proce-
dure. On the other hand utilizing expert knowledge 
for such a black box is much more straightforward 
and comprehensive. 

3 MIMO SYSTEM 

The controller’s design process is further 
complicated by its multidimensional output. The 
possible solution of this problem has been presented 
in [6] by utilizing coupled controllers. Also usage of 
independent fuzzy controllers in the control of a 
MIMO system (multiple input, multiple output) can 
give good results.  

Figure 4 presents exemplary structure of a 
coupled fuzzy controller for 5 input variables and 2 
output variables (pitch settings of both propellers). 
Each controller utilizes its own fuzzy sets 
membership functions and fuzzy rules covering 
impact of pitches settings on the rotation and lateral 
speed of the vessel. 

 
Figure 4. MIMO coupled fuzzy controller. 

4 CONCLUSIONS 

The human shiphandling expertise and knowledge 
can be captured and utilized in the form of fuzzy 
sets, fuzzy logic and fuzzy rules. The expertise and 
knowledge are actually nonlinear structures of phys-
ical systems which are represented in an implicit and 
linguistic form rather than an explicit and analytical 
form, as dealt with by the conventional system mod-
eling methodology. That is why fuzzy controllers 
can be suitably implemented into nonlinear dynamic 
model of ship control. Fast time simulation based on 
such model should give satisfactory results even af-
ter logging only one or few expert passages in rele-
vant area and conditions. Afterwards the FTS model 
can run autonomously provided that the proper ship 
safety limits are achieved by designed fuzzification 
(membership functions) and inference (fuzzy if-then 
rules and operators) processes. 
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