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1 INTRODUCTION  

The problem of path planning occurs in numerous 
technical applications, such as, motion planning for 
mobile robots [12], ship weather routing in ocean 
sailing, or safety path planning for a ship in a colli-
sion situation at sea [5]. The problem is defined in 
the following way: having given a moving object 
and the description of the environment, plan the path 
for object motion between the beginning and end lo-
cation which avoids all constraints and satisfies cer-
tain optimization criteria. The problem can be divid-
ed into two basic tasks: the off-line task, in which 
we look for the path of the object in the unchanging 
environment, and the on-line task, in which the ob-
ject moves in the environment that meets the varia-
bility and uncertainty restrictions. The on-line mode 
of the path planning relates to the control of the 
moving object in the non-stationary environment, in 
which parts of some obstacles reveal certain dynam-
ics. 

The main goal of the present paper is to present 
collision scenarios simulation results acquired using 
evolutionary path planner and to analyse how the 
fitness function scaling impacts the solution [1,2,14]. 
Particular instance of the path planning problem as 
the navigation problem of avoiding collision at sea 

[5, 6] is considered. By taking into account certain 
boundaries of the manoeuvring region, along with 
the navigation obstacles and other moving ships, we 
reduce the problem to the dynamic optimization task 
with static and dynamic constrains. We consider this 
an adaptive evolutionary task of estimating the ship 
path in the unsteady environment. The research was 
performed using Evolutionary Planner/Navigator 
(υEP/N++) system [7, 8, 9] which takes into account 
specific nature of the process of avoiding collisions, 
by using different types of static and moving con-
straints to model the real environment of moving 
targets and their dynamic characteristics. 

2 EVOLUTIONARY ALGORITHMS 

Evolutionary Algorithms (EA) are optimization 
methods that try to mimic evolutionary path in order 
to find the best solution for a specific problem. Each 
member of a generation - a set of potential solutions 
- is being rated against a fitness function to deter-
mine member’s individual adaptation rate - the qual-
ity of the solution. Best fits are being then selected 
to prepare a new generation. Also, additionally, 
there is a small chance of offspring’s mutation that 
helps to keep the population differentiated. This pro-
cess is repeated until an optimal solution is found or 
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the maximum, presumed number of generations is 
reached. To find out more about EA please refer to 
position [13] of the bibliography. 

3 PLANNER INTRODUCTION 

When determining the safe trajectory for the so-
called own ship, we look for a trajectory that com-
promises the cost of necessary deviation from a giv-
en route, or from the optimum route leading to a des-
tination point, and the safety of passing all static and 
dynamic obstacles, here referred to as strange ships 
(or targets). In this paper the following terminology 
is used: the term own ship means the ship, for which 
the trajectory is to be generated, and strange ship or 
target mean other ships in the environment, i.e. the 
objects which are to be avoided. All trajectories 
which meet the safety conditions reducing the risk of 
collision to a satisfactory level constitute a set of 
feasible trajectories. The safety conditions are, as a 
rule, defined by the operator based on the speed ratio 
between the ships involved in the passing manoeu-
vre, the actual visibility, weather conditions, naviga-
tion area, manoeuvrability of the ship, etc. The most 
straightforward way of determining the safe trajecto-
ry seems to be the use of an additional automatic de-
vice – a decision supporting system being an exten-
sion of the conventional Automatic Radar Plotting 
Aids (ARPA) system. 

Other constraints resulting from formal regula-
tions (e.g. traffic restricted zones, fairways, etc) are 
assumed stationary and are defined by polygons – in 
a similar manner to that used in creating the elec-
tronic maps. When sailing in the stationary envi-
ronment, the own ship meets other sailing strange 
ships/targets (some of which constitute a collision 
threat). 

It is assumed that the dangerous target [6] is each 
target that has appeared in the area of observation 
and can cross the estimated course of the own ship at 
a dangerous distance. The actual values of this dis-
tance depend on the assumed time horizon. Usually, 
the distances of 5-8 nautical miles in front of the 
bow, and 2-4 nautical miles behind the stern of the 
ship are assumed as the limits for safe passing. In the 
evolutionary task, the targets threatening with a col-
lision are interpreted as the moving dangerous areas 
having shapes and speeds corresponding to the tar-
gets determined by the ARPA system. 

The path S is safe (i.e., it belongs to the set of safe 
paths) if any line segment of S stays within the limits 
of the environment E, does not cross any static con-
straint and at the times t determined by the current 
locations of the own ship does not come in contact 
with the moving representing the targets. The paths 
which cross the restricted areas generated by the 

static and dynamic constrains are considered unsafe, 
or dangerous paths. 

