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1 INTRODUCTION 

The so-called network calculus as defined and 
developed by the authors of publications cited in 
References at the end of this paper is a theoretical 
framework for analysis of performance guarantees in 
communication networks. And performance is a key 
criterion for any system. Further, system designers 
tend to produce systems with the highest 
performance at the lowest cost. Communication 
systems share resources and are very hard to 
forecasting.  

The network calculus framework (Le Boudec J.-Y. 
& Thiran P. 2012) offers an environment for 
consideration of computer networks in terms of the 
worst case analysis. This method is based on the so-
called min-plus algebra (Le Boudec J.-Y. & Thiran P. 
2012). And in real-time systems, the worst case 
analysis proves to be more useful than the 
calculations that are based on averaging probabilistic 
parameters characterizing queues. This concerns 
mostly the cases where we want to know the 

boundaries for the so-called Quality of Service (QoS) 
parameters of a network in order to predict its critical 
behavior. However, there are also cases where a more 
sophisticated and detailed evaluation of a network is 
needed. Then, the usual network calculus as 
mentioned above, which is also called a deterministic 
network calculus, must be evolved and widened. 
This is done within a framework that is called a 
stochastic network calculus (Jiang Y. 2006). And a 
stochastic service curve plays a fundamental role in 
it, similarly as a deterministic service curve in the 
deterministic network calculus. This paper presents a 
general model of the stochastic service curve for 
communication networks in a new perspective. 

The remainder of the paper is organized as 
follows. Section 2 introduces the concept of a 
stochastic service curve. In Section 3, we discuss a 
method of evaluation of the available bandwidth in a 
network through the service curve estimation. In the 
next section, a new approach to modelling of 
stochastic service curves for communication 
networks is presented. Finally, Section 5 concludes 
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the paper as well as provides some hints on how the 
method presented in this article could be applied in 
maritime telecommunications area. 

2 STOCHASTIC SERVICE CURVE 

As already mentioned, a fundamental tool in the 
network calculus framework is a service curve. 
Further, note that in computer networks the traffic 
service in a node (as well as on an end-to-end path) is 
a stochastic process. The randomness of flows results 
from the fact that nodes simultaneously support 
different kinds of traffic derived from different 
networks as well as from different nodes of a 
network considered. From the reason of traffic 
aggregation, nodes experience a cross traffic, which 
depends on time and is transmitted at different 
speeds. In addition, a technology (for example radio 
communication), random actions and preferences of 
users influence the randomness. And, see that a 
stochastic service curve models very well the 
phenomena mentioned above. Furthermore, it 
describes the bounds for traffic streams in a system 
and is able to take into account the events and 
behavior described above. 

A stochastic service curve can be defined as a non-
random function with an error function describing 
the probability of violating performance boundaries 
or as a random process. 

In the literature, there are a few definitions of the 
stochastic service curve. The definition of Cruz (Cruz 
R. L. 1996), which describes the stochastic service 
curve as a non-random function, is considered to be a 
basic one.  

DEF1: Definition of the stochastic service curve 
after Cruz is the following. Let denote A(t) an arrival 
function applied to a system and D(t) the related 
departure function. And we assume that they 
represent the corresponding random processes. 
Further, we say that the system offers a stochastic 
service curve S(t) if for 0t   and 0k   

       ,P D t A S t k k     (1) 

where  k  is called a deficit profile (or an error 
function) that represents the probability of violating 
restrictions imposed on the service. In the above 
expression, the symbol   means the convolution 
operator in the min-plus algebra,  P event  stands 
for the probability of an event indicated, t is a time 
variable, and k denotes a modelling parameter of the 
error function   k mentioned above  

It can be shown that all the other published 
definitions of stochastic service curves for systems 
governed by a single traffic stream (single-input 
systems) - as non-random functions - can, in 
principle, be derived from the Cruz’s definition given 
above. They can be obtained through bigger or 
smaller modifications of this definition. And then, 
they are called differently as, for example, a statistical 
or an effective service curve (Burchard A., Liebeherr 
J., Patek S. D. 2002), (Burchard A. & Liebeherr J. & 
Patek S. 2006). In these works, a probabilistic version 

of the service curve (that is a stochastic one) is 
defined as follows: 

DEF2: A non-decreasing and non-negative 
function S  is named an effective service curve with 
the probability of violation   if for 0t   we have 

     1 ,P D t A S t      (2) 

where an arrival curve  A t  and the related 
departure curve  D t  in the time period  0, t  are 
the representatives of the corresponding random 
processes. 

