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ABSTRACT: The aim of this study is to construct an unmanned ship swarms monitoring model to improve
autonomous decision-making efficiency and safety performance of unmanned ship navigation. A framework is
proposed to determine the relationship between on-board decision-making and shore side monitoring, the
process of ship data detection, tracking, analysis and loss, and the application of decision-making algorithm, to
discuss the different risk responses of specific unmanned ship types under various latent hazard environments,
particularly in terms of precise conversion timing in switching over to remote control and full manual
monitoring, to ensure safe navigation when the capability of automatic risk response inadequate. This frame-
work makes it easier to train data and the adjustment for machine learning based on Bayesian risk prediction. It
can be concluded that the automation level can be increased and the workload of shore-based seafarers can be

reduced easily.

1 INTRODUCTION

The study of autopilot aircraft and vehicles has
entered a period of vigorous development in the
aviation and land transportation industries. Artificial
Intelligence (AI) has begun to play a major role in
these industries (Prashanth et al., 2013). The re-search
trend has been moving toward the conception of
robotic vehicles capable of making spontaneous and
effective decisions in demanding or uncertain
situations. Considering the depression of the current
shipping industry, optimizing and adjusting the
industrial structure is crucial, in cases where the over-
head of seafarer’s expenditure and crew company
management account for a large part of the payment.
Unlike unmanned aerial vehicles (UAVs) and un-
manned vehicles, unmanned ship swarms may have a
higher superiority for certain ship types such as
regular container ships for certain voyages (Gudelj
and Krcum, 2012).

The real demanding circumstance of vehicle to
everything (V2X) scenarios demands the need of
handling  fully = automatic  driving, remote
management personnel in the state of surveillance, as
well as any latent hazard requiring the car (where
there is the possibility of the driver being involved) to
take their own effective action at the critical instant.
Undoubtedly, the current technical and legal aspects
are still facing enormous changes. Many difficulties
must be overcome for including fully automatic
navigation in unmanned ship swarms, remote multi-
agent monitoring, and efficient transportation of
goods. On the other hand, in specific transport areas,
under remote monitoring and perception, multi-agent
transportation is technically advanced (Ren, Wei,
2007). Therefore, Autonomous Ship Swarms
Transportation is a very promising field of research
for unmanned ships (Sarda et al., 2016).
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The study object of this paper is unmanned
container ship swarms. Container ships, especially
regular container ships, have characteristics such as
standardized operations schedule, high level of
automation in the process of loading and unloading
of containers, and easy remote monitoring of goods
condition. Upon removal of the bridge, an unmanned
container ship can expand its packing capacity,
improve enterprise business income, and reduce sea-
farer costs, in order to facilitate the shipping of large-
scale company cargo dispatch, resulting in
significantly improved efficiency (Dubrovsky, 2010).
Yang and Wang designed a fully automated loading
and unloading platform specifically for an unmanned
container ship. When in a specific terminal wharf,
both sides of the ship can load and unload
simultaneously, thus improving ship loading and
unloading efficiency, increasing wharf benefits and
reducing the stagnation time of ships in the anchor-
age, It also allows the optimization of the port traffic
flow (Yang and Wang, 2011). Nonetheless, market
factors determine the research prospects of un-
manned container ships. The container ship traffic is a
huge business, even considering that a tiny accident
may cause immeasurable disaster and loss. Therefore,
it is necessary to construct the Autonomous Ship
Swarms monitoring model before proceeding with
the technical details. The ship itself has a limited
ability to resist risks, especially under demanding or
uncertain environment. Therefore, the decision-
making cycle by itself may not have adequate
capacity to avoid hazards. However, frequently
invoking decision-making resources from the ex-pert
system of shore station may cause remote monitoring
capacity insufficient, and shore-based monitoring
seafarers may lead to more human errors or other
latent failures. Therefore, it is necessary to maintain
the resource balance between the decision-making
cycle and the remote monitoring of unmanned ships,
thereby optimizing the structure of the decision
model.