The safety conditions are met when the trajectory 
does not cross the fixed navigational constraints, nor 
the moving areas of danger. The actual value of the 
safety cost function is evaluated as the maximum 
value defining the quality of the turning points with 
respect to their distance from the constraints. 

The υEP/N++ is a system based on evolutionary 
algorithm [1] incorporating part of the problem 
maritime path planning specific knowledge into its 
structures. The evolutionary approach provides 
many benefit such as real or close to real time opera-
tions, complex search and high level of adjustment 
possibilities. Due to the unique design of the chro-
mosome structure and genetic operators the 
υEP/N++ does not need a discretised map for search, 
which is usually required by other planners. Instead, 
the υEP/N++ “searches” the original and continuous 
environment by generating paths with the aid of var-
ious evolutionary operators. The objects in the envi-
ronment can be defined as collections of straight-line 
“walls”. This representation refers both to the known 
objects as well as to partial information of the un-
known objects obtained from sensing. As a result, 
there is little difference for the υEP/N++ between 
the off-line planning and the on-line navigation. In 
fact, the υEP/N++ realises the off-line planning and 
the on-line navigation using the same evolutionary 
algorithm and chromosome structure. 

A crucial step in the development of the evolu-
tionary trajectory planning systems was made by in-
troducing the dynamic parameters: time and moving 
constraints. In the evolutionary algorithm used for 
trajectory planning eight genetic operators were 
used, which were: soft mutation, mutation, adding a 
gene, swapping gene locations, crossing, smoothing, 
deleting a gene, and individual repair [8, 9]. The 
level of adaptation of the trajectory to the environ-
ment determines the total cost of the trajectory, 
which includes both the safety cost and that con-
nected with the economy of the ship motion along 
the trajectory of concern. 

The current version of planner is also updated 
with the possibility of using fitness function scaling, 
which can essentially improve the quality of the re-
sults. Scaling is used to increase or suppress the di-
versity of the population, by controlling the selection 
pressure. It helps to maintain diversity of individuals 
at the initial phase of the computation, or to find a 
final solution at the end of it.  The process of com-
putation can be improved in the two abovemen-
tioned ways by using different scaling functions at 
proper times and changing the scaling parameters.  

The scaling schemes which can be applied in the 
EA are: linear scaling, power law scaling, sigma 
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truncation scaling, transform ranking scaling, ranked 
and exponential scaling   [1, 2, 3, 10, 11] 

4 SIMULATION ENVIROMENT 

The operations of the evolutionary path planning al-
gorithm υEP/N++ [8] was examined for multiple sit-
uations, one of them depicted as an example in Fig. 
1. The simulation is usually performed in the envi-
ronment populated with static and dynamic con-
straints, however tests presented in this paper con-
sider only dynamic objects. The static constraints are 
represented by black polygons, while the dynamic 
objects (characterised by their own course and 
speed) were marked by grey hexagons. The figures 
below show only the dynamic objects (targets), that 
reveal a potential point of collision [10] with the 
own ship. The positions of the dynamic objects are 
displayed for the best route, which is bolded in the 
figures. In all here reported experiments the popula-
tion size was 30, i.e. the evolutionary system pro-
cessed 30 paths. 

 

 
Figure 1. Example Simulation with the initial population. 

 
As previous research show [16], scaling of the 

fitness function should allow later convergence of 
the results, thus presenting better solutions. Our tests 
were to check if this is the case also with the most 
common collision scenarios. Experiments were per-
formed multiple times and the results represent the 
mean of what the simulations have shown. Due to 
the nature of EA, each program run is unique and it 
happened several times that a run without scaling 
produced results similar to those of the mean of the 
scaled ones (and the other way round), although 
those were marginal and depended mostly on the 
disruption of paths in the initial population. Howev-
er it is worth noting that the planner is always able to 
find a good, feasible solution. 

The runs performed for scaled cases were using 
power scaling with a power factor of 2. The program 
was set to the maximum of 400 generations, howev-
er during the tests generations were observed step by 
step (each generation was observed separately) in 

order to notice if scaling is working as expected and 
if the moment of final convergence is picked up pre-
cisely. The moment of achieving the final solution is 
one of the most crucial differences between a scaled 
and non-scaled EA. To show this clearly, each simu-
lation was performed both for a scaled and non-
scaled runs which allowed to form proper remarks. 