The so-called leftover service curve (Fidler M. 2010) 
is used in the traffic analysis and calculations, when a 
traffic system possesses two or more inputs. That is in 
cases of consideration of multi-input traffic systems.  

The leftover service curve plays an important role 
in many performance analyses of networks as shown, 
for example, in (Fidler M. 2010) and other references 
referred to as in this paper. However, it provides a 
rather pessimistic estimation of the service available 
to a stream in a system that is also crossed by some 
other streams (that is such a one that experiences the 
so-called cross traffic). Also, it is worth noting here 
that there occur in the literature a few variants of this 
curve (Ciucu F., Burchard A., Liebeherr J. 2005), (Li 
C., Zhang S., Wang W. 2013), (Burchard A., Liebeherr 
J., Patek S. D. 2002), (Li C., Burchard A., Liebeherr J. 
2003), and (Burchard A., Liebeherr J., Patek S. D. 
2006). 

Let us now illustrate, in more detail, the concept 
of the above curve exploiting an example. To this 
end, we use Fig. 1 that shows two competing streams: 
F1 and F2, where a server named here S2 schedules the 
aggregated traffic, while an another server named S1 
supports only the flow F1. In order to calculate a rate 
of the flow F1 on the path of the connected nodes in 
Fig. 1, we need to know how much service received 
the F1 flow on the S2 server. 

S1 S2

F1

F2

 
Figure 1. The traffic flowing through a network of 
interconnected n nodes (here n=2). 

Finally at this point, we note that for the 
calculations indicated above we can use one of the 
theorems published in the literature that regard the 
leftover service curve. For example, we can utilize a 
theorem that was formulated and proved in (Xie J. 
2011). 

Note now that to make the leftover service curve a 
more optimistic performance measure in analyses of 
multi-input networks we can proceed similarly as in 
the case just discussed of the usual service curve. We 
can simply do this by expressing the leftover service 
curve in terms of the probability theory applied along 
the lines of DEF1 and DEF2. 

Without going into details of partly troublesome 
and sophisticated considerations related with the 
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notion, definition, and derivation of the 
corresponding expressions describing the so-called 
stochastic leftover service curve, presented in (Ciucu F., 
Burchard A, Liebeherr J. 2006) and (Ciucu F. 2007), 
we say about, here, only what follows. 

DEF3: Let the cross-traffic to a given traffic system 
can be bounded by the so-called path envelope 
denoted here as  cE t  with an overflow profile 
 k . Then, this system offers a stochastic leftover 

service curve      t cS t S t E t


     to its 
through-traffic with  k meaning the deficit profile 
 k  occurring in (1) that is applied to the through-

traffic of the system considered. Moreover, the 
symbol  x t 

    in the expression above denotes 
the operation of finding a maximum value in the set 

( ){ },0x t  for each time instant. Furthermore, with 
regard to the topic of traffic envelopes, note that a 
detailed material on this stuff is presented, for 
example, in (Le Boudec J.-Y., Thiran P. 2012), (Fidler 
M. 2010), and (Jiang Y. 2006). 

Example definition of the stochastic service curve 
assumed to be a random process can be found in 
(Ciucu F. 2007). And for its formulation, we need to 
define first a process that is called an almost surely 
ordering of random varables. 

DEF4: After (Ciucu F. 2007), we say that a random 
variable X is almost surely smaller than a random 
variable Y , and we write this as X Y  a.s., if 
  0P X Y   . 

Second, we must use another definition of the 
convolution operation in the definition of the 
stochastic service curve. It is different from the 
standard one that is used in the min-plus algebra, i.e. 
different from the one which was denoted by   in 
the considerations above. It can be defined as follows 
(Ciucu F. 2007). 

DEF5: Let us denote representatives of two 
random doubly-indexed processes  1 2,B t t  and 
 1 2,G t t  as  1 2,b t t  and  1 2,g t t , respectively. 

Then, their convolution, named an “indexed” one to 
distinguish it from the previous one, is defined as 

      , in ,f  ,i u s t
b u s g s tb g u t

 
   (3) 

for 0 u t  . Note also that because of the reasons 
mentioned above the convolution symbol used in (3) 
is slightly different than before, namely i . 

And finally now, we are able to define the 
stochastic service curve as a random process. It is called 
also the statistical service curve with a.s. ordering and its 
definition after (Ciucu F. 2007) is the following. 