Autonomous risk prediction and autonomous
decision-making are genuine and significant parts of
the unmanned ship swarms monitoring model
(Kirsch, 2016). They are effective ways to diminish the
workload of shore-based seafarers, reduce human
error and improve commercial interests, by
maximizing the risk prediction ability and risk
avoidance decision-making of unmanned ships.

Even if the relationship between decision and
maneuvering automation has already been proposed,
if high automation is selected for the action part, then
designers should resist the temptation of high
automation levels of decision-making (Parasuraman,
2000). Even the real “noisiness” world always have
some kind of unexpected situation emerged (Endsley
and Kiris, 1995).

The purpose of this paper is to build an automatic
decision cycle model to improve the decision-making
efficiency and safety performance of unmanned ships.
According to the previous assumptions, with
unmanned container ship response to various
hazards, calculated training data and parameter
adjustment, the performance of automatic decision-
making can be improved. The situation of re-mote
human intervention will then become less significant.
When a new uncertainty situation appears, original
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data tracking and analysis and handling of data loss
are required. In this case, the insufficient ability of
automatically respond to facing hazards will cause
the model to shift to manual monitoring and remote
control to ensure safe navigation.

2 AUTONOMOUS DECISION-MAKING

Because the term “automation” has been used in
many different ways, the British Dictionary defines
automation as:

1 The use of methods for controlling industrial
processes automatically, esp. by electronically con-
trolled systems, often reducing manpower.

2 The extent to which a process is so controlled.

Autonomous decision-making should have a new
implication, which the authors defined as
automaticity between the different decision-making
cycles. Although researchers have already described
the conflict between high automation levels and the
automation of decision-making (Parasuraman, 2000),
their opinions are focused mainly on high levels of
automation, and do not considered the decision-
making aspect mistake. Moreover, "error-trapping"
shows that lower link communication automation can
allow more action errors. When high automation is
selected for maneuvering, researchers should resist
the temptation for high automation levels of decision-
making. Therefore, high levels should be executed
only for low-risk situation awareness; for all other
situations, the level of automation decision should not
exceed the level of the computer suggesting a
preferred alternative to controller.

On the other hand, with the improvement of ma-
chine learning algorithms, more unlabeled data can
be used, and more reliable automatic decision-making
does not require human intervention, considering
mainly the concept of "human-centered automation”
re-understanding (Metzger, 2005). As there are two
distinct centers (ship swarms and shore expert
station) for the autonomous decision-making of
unmanned container ship groups, and more decisions
can be made by the cycle itself before the "human-
centered" is involved (Zhang, 2016), the environment
for automatic decision-making has be-come easier.

2.1 The levels of autonomous decision-making

The basis for automatic decision-making must be
based on a good automaticity classification (see Table
1). From low to high, automated carry forward also
shows the development of ship automation decision-
making process, which proves that the direction
towards automation is inevitable. It can be seen from
the table that the lowest level, level 1, is completely
comprised of manual operations; the second level of
the decision-making system can provide all the
decision options, but at this level, the system doesn’t
make its own decisions (data learning and training
process); The third level can optimize the selection
and reduce the possible decisions output (perception
process); the fourth level can provide an optimal
decision-making program, but still cannot take action
(optimization process); The fifth level of decision-



making is a conversion point, in which the system
usually needs to be agreed with the seafarer to take
action, but this level of decision-making is able to
provide a decision-making operation by itself, so any
level of automaticity higher than this can be
considered as completely autonomous decision-
making. Note that the decision of the fifth level
according to this table is important for this paper, as it
is also a turning point for the ships own decision-
making cycle and shore-based decision-making. For
decisions taken at a level higher than this, such as the
sixth level, the system can take action on its own, and
only part of the uncertain data is sent to the shore-
based seafarer for record; for seventh level and above
decision-making, the system can recognize the timing
of conversion by itself, and take action, without
human involvement.