5 SIMULATIONS 

The simulations were performed for three most 
common collision situations and for two more com-
plex. In each of them the own ship is represented by 
its own trajectory (as its size is negligible compared 
to the environment and target’s safety zone). Both 
own ship and target have their starting positions 
equally far from the Point of the Potential Collision 
(PPC) and move at the same speed of 10 knots. The 
three scenarios differ from each other by the targets’ 
trajectories. It is important to underline that our 
planner plots a path only for the own ship and the 
strange ship course is fixed and cannot be changed. 
υEP/N++ task is thereby to plot a new path that 
would avoid collision and reduce the costs of the 
course change to minimum while keeping the whole 
procedure save. The course of own ship is always 00, 
while the targets’ course is 2400 in situation 1 (Fig-
ure 2a), 3000 in situation 2 (Figure 2b) and 1200 in 
the last scenario (Figure 2c). Also two additional, 
advanced simulations were performed, which were 
constructed based on material in [15].  The example 
results, representing the mean of the observed runs 
for both scaled and non-scaled attempts are shown 
on Figures 4 to 8. Shortcut Gen. refers to number of 
the generation of the run shown in a segment. On 
those figures we can see the process of path plotting 
from the earliest generations (which quality is far 
from the ultimate one) through the final ones, ob-
serving how the υEP/N++ tries to calculate an opti-
mal route. The figures show that once an good feasi-
ble path is found, the algorithm utilises genetic 
operators in order to shorten and smoothen the plot-
ted course. The desired course is also often tangent 
to the target’s safe area, as this correlates with the 
goals listed.  
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Figure 2. Basic Simulation Situations – target ship on a) 2400 b) 3000 c) 1200 course 

 
 

   
Figure 3. Advanced Simulation Situations. 

 
 

            
Figure 4. Simulation for Situation 1 a) with scaling b) without scaling 
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Figure 5. Simulation for Situation 2 a) with scaling b) without scaling 

 

         
Figure 6. Simulation for Situation 3 a) with scaling b) without scaling 

 

 
Figure 7. Simulation for Advanced Situation from Figure 3a a) with scaling b) without scaling 
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Figure 8. Simulation for Advanced Situation from Figure 3b a) with scaling b) without scaling 

 
 

6 RESULTS AND CONCLUSIONS 

The simulation results above proven that υEP/N++ is 
able to efficiently find a feasible and acceptable path 
both in case the scaling is applied and when it is not 
present, just as shown in detail in [14]. As one can 
clearly see from figures 2,3 and 4 applying scaling 
extended the time of the final solution convergence 
and allowed new paths to form during the generation 
run. However, the end result was similar, and both 
versions (with and without scaling) of the algorithm 
provided comparably good results. However it is al-
so worth to underline that when scaling was applied, 
the paths calculated by the algorithm became 
smoother (required course corrections of smaller 
value), thus more economical as best seen on Fig. 5. 
As the presented examples are rather non-complex, 
it is only logical to deduce that applying scaling for 
this particular problem proven non-necessary, alt-
hough the computation time extension was barely 
noticeable. As scaling is a great tool to widen the ar-
ea of search, it has little effect when faced with a 
noncomplex challenge, at least for tasks typical for 
υEP/N++. However, as scaling application did 
smooth the paths, one can’t ignore the improvement 
noticed, even for a problem of such a small magni-
tude. Scaling will perform much better in tasks 
where a path through a hugely populated area has to 
be plotted, where it’s effect will be much better no-
ticeable.  

This example research only worked with the 
power scaling, but as further work is done, where 
different scaling methods are tested and compared 
with one another, it could be worth to extend the 
scaling rating subroutine to be able to run different 
scaling options.  

This paper shows how important it is to set prop-
er scaling strategy that would cope well with the task 

ahead. Although the experiments presented here 
were using only two different strategies, their differ-
ent affect was apparent. One can easily notice that as 
it is important to select efficient genetic operators, it 
is as important to match the right scaling scheme. 
υEP/N++ is equipped with procedures that grade ge-
netic operators and as the run goes, it chooses and 
utilizes the best one of them. As further research 
goes, a similar routine can be devices for scaling, so 
that the algorithm can turn it on, when it seems it 
can better the results and abandon it, when it be-
comes redundant. One of the features of Genetic Al-
gorithms is its great scalability, however the parame-
ters have to always be well adjusted to the problem, 
even to a particular case that is being research. The 
algorithm has to be able to dynamically adjust to the 
problem’s requirements if it’s to be used in the in-
dustrial scale. 
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