DEF6: A nonnegative, doubly-indexed random 
process  1 2,S t s t t   can be regarded as a 
service curve (in the sense of a random process), 
when for an arrival process  A t  (which needs to 
be re-indexed to  1 2,A t u t s  ), the 
corresponding departure process  D t  satisfies 

      . .iD t A S t a s   (4) 

for all 0t   and after applying 0u   there. 

It is also worth noting at the end of this section 
that using the concept of the a.s. ordering the leftover 
service curve as a random process can be also 
formulated. This was done Fidler in (Fidler M. 2006). 

3 AVAILABLE BANDWIDTH ESTIMATION 

One of the key problems of ensuring high quality of 
services provided in packet networks is the 
estimation of bandwidth available between the 
sender and the recipient. Formally, the available 
bandwidth B on a route at time t means that unused 
bandwidth, which can be utilized by an application 
without any influence of the transmission quality of 
flows occurring on this route. The available 
bandwidth depends on time t. If there occur n nodes 
on an end-to-end path, then the available bandwidth 
B on this path at a time t is given by 

    
1, ,

min ,ii n
B t B t

 
  (5) 

where iB  means an available bandwidth in the i-th 
node. 

Knowledge about available bandwidth on an end-
to-end path may be useful for the correct operation of 
many network applications as, for example, VoIP, 
Audio/Video, P2P, network games or services on 
demand. Estimation of the available bandwidth can 
be also very useful in the process of selecting a route 
in overloaded networks or verifying the s-called 
Service Level Agreements (SLAs). Transmission 
conditions on an end-to-end path can change 
dynamically and in an unpredictable way, so 
estimating the available bandwidth a priori is not an 
easy task. There are two classes of methods for 
estimating the available bandwidth: active and 
passive ones (Liebeherr J., Fidler M., Valaee S. 2010). 
Active methods involve sending traffic samples and 
analyzing their statistics after reaching the 
destination. Among many tools available for this 
purpose are, among others, the following ones: IGI, 
Pathload, pathChirp - description of these methods 
can be found in (Strauss J., Katabi D., Kaashoek F. 
2003). However, all these methods just mentioned 
require performing an installation on the both sides 
of a tested path, which is not always possible. Passive 
measurements, on the other hand, involve capturing 
traffic in a working network and then analyzing it. 
Although it is a fast and light-weight method while 
conducting the analysis one should remember about 
the changing network conditions and the influence of 
buffers, control mechanisms, and cross flows on the 
analyzed flow. 

In (Liebeherr J., Fidler M., Valaee S. 2010), an 
available bandwidth estimation method that utilizes 
a service curve estimator S  was conceived. And the 
service curve estimator S  derived in (Liebeherr J., 
Fidler M., Valaee S. 2010) is given by the following 
formula: 

,P PS D A   (6) 
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where  PD t  means a traffic departure function 
and  PA t  is a traffic arrival function. The latter is 
understood a stream that comes from a traffic trace of 
one or more flows. Both the functions describe a 
cumulative traffic that is they are sums of bits in the 
outgoing and incoming traffic, respectively, in the 
time period  0, t . Note also the use of the 
superscript “P” in the symbols  PD t  and  PA t  
to indicate that these are network data probes. 
Moreover, the symbol   in (6) stands for a 
deconvolution operator that is defined in the sense of 
the min-plus algebra as 

      
0

supf g t f t g


 


    (7) 

for functions f and g. Liebeherr J., Fidler M., and 
Valaee S. in their publication (Liebeherr J., Fidler M., 
Valaee S. 2010) shown that the estimator S  given by 
(6) can be viewed as the best possible estimate of an 
actual service curve that can be obtained from the 
available measurements of PA  and PD . 

4 GENERAL FRAMEWORK FOR STOCHASTIC 
SERVICE CURVE MODELLING 

The Internet environment is changing dynamically. 
Because of this reason and also due to traffic 
aggregation and multiplexing, any deterministic type 
of estimation gives weak results. Furthermore, the 
cross traffic is always present in real networks. 
Therefore, because of the reasons mentioned above, 
when we calculate a service curve for any node 
and/or any traffic system working in a real 
environment, it will be and should be considered as a 
one understood in the sense of the stochastic leftover 
service curve or a related one. And once again, we 
remind here that just this type of the service curve 
shows how much bandwidth actually is left for the 
through traffic in a network. 