Table 1. Automaticity selection by on-board decision cycle
and shore-based monitoring center

Own ship

Large
Obstruction

Large
Obstruction

Trajectory Detection

MDP3

Trajectory Loss

g

» Full decision making and take actions autonomously,
8 -« Informs the seafarers if interrogated, or

7 » Conversion timing permitted automatically, take maneuvering, or

6 - Autonomous decision making, data presented to the seafarers, and

» Executes the optimal action if the seafarers approve, or

4 » Presentan optimal solution automatically but no action,

3 - Optimization options, compression all results, or

Automaticity Levels
N

2 - The system offers a complete set of decision/action alternatives,

Low !

There is a problem that must be noted: when an
unmanned container ship encounters a totally new
situation, automaticity can transit from a high level to
a lower level; thus, automaticity can change
dynamically according to the ship navigation. The
following discussion of the different target ships for
the object of the decision-making will use this table 1
as standard to illustrate.

- Seafarers take all decisions and Maneuvering

Large
Obstruction

Trajectory Tracking

Figure 1. Different target detection, tracking, loss, and state analysis by Markov Decision Processes

Table 2. An example of Multiple Target Tracking in a Markov Decision Process

MDP1 Sailboat1l Detection mp Tracking = Loss =) Tracking
MDP2 Sailboat2 Detection *Tracking = Loss mp [.oss
MDP3 Ro-Ro Ship Detection = Tracking = Tracking = Tracking
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2.2 Markov Decision Process for target perception

In prior research (Zhang, 2016), the authors used the
Robot Operating System as a tool, extended the
Markov Decision-making (MDM) and supported the
decision-making methodologies based on Markov
Decision Processes (MDPs) The aim of the MDPs is to
provide an action set of decision-making for the on-
board cycle. When an action is executed, marine areas
whose state changes ac-cording to a known
probability distribution, are converted to another
state, and the probability distribution is related to the
actions performed. As shown in Figure 1, three
different target ships can be considered as three
continuously changing MDPs by detecting, tracking,
analyzing and losing. According to the data obtained
from the sensors of the ship (unmanned container
ship), in order to observe the navigational status of
the target ships, the table 2 was obtained. MDP3 is a
large-scale ship, and, as such, the course of navigation
is always within the scope of the own ships control,
and the target ship can be completely in accordance
with the navigation rules and decision-making
procedures for collision avoidance or other actions;
MDP1 indicates the course of the sailboat 1. Although
the tracking process is blocked by a large obstruction,
the ship itself can be based on the heading course and
speed before disappearance, in order to speculate the
state of sailboat 1, and for the reappear to be verified;
MDP2 illustrate the blockage of the sailboat by a large
obstruction, for example, due to fishing work or other
unpredictable factors, which led to the tar-get
disappearance from the control scope (loss state). In
this situation, wherein the system cannot be based on
past data training or experience to get more in-
formation, a shift to remote control to acquire the
necessary expert support is the best choice.

2.3 Target perception and decision-making

According to the previous scenario, the combination
of the Table 1 and Figure 1 originates Figure 2. Be-
cause of the size, shape and speed different of the
target ships, divergent detectors may also obtain
different data reliability. The level of predictability
varies, as the automaticity level is constantly unstable.
According to the Table 1, it can be concluded that
there are nine different automaticity levels, in
different states, in which target ships have their own
decision level. It can also be concluded that Markov
Decision Processes can produce decision-making
cycles of different automaticity levels decision-
making under the closed ship itself, the fifth level can
be seen as a timing conversion standard, lower than
fifth level leads to the conversion to shore-based
remote control, higher than fifth level belongs to the
on-board decision cycle.
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Figure 2. Levels of automaticity assessment for the decision
of which MDPs should convert to shore-based monitoring
or keep decision by on-board decision cycle itself.