Furthermore, the randomness of the service curve 
follows clearly from what was said at the beginning 
of this section. That is it must be considered as a 
stochastic process. And, in this context, the definition 
DEF6 referred to as above only supports this fact.  

Novelty of our approach to modelling the 
stochastic service curve, which we present in this 
paper, relies, first of all, upon an assumption that a 
service curve as a random process possesses 
generally two parts. One of them is deterministic and 
the second strictly stochastic. 

Second, we treat here representatives of the 
service curve random process as time series and 
utilize widely tools that are available in the literature 
for their analyses. Our observations of time series 
related with service curves show that principally the 
following components: (a) a deterministic trend, (b) a 
strictly stochastic part, and (c) random disorders can 
be recognized in them. In what follows, we present a 
general model of the stochastic service curve which is 
based on the above findings. 

Suppose  sS t  and  bS t  are random 
processes, and  dS t  is a (deterministic) function. 
Then, a stochastic service curve as a random process 

 IS t , which combines - through an addition 
operation - the two processes mentioned above, 
assumes the following form: 

        ,I d s bS t S t S t S t    (8) 

where  dS t  stands for a deterministic part of the 
service curve,  sS t  means its stochastic part, and 

 bS t  represents a random errors, noise etc. 

Note that it is also possible to model the stochastic 
service curve in a multiplicative way, when the 
processes  sS t  and    bS t are multiplied with 
each other. Then, the form of the “multiplicative” 
stochastic service curve   IIS t assumes the 
following form: 

       .II d s bS t S t S t S t    (9) 

Observe also that expressions (8) and (9) simplify 
to 

     I d bS t S t S t   (10) 

and 

      ,II d bS t S t const S t    (11) 

respectively, in the absence of a strictly stochastic 
component in a service curve. In (11), const means a 
constant. 

Further, note that in publications regarding time 
series analyses the components  dS t  and  sS t  
occurring in formulas (8) and (9) are called a 
deterministic trend and a stochastic trend, 
respectively. 

As well known, any stochastic process (in our case 
a one-dimensional one) is characterized by giving the 
corresponding probability distributions (which can 
change with the passing of time). Equivalently, other 
parameters as, for example, moments or the 
characteristic function of a random variable (which in 
our case is dependent upon time) can be provided. 
However, this means of a stochastic process 
characterization is oft too complicated from the 
practical point of view, and therefore rather not used 
in the network calculus. 

Sometimes, however, it is enough to know only 
one representative of a given stochastic process. That 
is a one time series that characterizes its behavior. It 
can, for example, be obtained by performing 
measurements. In what follows, we describe how to 
obtain such a time series for the stochastic service 
curve  .IS t  Note however that this is not an 
obvious task because in fact this series is hidden in 
measured data. That what is available are measured 
data regarding the input and output flows of bits to a 
system (or node). And just to obtain the time series of 

 IS t , we need to carry out a processing these data. 
To this end, we will use the Liebeherr, Fidler and 
Valaee method (called here shortly the LFV method), 
which was already mentioned and cited above 
(Liebeherr J., Fidler M., Valaee S. 2010). 
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In the setting considered in this section, the input 
and output traffic to a node or a system, which are 
represented in (6) by the cumulative arrival  PA t  
and departure  PD t  functions, respectively, are 
considered to be time series associated with 
(representatives of) the stochastic processes  PA t  
and  PD t . And note that just this understanding 
and interpretation allows us to apply (6) to obtain 
from it a time series of  IS t . Then simply, (6) 
describes a relation existing between the three time 
series indicated above. 

Now, in more detail, we calculate an estimator of 
the time series of  IS t  (being an representative of 
the stochastic process  )IS t  using (6). That is the 
following: 

   .P P
IS t D A t   (12) 

The question how reliable is the estimator 
  IS t given by (12) in evaluation of the available 

and/or utilized bandwidth in a traffic node or a traffic 
system is not trivial. This was noted and also 
discussed in (Wasielewska K. 2014) and 
(Wasielewska K, Borys A. 2019). Here, however, we 
do not consider this topic.  

It has been shown in (Liebeherr J., Fidler M., 
Valaee S. 2010) that for linear systems (that is for 
those in which P PD A S   is satisfied) the 
following relation: 

   S t S t  (13) 

holds for each value of t. In (13), S  means the 
system’s service curve. So, after applying this result 
in our case, we get 

   I IS t S t . (14) 

It follows from (14) that  IS t  is a lower service 
curve in the sense of a lower time series for a one of 
the unknown time series which describe the system’s 
service curve understood as a random process. 