3 ADVERSARIAL DECISION CYCLES

The mainstream technology of auto-driving
prediction and decision-making is becoming clearer
nowadays that machine learning is based on both
deep learning and reinforcement learning. However,
ma-chine learning needs large data to achieve high
performance and high reliability. It means that
developers need to install an automatic driving
equipment in a large number of automatic ships, so
that the ships in the current operation can produce the
required amount of data to enrich the decision-
making cycle in order for the amount of data to lead
to an improvement in the decision-making efficiency.

3.1 Unmanned ship decision cycles

Unmanned ship maneuvering cycle is generally di-
vided into four main sections: sensory detection,
tracking & perception, decision-making and optimal
action. The model identifies the object from the
environment, performs tracking and risk recognition,
makes decisions and takes effective action, and the
effect of the action is fed back into the environment to
confirm the new position relationship. Consider a
decision cycle as shown in Figure 3. The external
environment also constitutes a part of the cycle,
including the ships surrounding marine environment
and the ships own hardware environment. The
decision-making stage is the link to the shore-based
re-mote control and ship swarms, so having decision-
making as the end of the cycle (human decision center
automation), it is possible to build the de-pendency
relationship of the big decision-making cycle. It can
be seen in Figure 4.
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Figure 3. An example of unmanned ship maneuvering cycle
based on the four-stage of human information processing
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Figure 4. A flowchart of conversion timing optimization of
decision-making between on-board decision cycle and shore
side monitoring. An adversarial decision cycles approach
has been presented.

3.2 Autonomous decision process training

There are two main decision-making cycles of the
unmanned ship: the first one is on-board decision
cycle, countless monomer decision-making cycle
constitutes the ship swarms; the second is a large
group of ships and shore-based cycle. The relation-
ship between the two main sections is similar to the
Generative Adversarial Nets (Goodfellow et al., 2014)
in deep unsupervised learning. Ship swarms and
shore station center belong to two main bodies of
confrontation. At first, the decision-making cycle of a
single ship is very small, and most of the decision-
making cycle needs shore support to complete.
However, as unmanned training data increases, due
to the fact that the ships own decision-making
capacity can be continuously enhanced, high quality
decisions can finally be achieved, being as good as
shore station seafarers would make. In this process,
the workload of shore-based seafarers is gradually
reduced, and the ship swarms automatic decision-
making capacity is gradually increased.

4 APPLICATION EXAMPLE

This autonomous ship swarms transportation model
of human-automation interaction can be applied to
specific systems in conjunction with a consideration
of evaluative criteria, which we have discussed in this
paper — human workload and cost expenditure of the
ship company, automaticity reliability and automatic
level, the adversarial relationship between the on-
board decision cycle and shore-based monitoring. To
further demonstrate the application of this model, the
authors briefly draw the outline of image for its use in
the design of near future unmanned ship
transportation system, based on the previously
presented study and other researcher’s study
conclusions.

Jansson proposed a vehicle collision avoidance
framework based on statistical decision and stochas-
tic numerical integration (Jansson, 2008). The main
purpose of decision-making framework is to deal
with the uncertainty of state estimation. Application
of this model suggests the following
recommendations ~ for  future swarm  ship
transportation automation. Jansson presented a
probabilistic framework for designing and analyzing
a collision avoidance algorithm, calculate risk for
faulty intervention and the consequences of different
maneuverings. Jansson’s work was based on Monte
Carlo techniques, where sampling-resampling
methods are used to convert sensor readings with
stochastic errors to a Bayesian risk. The authors also
proposed the construction of a reliable decision-
support system for risk and accident predictions
based on past experience and objective accident-
probability statistics using Bayesian Network (Zhang,
2016). We dis-cussed the prospects of an intelligent
decision-support system to ensure reliable navigation
safety. It included a case study which can provide a
procedure for complete automatic decision-making
based on experience probability.