It can be shown (Liebeherr J., Fidler M., Valaee S. 
2010) that when a traffic node or a traffic system 
behaves nonlinearly, then determining of 

P PS D A   gives only a lower bound for an 
upper service curve S  defined by the following 
relation: 

D A S   . (15) 

So, in this case, we will have 

   S t S t  (16) 

satisfied for each value of t. And after applying the 
latter result in our considerations regarding the 
notion of a service curve represented by one of its 
time series, we obtain 

   I IS t S t . (17) 

See that according to (17)  IS t  represents a 
lower bound for a one of the unknown upper bound 
time series which describe (indirectly) the system’s 
service curve understood as a random process. 

Let us now return to consideration of a traffic 
system that behaves linearly. And, let S  mean the 
difference between the system’s real service curve 
and its estimator. That is 

       0.I IS t S t S t     (18) 

for each value of t. Further, note that then 
   eS t S t   can be considered as a systematic 

error related to the approximation operation. 
Therefore, we can write 

     .I I eS t S t S t   (19) 

And substituting (19) into (8) gives 

         .I d s b eS t S t S t S t S t     (20) 

The components  bS t  and  eS t  are random, 
therefore we rewrite (20) as 

        ,I d s beS t S t S t S t    (21) 

where      be b eS t S t S t  . And this result 
means that  IS t  is an estimator of    d sS t S t . 
So, let us rewrite (21) as 

     .I d sS t S t S t   (22) 

Finally, (22) shows that after calculating the 
service curve estimator   IS t according to the 
formula (12), one should separate, from each other, 
the deterministic trend  dS t  from the stochastic 
trend  sS t  in the series obtained (that is in 

  ). IS t In fact, they will form their estimates  dS t  
and  sS t , respectively. 

Note now that we can proceed similarly in the 
case of considering a nonlinear traffic system. 
Therefore, the results and interpretations will be then 
also similar. Only difference will regard the estimator 

 sS t . Here, it will be interpreted as the estimator of 
the stochastic part of the time series  IS t . 

Observe further that we do not know whether a 
traffic node or a traffic system which has a service 
curve that is a random process behaves linearly or 
nonlinearly. In other words, we do not know which 
of the following three relations: 

   P P
ID t A S t  ,     P P

ID t A S t  , and 
   P P

ID t A S t   actually holds for an actually 
analyzed representative (time series) of the random 
process  IS t , in a given moment t. And obviously, 
the changes between these two working regimes of 
the system analyzed, which are mentioned above, 
will be random. That is we will have periods of time 
in which the system will behave as a linear one and 
also such ones in which it will behave nonlinearly. 
We also emphasize here the fact that even the same 
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representative of the random process  IS t  will 
show the linear as well as the nonlinear behavior.  

Of course, the behavior of all the representatives 
of the random process  IS t  will be similar. So, for 
the same traffic node or a traffic system, they will 
show different periods of linear and nonlinear 
behavior. That is in the sense that their lengths and 
times of occurrence will be random. 

Note now that it follows from the above remarks 
and the previous considerations that when we 
calculate the estimators  IS t  using the formula (6), 
we in fact do not know whether it is in the sense of 
the estimator of the process  IS t  or of the process 

 IS t . So, it follows from the above that the 
estimator  IS t  for a given traffic system achieved 
in our calculations will be partly more accurate and 
partly less accurate. An obviously, we will not know 
in which periods the former parts will occur and 
where the latter ones. Simply because their 
occurrences will be random. 

Finally in this section, we would like to say that 
the model presented here has been intensively 
exploited and validated in (Wasielewska K. 2014). 
There have been presented many results of 
simulations which prove its usefulness.  

5 CONCLUSIONS 

A general novel framework for modelling stochastic 
service curves for communication networks has been 
proposed in this paper. It relies upon exploiting some 
basic tools of the theory of stochastic processes as 
well as the tools developed in the literature for 
analysis of time series. All the definitions of 
stochastic curves, which have been formulated and 
discussed in the literature, and which are also 
referred to as in this paper, can be derived along the 
lines of our novel approach presented in this article. 

We will continue the theme of this paper. Mainly 
because of the fact that the methods of the stochastic 
network calculus are very promising in solving many 
traffic problems we are interested in as, for example, 
those which occur in the areas of the so-called 
advanced autonomous waterborne applications and 
remotely controlled ships. In our view, they are also 
very important for optimization of remote control 
systems for vehicles. 
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