For a simulation study (Lacki, 2015), the author
assesses the feasibility of this idea. Lacki narrowed
the study to a smaller scale. Forecasting the location
of the target ships and assisting the own ships on
making the maneuvering decision can be used as part
of this framework. Lacki using a neuroevolutionary
method, presented a concept of the advanced ship
action prediction system for the simulation of a
learning process of an autonomous control unit. Data
is provided to this system by the ship sensor, to make
possible the completion of forecasting data training
tasks as individuals in the population of artificial
neural networks. The environmental sensing and the
evolutionary algorithms learn to execute each given
task efficiently. This mathematical model of
maneuvering VLCC tank ships with the single-
propeller and single-rudder was applied to test the
prediction performance of the system (Lacki, 2008).
Artificial neural networks based on modified methods
increase the complexity and performance of the
considered model of ship maneuvering in restriction
waters.

467



5 CONCLUSIONS

The scenario presented in this paper is an automatic
decision-making solution in extreme cases where
ships are rarely encountered in such complex
situations when navigating in open waters. However,
in order to improve the decision-making efficiency of
the unmanned ship under remote control, it is needed
to take into account this kind of situation in the
beginning of the system design. The author first
proposed automaticity stratification, with the data
accumulation of the on-board decision cycle, floating
up and down real-time assessment data training of
the situation encountered. Between the on-board
decision and shore side monitoring of the adversarial
decision cycle model it is demonstrated that the
conversion timing continuously changes and always
tends to on-board if the decision cycle can make
decisions similar to those of the seafarer's (expert
system). This structural model is based on the
Bayesian network machine learning, with the
advantages of easier data train and parameter
adjustment, easier improvement of the automation
level. It can reduce the workload of shore-based crew
significantly.

REFERENCES

Endsley, M. R. & Kiris, E. O. 1995. The out-of-the-loop
performance problem and level of control in
automation. Human Factors: The Journal of the Human
Factors and Ergonomics Society, 37(2): 381-394.

Parasuraman, R., Sheridan T. B. & Wickens C. D. 2000. A
model for types and levels of human interaction with
automation. IEEE Transactions on systems, man, and
cybernetics-Part A: Systems and Humans, 30(3): 286-297.

468

Prashanth, C. R., Sagar T., Bhat N. 2013. Obstacle detection
& elimination of shadows for an image processing based
automated  vehicle.  Advances in  Computing,
Communications and Informatics (ICACCI) International
Conference on. IEEE, 2013: 367-372.

Sarda, E. I, Qu, H. Bertaska, I. R. 2016. Station-keeping
control of an unmanned surface vehicle exposed to
current and wind disturbances. Ocean Engineering, 127:
305-324.

Hocraffer A., & Nam C. S. 2017. A meta-analysis of human-
system interfaces in unmanned aerial vehicle (UAV)
swarm management. Applied Ergonomics, 58: 66-80.

Ren W, Beard R W, Atkins E M. 2007. Information
consensus in multivehicle cooperative control. IEEE
Control Systems Magazine, 129(2):571-583.

Gudelj A., & Kréum M. 2012. The Container Transportation
Problem: Model and Solution Methods. First
International ~ Conference on  Traffic and Transport
Engineering.

Yang, C., & Wang, N. 2011. Decision-making Method for
Berth Allocation Disruption Management in Container
Terminal. Operations Research and Management Science, 4:
14.

Dubrovsky, V. A. 2010. Multi-hulls: new options and
scientific developments. Ships and Offshore Structures,
5(1): 81-92.

Kirsch, A. 2016. Human-aware Navigation in Domestic
Environments Using Heuristic Decision-Making.

Metzger, U. & Parasuraman R. 2005. Automation in future
air traffic management: Effects of decision aid reliability
on controller performance and mental workload. Human
Factors: The Journal of the Human Factors and Ergonomics
Society, 47(1): 35-49.

Zhang, R. & Furusho, M. 2016. Constructing a Decision-
Support System for Safe Ship-Navigation Using a
Bayesian Network. International Conference on Human-
Computer Interaction. Springer International Publishing,
616-628.

Goodfellow, I, Pouget-Abadie, ], Mirza, M.
Generative adversarial nets. Advances in
Information Processing Systems 2672-2680.

2014.
Neural



